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PREFACE

Physics is central to an understanding of biomedical science. We are aware that many
students studying for a career in biomedicine are not primarily motivated by physics;
they are interested in other areas of science. We are also aware that no currently avail-
able first-year textbook takes the physics needs of health-science students seriously.

In this textbook we have several goals. Firstly, we are trying to present the necessary
base concepts of physics as clearly as possible. Secondly, the textbook is designed to
remove any unnecessary conceptual load from students by removing all physics that
is not absolutely necessary for health-science students. The decision as to which parts
of physics are necessary has been determined in close collaboration with the physi-
cists and teachers of the Department of Physics and the professional clinicians and
academics in the Faculty of Health Science at the University of Otago. Thirdly, we are
keenly aware that student motivation is always an issue in the study of physics for the
health sciences. We have tried to add as many applications to the biomedical sciences
as possible to the text in an attempt to aid this motivation. The companion website for
this book is available at www.wiley.com/go/biological_physics.

The production of a textbook is an enormous task and this textbook is no excep-
tion. In writing this book, we have relied on the expertise and goodwill of a large group
of academic colleagues. We would like to express our gratitude to Mr Gordon Sander-
son of the Ophthalmology Department and Professor Terence Doyle of the Radiology
Department in the University of Otago Medical School. We would like to thank Dai Red-
shaw for the many hours he has spent reading through the text and working through
the problem sets and Dr Phil Sheard from the Department of Physiology for his in-
spiring review lectures on bioelectricity. We would particularly like to thank Dr Don
Warrington for his diligent and careful reading of the entire manuscript, and for his
many corrections and suggestions. Finally we would like to thank the staff of the De-
partment of Physics at Otago for the time and support that they have rendered over
the past years. While the staff of the Department of Physics are listed as authors of this
textbook we would particularly like to thank Gerry Carrington, Pat Langhorne, Craig
Rodger, Rob Ballagh, Neil Thomson and Bob Lloyd.

Finally, the goal of this textbook is to provide for the needs of our students. In or-
der to achieve this goal, we have depended on the feedback provided by our students.
There will of course still be errors which have escaped our editing process, and for these
we apologise in advance, and we welcome feedback from our readers.





I

Mechanics
Mechanics is the study of motion. It may be divided into two related areas: kinemat-
ics and dynamics. Kinematics is the study of the fundamental properties of motion:
displacement, acceleration, velocity, distance, and speed. These concepts allow us
to quantify motion and this allows for its scientific study. Dynamics is the study of
force as described by Newton’s three laws. Forces produce accelerations and thus cause
changes in the motion of objects.

Mechanics is the most fundamental subject in physics: it shows how the forces of
nature produce the changes which are observed in nature. The concepts introduced in
mechanics will be used throughout the rest of this book.

Mechanics is of central importance in the health sciences. The applications of me-
chanics in biological systems appear whenever the concepts of force, energy or mo-
mentum appear. There are, however, many more direct applications of the ideas of
mechanics. The working of the musculoskeletal system in humans and other verte-
brates cannot be understood without an understanding of mechanical concepts such
as torque, force, levers and tension. The energy and forces required for everyday activ-
ities in nature – jumping, flying, accelerating to elude capture – can only be evaluated
using the techniques introduced in this section.
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1KINEMATICS

1.1 Introduction

1.2 Distance and Displacement

1.3 Speed and Velocity

1.4 Acceleration

1.5 Average Velocity or Speed

1.6 The Acceleration Due to Gravity

1.7 Independence of Motion in 2D

1.8 Summary

1.9 Problems

1.1 Introduction

Kinematics is that part of mechanics which is concerned with the description of mo-
tion. This is a vital first step in coming to an understanding of motion, since we will not
be able to describe its causes, or how it changes, without a clear understanding of the
properties of motion. Kinematics is about the definition and clarification of those con-
cepts necessary for the complete description of motion. Only six concepts are needed:
time, distance, displacement, speed, velocity and acceleration.

We will begin by focussing on linear motion in one dimension. Later we will expand
this to include motion in two and three dimensions, and we will then look at three
particularly important special cases of motion in one and two dimensions: circular
motion, simple harmonic motion, and wave motion.

Key Objectives

• To develop an understanding of the concepts used to describe motion: time, dis-
tance, displacement, speed, velocity and acceleration.

• To understand the relationships between time, displacement, velocity and accel-
eration.

• To understand the distinction between average and instantaneous velocity and
acceleration.

• To understand that the horizontal and vertical components of vector quantities,
such as acceleration and velocity, may be treated independently.

1.2 Distance and Displacement

Motion is characterised by the direction of movement, as well as the amount of move-
ment involved. It is not surprising that we must use vector quantities in kinematics.
The distance an object travels is defined as the length of the path that the object took
in travelling from one place to another. Distance is a scalar quantity. Displacement, on
the other hand, is the distance travelled, but with a direction associated. Thus a road
trip of 100 km to the north covers the same distance as a road trip of 100 km to the
south, but these two trips have quite different displacements. The use of displacement
rather than distance to give directions is commonplace.

1.3 Speed and Velocity

We are accustomed to talking about the speed at which an object is moving. We also
talk about the velocity with which an object is moving. In normal usage these two
words mean the same thing. I can talk about the speed with which a car is travelling, or
I can talk about its velocity. In physics, we redefine these two words, speed and veloc-

ity, so that they have similar, but distinct meanings.

Introduction to Biological Physics for the Health and Life Sciences Franklin, Muir, Scott, Wilcocks and Yates
©2010 John Wiley & Sons, Ltd



1 · KINEMATICS

Key concept:

The velocity of an object is the change in its position, divided by the time it took for
this change to occur. Velocity is a vector and has both a magnitude and a direction.

Mathematically, the velocity of an object is

v = ∆x

∆t
(1.1)

where v is the velocity vector, ∆x is the displacement vector and ∆t is the time interval
over which the displacement occurs. Note that we will use bold symbols, such as v , for
vectors and normal-weight symbols, such as v , for scalar quantities. Note also that the
Greek letter ∆ (capital delta) represents the change in a quantity. In the above expres-
sion, Eq. (1.1), for example, the change in the position of an object is its final position
minus its initial position:

∆x = xf −xi (1.2)

Figure 1.1 A toy car on a race track. How do we
characterise its motion? Key concept:

Speed is the magnitude of the velocity. Speed is a scalar, and it does not have a di-
rection.

The speed of an object is the distance travelled, divided by the time it took to travel
that distance:

v = ∆x

∆t
(1.3)

Note the differences between Eq. (1.1) and Eq. (1.3). In Eq. (1.1), we use bold sym-

Vector equations vs. scalar equations

When demonstrating numerical calculations

the vector character that many quantities pos-

sess will not be explicitly addressed in the

equation itself. Most numerical examples will

be treated as scalar problems without any at-

tempt to represent the various quantities used

as vectors. This is to keep problems simple

and readable. Please note that this does NOT

mean that vector properties are ignored, but

rather that they are addressed in the process

of constructing the problem.

bols for both the v and the x , indicating that we are referring to the velocity and the
displacement in this equation. In Eq. (1.3) we use normal weight symbols, v and x,
indicating that we are referring to the speed and distance in this equation.

Many textbooks use d to represent distances and d to represent displacements
rather than ∆x and ∆x . We will often follow this practice when specific reference to
the initial and final positions is not called for.

Consider Figure 1.1. A toy car is travelling in a circle around a toy race track and we
wish to characterise its motion. If we are interested only in how fast the car is going,
we could say it is travelling at 5 m s−1 (= 18 km h−1). Two cars travelling on the same
circle will be perfectly well distinguished by noting the different lengths of the circle
they traverse in the same time.

Figure 1.2 Linear motion in two directions. The
cars are travelling at different speeds and in dif-
ferent directions.

Now consider the situation illustrated in Figure 1.2. In this case, two cars approach
the same intersection from different directions. In this situation, we might point out
that one of the cars is travelling at 18 km h−1, while the other is travelling at 12 km h−1.
However, this will not cover all of the differences between the two cars. Another impor-
tant fact about them is that they are travelling in different directions. If we wanted to
predict where these two cars would be in an hour (for example) it would not be enough
to just use the magnitude of their velocity; we would also need to take into account
their directions.

1.4 Acceleration

In kinematics, the acceleration, a, is a vector which quantifies changes in velocity. In
everyday conversation we use the word acceleration to mean that the speed of an ob-
ject is increasing. If an object was slowing down we would say that the object was decel-
erating. The concept of acceleration in physics is more general and applies to a larger
set of situations. In physics, acceleration is defined to be the rate of change (in time) of
the velocity:

a = ∆v

∆t
(1.4)

This definition implies several characteristics of the acceleration:

1. Acceleration is a vector: it has a direction as well as a magnitude. The accel-
eration is the rate of change of the velocity, and velocity is a vector, therefore
acceleration must also be a vector.

4 www.wiley.com/go/biological_physics



1.4 ACCELERATION

2. The acceleration vector of an object may point in the opposite direction to that
object’s velocity vector. When this happens, the object’s velocity will decrease
and may even reverse direction. This means that deceleration (slowing down) is
just another acceleration, but in a particular direction.

3. An object may have an acceleration without its speed changing at all. Should
the acceleration vector point in a direction perpendicular to the velocity vector,
the direction of the velocity vector will change, but its length will not. A good
example of this is when an object moves in a circle. In this case, the acceleration
is always perpendicular to the velocity, so the speed of the object is constant, but
its velocity is constantly changing.

To illustrate these ideas, consider a car which starts from rest (v i = 0) and accelerates
along a straight road so that its velocity increases by 2 m s−1 every second. The velocity
of this car is illustrated at a series of later times in Figure 1.3.

a = 2 m s
–2

a = 2 m s
–2

a = 2 m s
–2

a = 2 m s
–2

a = 2 m s
–2

a = 2 m s
–2

v = 2 m s
–1

v = 4 m s
–1

v = 6 m s
–1

v = 8 m s
–1

v = 10 m s
–1

v = 0 m s
–1

t = 0 s

t = 1 s

t = 2 s

t = 3 s

t = 4 s

t = 5 s

Figure 1.3 A car accelerating at 2 m s−2 for 5 s.

Since the velocity changes by the same amount every second (2 m s−1), the accel-
eration of the car is constant. The velocity is changing at a rate of 2 m s−1 per second,
or 2 metres per second per second. This acceleration would normally be written as
a = 2 m s−2 (or 2 m/s2) to the right.

We can calculate the velocity at any time. Since we know how much the veloc-
ity increases every second and we also know that the car was initially stationary, we
just multiply this rate by the time elapsed since the acceleration began, i.e., we use the
equation

v = at (1.5)

Note that this is a vector equation, so that the velocity is in the same direction as the
acceleration. For the car in this example, which is accelerating in a straight line at a
constant rate of 2 m s−2 from rest, after 4 s the speed is v = at = 2 m s−2 ×4 s = 8 m s−1,
and so on.

What if the car had not been at rest initially? Suppose that the car in the previous
example had been travelling at a constant velocity of 5 m s−1 for some unspecified
length of time, and then began to accelerate at 2 m s−2. Figure 1.4 shows this car at
a sequence of later times. Compare this figure with Figure 1.3.

In one most important respect, the situation has not changed. The velocity of the
car still increases at the same rate, so that the change in velocity after the acceleration
begins is given by the equation

∆v = at (1.6)

The difference between Eq. (1.5) and Eq. (1.6) is that we now explicitly recognise that it
is the change in velocity that we are calculating. In the previous example we calculated
the change in velocity, but since the car started at rest, the velocity of the car was the
same as how much the velocity had increased. Since we now have a nonzero initial
velocity, we must recognise that the change in velocity is the final velocity minus the
initial velocity, so

v f −v i = at

www.wiley.com/go/biological_physics 5



1 · KINEMATICS

a = 2 m s
–2

a = 2 m s
–2

a = 2 m s
–2

a = 2 m s
–2

a = 2 m s
–2

a = 2 m s
–2

v = 7 m s
–1

v = 9 m s
–1

v = 11 m s
–1

v = 13 m s
–1

v = 15 m s
–1

v = 5 m s
–1

t = 0 s

t = 1 s

t = 2 s

t = 3 s

t = 4 s

t = 5 s

Figure 1.4 A car accelerates from an initial velocity of 5 m s−1 with a constant acceleration of 2 m s−2.

Thus after 5 s we would find that 15 m s−1 − 5 m s−1 = 2 m s−2 × 5 s. We are normally
interested in calculating the final velocity, so we write the above equation in the form

v f = v i +at (1.7)

We can use this equation to find the final velocity at any later time, so long as the accel-
eration has not changed.

Note that the velocity calculated using this formula is the instantaneous velocity of
the car at that time. This is the velocity that you would read off the car’s speedometer.
We will discuss instantaneous and average velocities in more detail next.

1.5 Average Velocity or Speed

The discussion above allows us to calculate the instantaneous velocity of an object
moving with constant acceleration. This is the velocity of the object at a particular
instant of time. It is also often useful, when we are dealing with motion in a straight
line, to use the average velocity of an object to solve problems. The average velocity is

v av =
total displacement

total time
= d

t
(1.8)

If you drive a car from Dunedin to Christchurch (370 km away) in 5 h, your average
speed is given by

vav =
d

t
= 370 km

5 h
= 74 km h−1

It is important to realise that this calculation does not require any knowledge of the
details of your trip. You may have traveled at a constant 74 km h−1 the whole way, or
(more likely) you may have varied your speed significantly. You may even have stopped
to look at the view and eat lunch for half an hour. These details are not needed for the
calculation of the average velocity.

We will now derive a general relationship between the distance travelled by an ob-
ject, its initial velocity, and its constant acceleration. If an object, for example a car, a
plane or a soccer ball, has constant acceleration, then the displacement, d , occurring
in some given time, t , is

d = v avt = 1

2
(v i +v f) t

= 1

2
(v i +v i +at ) t

=
(

v i +
1

2
at

)
t

d = v it +
1

2
at 2 (1.9)
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1.6 THE ACCELERATION DUE TO GRAVITY

Often v i = 0, i.e., the object is starting from rest, so then

d = 1

2
at 2 (1.10)

We will now investigate an acceleration which is particularly important for the motion
of objects near the surface of the earth: the acceleration due to gravity.

Problem: If you drop a cricket ball from a 125 m high tower, how far will it fall in 5 s?

Example 1.1 Falling ball (1D kinematics)

Solution: We can solve this problem in two different ways. We can find the average velocity of the ball over the first 5 s
and use this average velocity to calculate a displacement, or we can calculate a displacement directly.

(a) The acceleration due to gravity is 10 m s−2 downwards and so the velocity increases by 10 m s−1 in the downwards
direction every second. The initial velocity is 0 m s−1 so the final velocity must be 5 s×10 m s−2 = 50 m s−1 in the
downwards direction. The average velocity of the cricket ball is therefore

v av =
0 m s−1 +50 m s−1

2
= 25 m s−1 downwards

Using this average velocity, the distance that the cricket ball will fall in 5 s is 25 m s−1 ×5 s = 125 m.

(b) The second technique uses Eq. (1.10) (since the initial velocity is zero) using g for the acceleration. The change
in displacement of the ball is

d = 1

2
g t 2 = 1

2
×10 m s−2 × (5 s)2 = 125 m

which is the same answer as we found with the previous method.

1.6 The Acceleration Due to Gravity
Air resistance

Actually, the acceleration is only the same in a

vacuum. Objects falling in air are affected by

air resistance which reduces the acceleration.

Often this is small enough to be ignored.

Galileo found (and countless experiments since have also shown) that all objects falling
freely towards the Earth have the same acceleration. (In order to see this effect, we
must take into account the effect of air resistance when this is significant.) Thus every
object in free fall has its downward speed increased by 10 m s−1 in every second re-
gardless of its mass. Galileo claimed that this was an experimental fact and is reported
to have shown it by dropping two balls of unequal mass from the top of the Leaning
Tower of Pisa. Later we will discuss the theoretical explanation for this experimen-
tal fact when we investigate the relationship between acceleration and the concept of
force. The value of this constant acceleration is given by

g = 9.81 m s−2 ≈ 10 m s−2 (1.11)

This quantity, g , is called the acceleration due to gravity. (The value of 9.8 m s−1 is the
value at sea level on the surface of the Earth; the value will change with altitude.)

Consider an object released from rest and accelerating in free fall. Assuming that
the air resistance is negligible, we are able to calculate its velocity after 5 s:

Precision and g

In mathematical examples where we wish to

find an accurate result, we will often use a

value for g of 9.8 or 9.81 m s−2. However,

in cases where we are more interested in the

concepts and methods than the exact answer

we will frequently approximate the value as

10 m s−2 to keep things simpler.

v = g t = 10 m s−2 ×5 s = 50 m s−1

Note that the mass of this object is not even mentioned in the original question. Also
note that we have not considered the vectorial character of either the acceleration due
to gravity or of the velocity achieved by this object after 5 seconds. These quantities are
of course vectors, but their directions may be assumed to be towards the centre of the
Earth and need not be considered in this problem. This is not always the case.
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1 · KINEMATICS

Problem: If you throw a cricket ball straight up at 12 m s–1, how high will it go?

Example 1.2 A ball thrown straight up (I) (1D kinematics)

Solution: This problem is very similar to the previous one, except now the cricket ball has an initial velocity. This initial
velocity is in the opposite direction to the acceleration due to gravity. This means that, at first, gravity will reduce the
upward velocity of the cricket ball by 10 m s−1 every second. At some point the upward velocity of the cricket ball will
have been reduced to zero – the cricket ball has stopped travelling up so it has reached its maximum height.

To calculate the maximum height that the ball reaches we need to find the time taken for the upward velocity to
decrease to zero as this is also the time for the ball to reach its maximum height. We then calculate the average velocity
and use this combined with the elapsed time to calculate the change in displacement of the ball.

For this problem we will define the upwards direction as positive, and define d = 0 m to be the height at which the
ball was released.

The change in velocity of the ball is vf − vi = −12 m s−1 (i.e., the velocity goes from +12 m s−1 initially to 0 m s−1 at
its highest point). The time it takes the acceleration due to gravity (−10 m s−2, as it points in the downwards direction)
to cause this change in velocity is,

∆v = g t

t = ∆v

g
= −12 m s−1

−10 m s−1
= 1.2 s

The average velocity is 6 m s−1 (vav = 1
2

(
v f + vi

) = 1
2

(
12 m s−1 +0 m s−1

) = 6 m s−1) and using this we calculate the
change in displacement of the cricket ball during the 1.2 seconds it takes to reach the maximum height,

d = vavt = 6 m s−1 ×1.2 s = 7.2 m

The highest point the ball reaches is 7.2 m above the point at which it was released.

Problem: How long does it take the ball in Example 1.2 to fall to its original position from its maximum height?

Example 1.3 A ball thrown straight up (II) (1D kinematics)

Solution: The ball reaches a maximum height of 7.2 m above the point at which it is thrown. At its maximum height
it has a velocity of 0 m s−1. The time taken to fall a distance of 7.2 m back to its original position can be found using
Eq. (1.9):

d = vit +
1

2
at 2

Since the initial velocity, vi, is the velocity of the ball at its maximum height, i.e., vi = 0 m s−1 this can be reduced to

d = 1

2
at 2

The time in this equation, t , is the time the ball takes to fall back to its original position. We rearrange this
equation to solve for t where (using the same sign convention as in Example 1.2) d =−7.2 m and a = g =−10 m s−2

t =
√

2d

g
=

√
2×−7.2 m

−10 m s−2

= 1.2 s

Note that this is the same time it took the ball to reach its maximum height from the point at which it was initially
thrown in Example 1.2. This is a useful general result. Projectile motion is symmetrical about the point of maximum
height. It takes the same amount of time to reach the maximum height from a starting height as it does to get back to
that height from the maximum height.
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1.7 INDEPENDENCE OF MOTION IN 2D

Problem: What is the velocity of the ball in Examples 1.2 and 1.3 when it falls back to the height at which it was

released?

Example 1.4 A ball thrown straight up (III)

Solution: As in the previous problem we can think of the ball starting at its maximum height and falling 7.2 m under
the influence of gravity to its original height, which we found would take 1.2 s, the same as the time taken to reach its
maximum height from the point at which it was released. The change in velocity over the three seconds in which it is
falling from its maximum height is

∆v = at =−10 m s−2 ×1.2 s

=−12 m s−1

The ball is travelling at the same speed at it was when released, but in the opposite direction! Again this is a useful
general result we can apply to many kinematics problems without going through an extensive derivation.

Problem: If the ball in the Example 1.2 was released (travelling upwards) at a height of 1.2 m above the ground, what

is the velocity of the ball just before it hits the ground?

Example 1.5 A ball thrown straight up (IV) (1D kinematics)

Solution: We will first need to find the time it takes for the ball to hit the ground and then use ∆v = at to find the change
in velocity, and hence the final velocity. Initially it is tempting to try to use Eq. 1.9 to solve this problem directly.

d = vit +
1

2
at 2

We know the change in position of the ball (as, in this case, the ball ends up 1.2 m below it’s starting point), the
initial velocity of the ball (vi = 12 m s−1), and acceleration (g =−9.8 m s−2). In order to use this equation, however, we
would need to solve for t , which would require solving a quadratic equation. Even using the shortcuts highlighted in
the previous two examples does not allow us to avoid this quadratic as we still end up with two terms featuring t . If
you’re confident doing this, that is great. If you are not very confident at solving quadratic equations however, all is not
lost.

We can simplify the problem by using the fact that we know a bit more about the situation than is apparent from the
question. From Example 1.2, we know that the ball reaches a maximum height of 7.2 m above the point at which it was
released. This means that the ball will reach a height of 7.2+1.2 = 8.4 m above the ground. At this maximum height, the
velocity of the ball is 0 m s−1, and by ignoring the first part of the ball’s motion, we can simplify Eq. (1.9) to d = 1

2 at 2,
where d is the change in displacement of the ball as it moves from its maximum height to the ground, d =−8.4 m, and
a = g =−9.8 m s−2:

d = 1
2 at 2

t =
√

2d
g =

√
2×−8.4 m
−9.8 m s−2

= 1.3 s

This gives a change in velocity of ∆v = g t =−9.8 m s−2×1.3 s =−13 m s−1, so the ball will be travelling at 13 m s−1 in the
downwards direction as it hits the ground.

1.7 Independence of Motion in 2D

In the previous section we considered objects which move vertically up and down. This
means that in these cases the velocity vector is always parallel to the acceleration vec-
tor. These objects would go straight upward and fall straight downward. They will not
move horizontally since there is no initial velocity in the horizontal direction, and no
acceleration in the horizontal direction to cause a non-zero horizontal velocity to de-
velop. What would happen if the initial velocity was not straight upward? What would
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have happened if the initial velocity was at some angle to the vertical? This is the sit-
uation shown in Figure 1.5, using the example of a cricket ball launched upward at an
angle. In Figure 1.5, the cricket ball has a vertical velocity and a horizontal velocity and

Figure 1.5 The trajectory of a cricket ball initially launched upward at an angle to the vertical. The vertical and
horizontal components of the ball’s velocity are shown at a number of times in its trajectory.

this results in a net velocity at an angle to the vertical. The acceleration due to gravity,
however, acts only in the vertical direction, and changes only the vertical component
of the velocity. The horizontal component of the velocity is initially 10 m s−1 and is still
10 m s−1 when the ball reaches its maximum height at 45 m after 3 s, and is 10 m s−1

when the ball reaches the ground again after a total of 6 s. There is no acceleration in
the horizontal direction, so the velocity component in this direction cannot change.

The vertical component of the velocity is changed by the acceleration due to gravity.
This can be seen in Figure 1.5 as well. In point of fact, the vertical component of the
velocity behaves in exactly the same way as it did in the examples above. The vertical
velocity is initially 30 m s−1 upward. After 3 s this has dropped to 0 m s−1 when the ball
reaches its maximum height. The vertical velocity is again 30 m s−1 just before the ball
hits the ground after 6 s, but now the velocity is in the downward direction.

This is what we mean when we say that the horizontal and vertical components
of the velocity vector are independent. These components are acted on separately by
the accelerations in those directions. An acceleration in the horizontal direction would
not change the velocity component in the vertical direction. This means that when we
are attempting to solve a kinematics problem in three dimensions, we may look at the
components of the velocity and acceleration in a given direction independently of their
components in the other two directions.

Figure 1.6 Independence of the vertical and hor-
izontal components of velocity.

This effect may be seen in the following experiment. Suppose that we have two
identical balls which are held on a platform in a darkened room. (The balls do not need
to have the same mass for this experiment to work, but we will simplify the discussion
by assuming that they do.) Now suppose that we drop one ball directly downward from
a platform and at the same instant fire the other ball horizontally out from the same
platform. As the balls fall, a strobe light flashes at regular intervals and the trajectory of
the two balls is recorded on a camera with a very long exposure time. Figure 1.6 is an
example of the sort of image that would be obtained from this experiment.

In this figure, we observe that the balls are at the same height at each interval, i.e.,
at each flash of the strobe light. This means that their vertical velocity components are
the same at each time. Their horizontal velocity components are quite different, how-
ever. The ball which is simply dropped has no horizontal velocity component, whereas
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1.7 INDEPENDENCE OF MOTION IN 2D

the horizontal velocity component of the other ball is constant.

Problem: A modern artist throws a bottle of paint towards the wall of a nearby building. The bottle leaves the artist’s

hand at a height of 2.00 m, a speed of 16.0 m s–1, and at an angle of 30.0° above the horizontal. If the building is

15.0 m away

(a) At what height H does the bottle hit the wall?

(b) At what velocity v is the bottle travelling as it hits the wall?

Example 1.6 Projectile motion (2D kinematics)

Solution:

Figure 1.7 An artist throws a bottle against a wall.

A good first step for this kind of problem is to draw a diagram like
Figure 1.7. Remember that when dealing with 2D kinematics you
can always separate out the horizontal and vertical motions. Note
also that since we are given numerical quantities to two significant
figures, we will use this level of numerical precision throughout the
problem, i.e., we will use g =−9.8 m s−2.

In order to answer both of the questions, we will need to know
how long after the bottle leaves the artist’s hand it hits the wall. We
can calculate this time by looking at the horizontal motion of the
bottle. As the acceleration due to gravity is in the vertical direction
only, we know that the horizontal velocity is constant and has a mag-
nitude of vx = 16.0 m s−1 × cos30° = 13.9 m s−1. So the time it takes
the bottle to travel the 15 m horizontally to the wall is

dx = vxt

t = dx

vx
= 15 m

13.9 m s−1
= 1.08 s

(a) The difference in height between the bottle’s initial height of 2.0 m and its final height of H is hf. We can calculate
this height by using the initial vertical velocity of the ball (vyi = 16 m s−1×sin30° = 8.0 m s−1) and the fact that the
ball is accelerating in the vertical direction at a rate of a = g =−9.8 m s−2.

hf = vit +
1

2
g t 2

= 8.0 m s−1 ×1.08 s+ 1

2
× (−9.8 m s−2)× (1.08 )2

= 2.93 m

So the bottle must hit the wall a total of 4.9 m above the ground (giving solution to two significant figures).

(b) In order to find the final velocity of the bottle we will have to add together the vertical and horizontal components
of the bottle’s velocity as it hits the wall. We already know that the horizontal velocity of the bottle is constant as
there is no acceleration in the horizontal direction, therefore the horizontal component of the final velocity is
vx = 14 m s−1. To find the final vertical velocity we can use vf = vi + at where vi = vyi = 8.0 m s−1 and a = g =
−9.8 m s−2.

vyf = vyi + g t

= 8.0 m s−1 + (−9.8 m s−2)×1.08 s =−2.58 m s−1

By the time the bottle has hit the wall, it has reached its maximum height (at which vy = m s−1) and has started
moving back down, hence the negative vertical velocity.
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Figure 1.8 The velocity vector components of the bottle as it hits the wall.

We can get the magnitude of the final velocity by vector addition of the two components vx, and vyf:

|vf| =
√

v2
x + v2

yf

=
√(

13.9 m s−1
)2 + (−2.58 m s−1

)2 = 14.14 m s−1

The direction in which the bottle is traveling can be found by using trigonometry.

tanθ f =
vyf

vx

θ f = tan−1
(

vyf

vx

)

= tan−1
(

2.58 m s−1

13.9 m s−1

)
= 10.52°

So as the bottle hits the wall it is travelling at a speed of 14 m s−1, 11° below the horizontal (to 2 s.f.).

1.8 Summary

Key Concepts

elapsed time (∆t) The time interval between two events

distance (d or ∆x) The length of a path between two spatial positions.

displacement (d or ∆x) The vector equivalent of distance, which specifies the distance and di-
rection of one point in space relative to another. It depends only on the initial and final
spatial positions, and is independent of the path taken from one position to the other.

speed (v) A scalar measure of the rate of motion. The SI unit of speed is metres per second (m/s
or m s−1).

velocity (v) A vector measure of the rate of motion, which specifies both the magnitude and
direction of the rate of motion.

acceleration (a) A measure of the rate of change of the velocity. Acceleration is a vector quantity.
The SI units of acceleration are m/s2 or m s−2.

Equations

d = v avt

∆v = at

v av =
1

2
(v i +v f)

d = v it +
1

2
at 2
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1.9 Problems

1.1 A dog chasing a ball starts at rest and accelerates uniformly
over a distance of 5 meters. It takes the dog 1 s to cover that first
5 m. What is the dog’s acceleration, and what speed is the dog trav-
elling when it reaches the 5 m point?

1.2 During a particular car crash, it takes just 0.18 s for the car to
come to a complete stop from 50 km h−1.

(a) At what rate is the car accelerating during the crash?

(b) How many times larger than the acceleration due to gravity
is this?

1.3 A jogger starting their morning run accelerates from a stand-
still to their steady jogging pace of 8.0 km h−1. They reach a speed
of 8.0 km h−1, 5 s after starting. How long does it take the jogger to
reach the end of their 20 m driveway?

1.4 A driver in a blue car travelling at 50 km h−1 sees a red car
approaching in his rear-view mirror. The red car is travelling at
60 km h−1 and is 30 m behind the blue car when first spotted.

(a) How many seconds from the time the driver of the blue car
first noticed it until the red car passes the blue car?

(b) How much farther down the road will the blue car travel in
this time?

1.5 You are abducted by aliens who transport you to their home
world in a galaxy far far away. Oddly, the only thing you can
think of doing is measuring the acceleration due to gravity on this
strange new world. You drop an alien paperweight from a height of
12 m and use an alien stopwatch to measure the interval of 1.36 s it
takes the paperweight to hit the ground below. What is the accel-
eration due to gravity on the alien home world?

1.6 In a bid to escape from your alien captors you hurl your paper-
weight straight up towards the door switch on a space ship above
you. If the switch is 25 m above you how fast does the paperweight
need to leave your hand?

1.7 An initially stationary hovercraft sits on a large lake. When
a whistle blows the hovercraft accelerates due north at a rate of
1.2 m s−2 for 10 s, does not accelerate at all for the next 10 s, and

then accelerates at a rate of 0.6 m s−2 due east for another 10 s. The
hovercraft then coasts for another 10 s without any acceleration.

(a) What is the velocity of the hovercraft 40 s after the whistle
blows?

(b) What is the displacement of the hovercraft 40 s after the
whistle blows?

1.8 A jogger takes the following route to the entrance of their local
park: north 120 m, west 100 m, south 35 m, and finally west 50 m.
It takes them 2 minutes 18 seconds to reach the park entrance.

(a) What distance did the jogger travel?

(b) What is the displacement of the jogger as she enters the
park?

(c) What is the average speed of the jogger?

(d) What is the average velocity of the jogger?

1.9 A tennis ball is hit down at an angle of 30° below the horizontal
from a height of 2 m. It is initially travelling at 5.0 m s−1. What is
the velocity of the ball when it hits the ground if we can neglect air
resistance?

1.10 A stunt rider is propelled upward from his motorbike by a
spring loaded ejector seat. The rider was travelling horizontally
at 60 km h−1 when the ejector seat was triggered, and as they leave
the seat they are travelling with a vertical velocity of 15 m s−1.The
seat is 1.0 m off the ground.

(a) What is the initial velocity of the stunt rider (in km h−1)?

(b) How high does the stunt rider reach?

(c) How far along the track does the stunt rider land on the
ground?

(d) What is the velocity of the stunt rider when they hit the
ground (in km h−1)?

1.11 A bullet is fired horizontally from a gun that is 1.5 m from the
ground. The bullet travels at 1000 m s−1 and strikes a tree 150 m
away. How far up the tree from the ground does the bullet hit? [Ne-
glect air resistance.]
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2FORCE AND NEWTON’S LAWS OF

MOTION
2.1 Introduction

2.2 The Concept of Force

2.3 Kinds of Force

2.4 Newtonian Gravity

2.5 Summary

2.6 Problems2.1 Introduction

We now have a clear and complete description of motion. This description relates the
primary properties of motion – displacement, velocity, acceleration and elapsed time
– to each other. The question now arises: what causes a change in the motion of an
object? This amounts to asking: ‘Where does acceleration come from?’ The answer
to this question is deceptively simple: ‘Accelerations are caused by the application of
forces.’ The purpose of this chapter is to explain clearly what a ‘force’ is in physics and
how it can be used to solve problems relating to the motion of objects. When forces are
included in the discussion of motion, it is called dynamics.

Key Objectives

• To understand the concept of force.

• To understand the relationship between force and motion.

• To be able to identify action–reaction pairs of forces.

• To understand normal, friction and tension forces.

• To be able to solve straightforward problems in dynamics.

2.2 The Concept of Force

Force vectors in figures

In this text force vectors are represented as

acting on the centre of mass of an object. It

should be noted that other texts use differing

conventions for contact force vectors in which

a contact force is shown acting at the surface

between two objects. The distinction between

the two ways of representing contact force vec-

tors is partially style, although when dealing

with contact forces that may act to rotate an

object the exact position of action of a force is

important. Such cases will not be dealt with in

this text and so the simpler standard in which

all force vectors are shown to act at the cen-

tre of mass of an object has been used in the

interests of clarity.

In everyday conversation we use the word ‘force’ quite liberally. The Oxford English
Dictionary gives a number of definitions of the noun ‘force’:

1. physical strength or energy accompanying action or movement.

2. (Physics) a measurable influence that causes something to move.

3. pressure to do something backed by the use of threat of violence.

4. influence or power.

5. a person or thing having influence: a force for peace.

6. an organised group of soldiers, police or workers.

The word is also used as a verb, as in sentences like: ‘She forced the committee to
consider her application seriously.’ In physics, the word ‘force’ has a very precise mean-
ing, and this is given by Newton’s laws. These laws define force by listing the essential
properties of a force. If some phenomenon does not have all of these properties, then
it is not a force. In this section we will go through Newton’s Laws and explain each of
them in turn.

Introduction to Biological Physics for the Health and Life Sciences Franklin, Muir, Scott, Wilcocks and Yates
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2 · FORCE AND NEWTON’S LAWS OF MOTION

Newton’s First Law

In the list of Oxford English Dictionary definitions of force given above, the second
item is closest to the definition used by physicists. A force is essentially anything that is
measurable and causes a change in the motion of an object. For example, if an object
is at rest, then we must apply a force to it to cause it to accelerate and to develop a
non-zero velocity.

Newton’s first law states that any object continues at rest, or at constant velocity
(constant speed in a straight line), unless an external force acts on it. Figure 2.1 il-
lustrates the effect of a force on the motion of an object. This object is travelling in a
straight line until an external force acts on it in a direction perpendicular to its motion.
This causes the object to be deflected from its straight-line motion.

External force

Figure 2.1 A pair of objects initially travel in the same direction. The lower object is subject to a force and its motion
then deviates from a straight line while the force acts on it, but continues on in a new straight line after the force
ceases to act.

Newton’s Second Law

Key concept:

An external force gives an object an acceleration. The acceleration produced is pro-
portional to the force applied, and the constant of proportionality is the mass.

Newton’s second law can be summarised with the following equation:

F = ma (2.1)

In this equation, a is the acceleration (in m s−2) as usual, m is the mass (in kg), and F

is the force (in N) (N = newton). The SI unit of force is the newton; one newton (1 N) is
the force which would accelerate a 1 kg mass at 1 m s−2 (i.e., would cause its velocity to
increase by 1 m s−1 in every second).

Figure 2.2 If the force applied to an object does
not change, but the mass of the object is dou-
bled, then the acceleration is halved. If the mass
does not change and the force is doubled, then
the acceleration is doubled also.

As is illustrated in Figure 2.2, if the mass of an object on which the force is applied
does not change, but the force is doubled, then the acceleration of this object will also
be doubled (see diagram to the right in Figure 2.2). If the applied force is not changed,
but the mass of the object is doubled, then the acceleration will be halved (see centre
diagram of Figure 2.2). For numerical examples of the relationship between mass, force
and acceleration, see Table 2.1.

Weight and Mass

Since any object of mass m near the surface of the Earth falls with acceleration g down-
wards, it must be acted on by a force:

F = ma

= mg downwards
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This downward force is due to the gravitational attraction between the Earth and the
object and is often called the object’s weight, i.e., the magnitude of the force, W , is

W = mg (2.2)

Key concept:

The weight of an object is a force, not a mass.

m (kg) a (m s−2) F (N)
1 1 1
1 2 2
2 1 2
2 2 4
4 5 20

Table 2.1 Newton’s second law and the relation-
ship between force, mass and acceleration.

When we step on our bathroom scales and are told our mass in kilograms, we are
effectively being given our weight in newtons with a zero removed. The scales do not
directly measure our mass or weight – they measure the magnitude of the contact force
(also referred to as the normal force or support force) between the scales and our feet. If
we were to step onto our scales while resident on the International Space Station (ISS),
we would read a weight of nearly zero kilograms. Our mass has not changed; what has
happened is that both the scales and ourselves are in free fall, and there is no significant
contact force between the scales and our feet.

Interestingly, because the ISS orbits at an altitude of only 350 km (6.34× 106 m+
0.35×106 m = 6.69×106 m from the centre of the Earth), the difference in the gravita-
tional force, and hence acceleration due to gravity, between an object on the surface of
the Earth and on the ISS is quite small (Fgrav, ISS ≈ 0.90× Fgrav, sea level). (The strength
of the gravitational force is discussed in Section 2.4.

Forces are Vectors

When I push against an object, say, an apple, I push hard or not so hard, and I push
in a particular direction. For example, I could be pushing the apple across the table
towards you, or I could be pulling the apple toward myself. It seems that forces have
both magnitude and direction; this means that we must represent forces as vectors.
This fits with what we have said so far about forces. Thus to find the total or net force
on an object, we must find the vector sum of all of the individual forces on that object.
It is the net force acting on an object that produces an acceleration. Since acceleration
is a vector, and the mass is not, the force that acts on the object must also be a vector
(see Eq. (2.1).) This means that if several forces are acting on the same object, we find
the total force using vector addition to add up all of the applied forces.

As in the case of the velocity and acceleration vectors, we may treat the components
of a force vector as separate independent vectors. Thus, in calculations we are able to
look at the behaviour of the horizontal components of the force, acceleration, velocity
and displacement, and then the vertical components of these vectors. Once we have
completed these separate calculations we can combine the components of the relevant
vector quantities to find the total force, velocity or acceleration.

Newton’s Third Law

Key concept:

For every action there is an equal and opposite reaction.

Newton’s third law states that forces come in pairs – for every force that is applied
to a body, there is a force applied by that body. The ‘action’ referred to in the box above
is the force applied by one object on the other. Suppose that the ‘action’ is the force
exerted by object 1 on object 2. Newton’s third law then states that object 2 will exert a
force of equal size, but in the opposite direction, on object 1. This second force is the
‘reaction’ to the force exerted by object 1.

Forces act in pairs and each force acts between a pair of objects. These force pairs
are called action–reaction pairs or third-law force pairs. It is important to correctly
identify the action–reaction pairs in a problem. For example, the weight force of an
object is due to the gravitational interaction between that object and the Earth. Thus
the Earth exerts a force on the object and the object exerts an equal, but opposite, force
on the Earth. The object will accelerate toward the Earth under the influence of the
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Figure 2.3 Three examples of action–reaction pairs. The gravitational force between the Earth and the Moon, the
downward contact force a block exerts on a surface and the upwards support force the surface exerts on the block,
and a person pushing against a wall.

gravitational force exerted by the Earth – this is source of the acceleration due to gravity.
These equal and opposite forces exist whether the object under discussion is in free fall
toward the Earth or is sitting on a set of bathroom scales being weighed; in both of
these cases the action–reaction pair is the force of the Earth on the object and the force
of the object on the Earth. Later we will discuss the electric force, the force described
by Coulomb’s Law. This is a force which again acts between two objects (which are
charged), with the force on one being equal and opposite to the force on the other.

In Figure 2.3 we illustrate Newton’s third law with three examples. In the first ex-
ample, the Earth (E) exerts an attractive gravitational force on the Moon (M), FE on M.
In turn, the Moon exerts and equal, but opposite (and hence also attractive), force on
the Earth, FM on E. In the second example, the surface (S) on which a block (B) is sitting
exerts an upward (normal or support) force FS on B, on the block, which exerts an equal
and opposite force, FB on S, on the surface. Note that the downward force exerted by
the block is not necessarily the weight force of the block. If I push down on the block,
the downward force is the sum of the forces acting downward, and the support force
provided by the surface will increase to equal it. Finally, a person (P) pushing against a
wall (W) applies a force FP on W to the wall, and the wall applies an equal and opposite
force FW on P to the person. It is important to note that each force in an action–reaction
pair acts on a different object. It is always the case that action–reaction pairs act on
different objects.

Problem:

Figure 2.4 Two boxes being pushed along a
frictionless surface

As shown in Figure 2.4, a large 3 kg box is being pushed with a horizontal force of

F P = 5 N and as a result is accelerating along the horizontal frictionless surface

upon which it rests. The large box has a smaller 1 kg box resting on top of it. This

box does NOT slide from the top of the big box as it accelerates.

(a) At what rate are the boxes accelerating?

(b) What are the magnitudes and directions of the friction forces acting on

each box?

(c) What are the magnitudes and directions of the normal forces acting on

each box?

Example 2.1 A box on a box

Solution: Because the small box does not slide around on top of the large one, the small box accelerates at the same rate
as the large one aS = aL. Drawing a diagram of all the forces acting on each box will be helpful at this point. Because
each box is accelerating horizontally, there must be a net force on each box which is horizontal. The sum of all vertical
forces on each box must be zero.
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N S and W S, and f S and f L are each Newton’s third-law force pairs. The large box pushes up on the small box
with a force of N S and so the small box pushes down on the large box with a force W S which is of equal magnitude.
Similarly the frictional force between the two boxes pushes the small box forward with a magnitude of fL and the large
box backwards with a force fL of the same magnitude.

Figure 2.5 Forces acting on each box

(a) The 5 N pushing force accelerates a total mass of 4 kg at a rate of a = FP
(mL+mS) = 5 N

4 kg = 1.25 m s−2.

(b) The net force on the small box is equal to the frictional force (there are no other horizontal forces).
f S = mSa = 1 kg×1.25 m s−2 to the left = 1.25 N to the left. As f S and f L are a Newton’s third-law pair, f L = 1.25 N
to the right.

(c) As the small box is not accelerating in the vertical direction, the normal force must have the same magnitude
as the weight force of the box. NS = mSg = 1 kg×10 m s−2 = 10 N, and it is directed in the opposite direction to
the weight force, which is upwards. The normal force acting on the large box must be equal in magnitude to the
sum of the two downwards forces acting on the box, which are the weight force of the large box itself and W S.
N L = mlg + W S = 3 kg×10 m s−2 + 10 N = 40 N upwards. This is equal in magnitude to the combined weight
forces of both boxes.

Figure 2.6 A flowerpot sits on a table which itself sits on the ground. Several systems of interest are shown. On the
left the Earth (system E) and the combination of the flowerpot and table (system C) constitute two systems. System
C is then split into two systems: the pot (system P) and the table (system T). The net force on each system (and
subsystem) is zero, but each object is exerting forces on other objects and having forces exerted on them.

In order to clarify the analysis of collections of objects which are exerting forces on
each other, it is often useful to begin by defining the ‘system of interest’. The system of
interest contains the objects whose behaviour we are interested in analysing, and the
net forces acting on them. Sometimes both objects in an action–reaction pair will be in
the system of interest, but in many cases only half of an action–reaction pair is relevant
to a given problem.

We are at liberty to define the system of interest in the way which is most convenient
for the problem at hand, and we will illustrate this point with an example. Figures 2.6
and 2.7 show a flowerpot at rest upon a table, which is itself at rest. In other words, the
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table and flowerpot are not accelerating with reference to the Earth.

Figure 2.7 shows the forces acting on each object in system C from Figure 2.6. The
forces F T on P and F P on T are an action–reaction pair and thus are always equal and
opposite. As they both act on objects which are inside system C, they will cancel each
other out and not contribute to the motion of system C as a whole.

Figure 2.7 Detail of the forces acting in system
C of Figure 2.6. FT on P and FP on T are third-law
pair forces and as such always equal and oppo-
site. Thus when considering the motion of sys-
tem C as a whole by adding together all of the
forces acting upon it these two forces, FT on P
and F P on T will always cancel each other out
and only the three remaining forces need be con-
sidered.

The remaining forces, F E on P (gravity), F E on T (gravity) and F E on T (contact), are indepen-
dent of each other. F E on P (gravity) and F E on T (gravity) are the weight forces of the pot
and table respectively These two forces obviously have no bearing on each other, while
F E on T (contact) is the force with which the ground is pushing up on the table. In this ex-
ample, this force is equal and opposite to the sum of the F E on P (gravity) and F E on T (gravity)

and so system C as a whole does not accelerate. This need not be the case, however, as
F E on T (contact) could be higher or lower than the combined weight force of the pot and
table (perhaps during an earthquake or if the table were placed in an elevator), result-
ing in acceleration of the system C.

Newton’s laws define the meaning of the word ‘force’ in physics, and allow us to
analyse relatively simple situations in which we are able to clearly define the forces
acting on an object. We will now look at the kinds of forces that arise between pairs of
objects.

2.3 Kinds of Force

The Fundamental Forces

There are four fundamental kinds of force: the electromagnetic force, the gravita-

tional force, and the strong and weak nuclear forces. All forces which will be impor-
tant in understanding the mechanics of the human body and other biological systems
may ultimately be reduced to these fundamental forces. Two of these fundamental
forces are most important in everyday biological applications:

• The electromagnetic force. At the most basic level, this force holds atoms and
molecules together, and is thus responsible for the rigidity of solids and the fluid
properties of liquids. It is the force which results in all chemical behaviour. In a
later topic we will consider this force in more detail and discuss the vital role of
electricity in the functioning of every biological system, from nerves to muscle
tissue to the functioning of vital cellular systems like the cell membrane. As we
shall see, the human body is an electrical machine. Furthermore, the greatest
and most easily available source of energy in the earth biosphere is electromag-
netic: solar radiation (sunlight).

• The gravitational force. Every organism on Earth is subject to a gravitational
force, and all of these organisms have evolved body structures to take advantage
of, or minimise the effects of, gravity. We will discuss the gravitational force in
more detail in a later section.

The importance of the strong and weak nuclear forces in biological systems is not
as obvious. However, these are the forces which maintain the structure of the atomic
nucleus on the one hand and produce nuclear radiation on the other hand. Nuclear
radiation used as a medical tool is becoming more important as medical imaging tech-
niques become more sophisticated. Thus an understanding of the risks and advantages
of the use of nuclear radiation in medicine is becoming more important to health pro-
fessionals.

These four forces are in an important respect simple, in that they act between pairs
of objects and are not the result of the vector addition of a number of more fundamen-
tal forces. There are a number of important forces which are not simple in this sense:
they are forces which are the result of combinations of more fundamental forces.
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Derived Forces

We will now consider three specific examples of derived forces: the normal and friction
forces, and tension. These forces are the result of a large number of more fundamental
interactions, but may be treated as single forces in their own right. When treated in this
way, they have characteristic behaviours which at first sight may seem counterintuitive,
but which are the result of the combination of more fundamental forces on which they
depend.

Tension

Figure 2.8 A cable exerts the same magnitude force at either end, but the flexibility of the cable ensures that these
forces need not lie along a line.

Tension is the name given to the forces which exist in the body of a flexible cable or
line. The cable is assumed to be infinitely flexible, meaning that no lateral forces are
supported. Any forces which are not directed along the cable result in bending of the
cable (see Figure 2.8). Thus the only forces which exist inside the cable are forces di-
rected along the cable. The cable is also assumed to be inelastic: it does not stretch, and
it is unbreakable. These are simplifications; real cables will always have some elasticity
and will be breakable. The elasticity and breakability of real cables is of considerable
importance in biological systems and will be discussed in a later chapter. However,
for our present purposes, we will discuss the simpler system of the perfectly flexible,
inelastic and unbreakable cable.

Tension exists at each point in the cable when forces are applied in opposite direc-
tions at each end of the cable. If the cable is stationary these forces are transmitted
along its length. At each point along the cable there will exist equal and opposite forces
acting on an imagined cross section at that point. These forces are the sum of the mi-
croscopic forces acting between the component molecules of the cable.

The Normal Force and Friction

Figure 2.9 Weight force and contact force acting
on a block on an inclined plane.

Consider a situation in which a solid block sits on an inclined surface, as shown in
Figure 2.9. The block and the surface are stationary, so Newton’s second law tells us that
the weight of the block is balanced by an upward force produced by the surface. Note
that for the sake of simplicity these forces are shown as acting at a single point in the
block. In actual fact, the contact forces act at the points of contact between the block
and the surface, and we then sum these forces to obtain the resultant upward contact
force. This simplification does not alter the fundamental physics of the situation.

Figure 2.10 Surface contact force resolved into
components perpendicular and parallel to the
surface.

The upward force which balances the weight force of the block is ultimately elec-
trostatic in that it is the result of the electrical forces between the atoms of the surface
and the atoms of the block, as well as the electrostatic forces which give the block and
surface their rigidity. This force is known as a contact force, as it occurs at the con-
tact points between the block and the surface. We know that there must be a resultant
upward force from this contact, since this is the force which keeps the block from ac-
celerating toward the centre of the Earth in response to the weight force.
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To analyse the situation shown in Figure 2.9, it is useful to think of the reaction force
produced by the surface as having two components, one perpendicular to the surface,
and one parallel to it. These components are shown in Figure 2.10 and are labelled N

and f . The component of force which is perpendicular to the surface is called the nor-

mal force (the word ‘normal’ means perpendicular to a line or surface in mathematics),
and the component of force which is parallel to the surface is called the friction force,
or often just friction. In Figures 2.10 and 2.9 the only force acting downward is the
gravitational weight force on the block. This is not the only possibility. We could, for
example, push down on the block. The normal and friction forces would then be the
perpendicular and parallel components of a contact force equal and opposite to the
total downward force.

If the block were to begin to slide down the slope, this motion would be due to the
component of the weight force which is directed parallel to the surface. If the block
does not slide down the slope this is because there is a force produced by the surface
which is great enough to cancel the parallel component of the block’s weight force. This
opposing force is the component of the surface reaction force which is directed along
the surface, i.e., the friction force. Thus, the friction force is the force which prevents
the block from sliding down the slope.

If the block is stationary on the inclined surface, then the forces perpendicular and
parallel to the surface will balance: the perpendicular and parallel components of the
block’s weight force will be equal and opposite to the perpendicular and parallel com-
ponents of the surface reaction forces. This is illustrated in Figure 2.11. From this figure
we can see that the magnitudes of the normal and friction forces are given by

N = mg cosθ (2.3)

f = mg sinθ (2.4)

where θ is the angle of incline of the surface. These two forces are linked by the fact
that they are components of a single force. We are thus able to write the friction force
in terms of the normal force and the angle of incline of the surface,

f = N tanθ (2.5)

As the angle of incline is increased, there will generally be a point at which the block
will begin to slide. Let us call this angle the critical angle, θc . We can then write the
relationship between the normal and friction forces as

fmax =µmaxN (2.6)

where the coefficient µmax is given by

µmax = tanθc (2.7)

This coefficient is defined for the point of maximum tilt of the surface, so it is the max-

imum coefficient of friction for this block and this surface. We are able to extend the
idea of the coefficient of friction to those cases where the block is inclined at an angle
less than θc and also to cases in which the block is sliding. In these cases the friction
force must be determined empirically, i.e., by measuring the parallel force which must
be applied to start the block moving, and then the force required to keep the block mov-
ing with constant velocity. The coefficients calculated from f = µN are known as the
coefficients of static and kinetic friction respectively. The coefficient of kinetic friction
is always smaller than the coefficient of static friction.

Figure 2.11 (Top and Middle) Stationary block
with normal and friction forces balancing weight
of the block. (Bottom) As the incline of the sur-
face on which the block is resting becomes more
horizontal, the components of the weight and
contact forces directed along the slope approach
zero.

Now consider what happens as the angle of incline θ decreases to zero, i.e., when
the surface is horizontal, as in Figure 2.11 (bottom). In this case, the friction force goes
to zero (since sin0 = 0) and the normal force goes to N = mg (since cos0 = 1). This
situation is particularly easy to interpret; the surface will deform downwards until the
net upward force is equal to the downward force of the block. Often the downward force
due to the block will be due to its weight force alone. However, this is not always the
case. When there are forces other than the weight force acting downward on the block,
the upward normal reaction force of the surface will increase until the downward force
is again balanced by the upward normal reaction force (or the surface breaks).
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Note that the action–reaction pair consisting of the solid block and the Earth is the
source of the weight force of the block, but the Earth is not part of the system of in-
terest shown in Figures 2.10 and 2.9. The weight force of the block is not part of an
action–reaction pair involving any force produced by the inclined surface. The normal
and friction forces are reaction forces, however, in that they are the result of action–
reaction pairs between atoms on the surface and atoms on the block – these forces
are electrostatic in character, not gravitational. Thus the normal reaction force of the
surface is not necessarily equal to the weight force of the block.

Drag Forces

In our previous discussion of contact forces, we were concerned with the forces pro-
duced by the contact between two solid, rigid objects. We will now consider the forces
which occur when solid objects move through gases and liquids. An object moving
through a fluid must move fluid out of the way; this will be easier or harder depending
on the viscosity of the fluid. (We will discuss fluid viscosity in Chapter 15.) The fluid in
which an object is moving therefore exerts a force on that object in the direction oppo-
site to its motion. This force is known as drag. In the case of an object moving through
air this drag is often called air resistance and is the reason for the streamlining of mod-
ern cars. The reduction of drag forces is also a dominant factor in the evolutionary
pressure selecting for more streamlined forms in aquatic animals.

The magnitude of the drag force on an object moving through air can be modelled
as being proportional to the square of its speed, i.e.,

f = kv2 (2.8)

The constant of proportionality, k, is determined by the shape of the object, and by the
density of the air through which it is moving.

2.4 Newtonian Gravity

In this section we will briefly introduce the force of gravity as described by Newton.
The study of gravity advanced considerably in the twentieth century with the discov-
ery of general relativity by Albert Einstein. Newton’s theory of gravity is a very good
approximation to the behaviour of massive objects in everyday situations, and general
relativity is needed only in situations where extreme accuracy is required, such as in the
calculations performed by GPS units, or when the force of gravity is extremely strong,
such as the effects of black holes and other massive astronomical bodies.

Newton’s theory of gravity is based on the recognition that the force of gravity exists
between two bodies by virtue of their mass and decreases with the separation between
these bodies. The exact form of the gravitational force law is

F =G
m1m2

r 2
(2.9)

The constant G = 6.67 × 10−11 N m2 kg−2 and is called the universal gravitational con-
stant. This constant is extremely small and this means that the force of gravity is ex-
tremely weak unless one or both of the masses involved is extremely large. The symbol
r in the above equation is the distance between the centres of mass of the two bodies
and m1 and m2 are the masses of the two bodies in kilograms. The force of gravity is
attractive and directed from one body to the other, and the gravitational force on m1

is equal in magnitude to the gravitational force on m2. The gravitational force on m1

is directed from m1 toward m2 and the gravitational force on m2 is directed from m2

toward m1.

An object of mass m on or near the surface of the Earth will experience an attractive
gravitational force exerted by the Earth, mass ME. The magnitude of this force is given
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by

F =G MEm
r 2 = ma

⇒ a = GME

r 2 = g

where g is the acceleration due to gravity discussed in an earlier section. This shows
that the acceleration due to gravity will vary with distance from the centre of the Earth.
This variation is very slight, however, as the typical changes in height which we con-
sider are of the order of hundreds of metres, whereas the radius of the earth is RE =
6.37×106 m. Using this radius and the mass of the Earth, ME = 5.97×1024 kg gives

g = G
ME

RE2

= 6.67×10−11 N m2 kg−2 ×
(

5.97×1024 kg(
6.37×106 m

)2

)

= 9.81 m s−2

2.5 Summary

Key Concepts

mass (m) A measure of a body’s resistance to acceleration. The SI unit of mass is the kilo-
gram (kg), which gives the ratio of the mass of an object to a standard mass, a cylinder
of platinum-iridium alloy kept at the International Bureau of Weights and Measures near
Paris, France.

force (F ) A vector quantity that produces an acceleration of a body in the direction of its appli-
cation. The SI unit of force is the newton (N). 1 N ≡ 1 kg m s−2.

net force The vector sum of all the forces acting on a body or system.

Newton’s first law Any object continues at rest, or at constant velocity, unless an external force
acts on it.

Newton’s second law An external force gives the object an acceleration which is proportional to
the force. F = ma.

Newton’s third law For every action there is an equal and opposite reaction.

friction force ( f ) A force that resists the relative motion between two surfaces in contact.

normal force (N ) The perpendicular component of the contact force between two objects in
physical contact with each other.

action–reaction pair Newton’s third law states that for every reaction, there is an equal and op-
posite reaction. These two forces form an ‘action–reaction’ pair that are equal in magni-
tude and opposite in direction. An alternative name is Newton’s third-law pair.

tension force (T ) A force that tends to stretch intermolecular bonds.

drag The resistance an object encounters moving through a fluid.

Equations

F = ma

W = mg

fmax =µN

f = kv2

F =G
m1m2

r 2
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2.6 Problems

2.1 A courier is delivering a 5 kg package to an office high in a tall
building.

(a) What upwards force does the courier apply to the pack-
age when carrying it horizontally at a constant velocity of
2 m s−1 into the building?

(b) The courier uses the elevator to reach the office. While the
elevator (containing the courier who is holding the package)
is accelerating upwards at 0.11 m s−2 what upwards force is
the courier applying to the package?

(c) When the elevator is traveling upwards at a constant speed
of 6 m s−1 what upwards force does the courier apply to the
package?

(d) In order to stop at the correct floor the elevator accelerates
downwards (decelerates) at a rate of 0.20 m s−2. What is the
upwards force the courier applies to the package during the
deceleration?

2.2 You live at the top of a steep (a slope of 15° above the horizon-
tal) hill and must park your 2200 kg car on the street at night.

(a) You unwisely leave your car out of gear one night and your
handbrake fails. Assuming no significant frictional forces are
acting on the car, how quickly will it accelerate down the hill?

(b) The increase in insurance premiums due to the results of
your mistake mean that you cannot afford to fix your hand-
brake properly. You resolve to always leave your car in gear
when parked on a slope. If the rolling frictional force caused
by leaving the drive-train connected to the wheels is 5000 N,
at what rate will your car accelerate down the hill if the hand-
brake fails again?

2.3 You are pulling your younger sister along in a small wheeled
cart. You weigh 65.0 kg and the combined mass of your sister and
the cart is 35.0 kg. You are pulling the cart via a short rope which
you pull horizontally. You hold one end of the rope and your sister
holds the other end. If you are accelerating at a rate of 0.10 m s−2,
the rope is inelastic, and the frictional force acting upon the cart is
30 N:

(a) What is the tension in the rope?

(b) What force are you applying to the ground in order to pro-
duce this acceleration?

2.4 Two flexible balls rolling along a frictionless horizontal surface
collide with each other. The larger of the balls weighs 50 g and the
smaller weighs 30 g. Immediately after the balls first touch each
other (the beginning of the collision), the center of mass of the
larger ball is accelerating at a rate of 5 m s−2 to the right. What
is the acceleration of the center of mass of the smaller ball?

2.5 The Earth has a mass of 5.97×1024 kg and the Moon has a mass
of 7.36×1022 kg. The average distance between the center of the
Earth and the center of the Moon is 3.84×108 m.

(a) What is the gravitational force acting on the Moon due to the
Earth?

(b) What is the gravitational force acting on the Earth due to the
Moon?

(c) How far away would the Moon need to be for the magnitude
of the gravitational force acting on it due to the Earth be the
same as the magnitude of the gravitational force of a 72 kg
student sitting at their desk on the surface of the earth?

(c) A supermassive black hole passes through the edge of the
solar system 1.20×1013 m away. The gravitational force be-
tween an observant 79 kg astronomer and the black hole is
1 N. What is the mass of the black hole?

2.6 A 4 kg vase of flowers is placed directly in the middle of a glass
table. The glass tabletop itself weighs 8 kg. With what force do
each of the four legs of the table push on the glass after the vase
has been placed on top?

2.7 In order to drink from your glass you first need to lift it to your
mouth. As you begin to lift your 0.20 kg glass of water it is acceler-
ating upwards at 0.090 m s−2.

(a) What is the net force acting on the glass?

(b) What force are you applying to the glass?

(c) What force is the glass applying to you?

2.8 During a car crash a 65 kg person’s head goes from travelling at
50 km h−1 to stationary in 0.15 s.

(a) What is the magnitude of the average net force acting on the
head of a person with a 4.5 kg head?

(b) How does this compare with the weight force acting on the
person?

2.9 A 10 kg box is being pushed up a slippery ramp as shown in Fig-
ure 2.12. The coefficient of friction between the box and the ramp
is just µ= 0.1.

(a) What force does the man need to apply to the box to keep it
traveling up the ramp at a steady speed?

(b) What fraction of the weight force of the box is this?

If the angle of the ramp is raised to 45° then:

(c) What force does the man need to apply to the box to keep it
traveling up the ramp at a steady speed now?

(d) What fraction of the weight force of the box is this?

Figure 2.12 A box is pushed up a ramp

2.10 A 1.6 kg chicken is blown into a wall by a strong gust of wind,
and held there as shown in Figure 2.13. If the maximum coefficient
of friction between the chicken and the wall is µmax = 0.25, what
minimum force must the gust of wind be applying to the chicken?

Figure 2.13 A chicken is blown into a wall.
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3MOTION IN A CIRCLE

3.1 Introduction

3.2 Description of Circular Motion

3.3 Circular Velocity and Acceleration

3.4 Centripetal Force

3.5 Sources of Centripetal Force

3.6 Summary

3.7 Problems

3.1 Introduction

The problem of describing circular motion itself is not of great importance to the bio-
logical sciences. However, the tools for describing and understanding circular motion
are important to developing an understanding of oscillatory systems and waves.

Key Objectives

• To understand the concepts of angular displacement and velocity, and the use of
radian measure.

• To understand circular velocity and acceleration and the relationship between
these quantities and linear velocity.

• To understand the concept of centripetal force.

• To be able to use centripetal force to calculate properties of the circular motion
produced by that force.

3.2 Description of Circular Motion

Angular Displacement and Radians

Figure 3.1 The relationship between the sub-
tended angle and arc length.

In Figure 3.1, the angle θ is subtended by the arc s. The size of the angle θ in radians is
defined by

θ = s

r
(3.1)

θ is the angular displacement of an object that moves from point A to point B on the
circle shown in this figure. The angle subtended by the complete circle is

θ = 2πr

r
= 2π

Thus 360◦ = 2π radians and 1 radian = 360/2π≈ 57.3◦.

Angular Velocity

If it takes time t to move a distance s round the circle, and this distance subtends an
angle θ, then using Eq. (3.1),

θ

t
= s

r t

The ratio θ
t is given the symbol ω and is the rate at which the angular displacement

changes, and ω is therefore the angular velocity (or angular frequency). The ratio s
t is

the speed, v , around the circumference of the circle. Therefore

ω= v

r
(3.2)

The angular velocity is measured in radians s−1. The rotational equivalent of d = v t is

θ =ωt (3.3)
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which will give the angle in radians moved in time t .
If an object rotates around a circle at f cycles (i.e., complete rotations) per second,

then it moves 2π f radians per second. The relationship between the frequency in hertz
(that is, cycles per second) and the angular velocity in radians per second is therefore

ω= 2π f (3.4)

For example, 1 Hz ≡ 6.28 radians s−1.

Problem:

Figure 3.2 A juggling pin is thrown in an arc through the air.

A juggler throws a bowling pin as shown in Figure 3.2.

(a) What is the angular velocity of the pin?

(b) What will the angular displacement of the pin

be at a time of 0.9 s?

Example 3.1 Angular displacement and angular velocity

Solution:

(a) The angular displacement of the pin changes 33° anticlockwise every 0.2 s. 33° = 33°
360° ×2π = 0.576 radians. The

angular velocity of the pin is ω= ∆θ
∆t = 0.576 radians

0.2 s = 2.88 radians s−1 anticlockwise.

(b) At t = 0 s, θ = 90deg = π
2 radians clockwise from right-horizontal. At t = 0.9 s the angular displacement will be

θ = θi+ωt = π
2 +

(−2.88 radians s−1
)×0.9 s =−1.02 radians or 1.02 radians (58.5°) clockwise from right-horizontal.

3.3 Circular Velocity and Acceleration

If an object travels around a circle once, the distance travelled is the circumference of
that circle. The time taken is the known as the period, T , of the motion. The speed of
the object is therefore

v = 2πr

T
(3.5)

Since this is the speed of the object, the direction of motion is not important. If the
object is travelling at a constant speed, the magnitude of the velocity is constant. The
direction that the object is moving in, however, is always changing.

Key concept:

The velocity of an object in circular motion changes continuously since the direction
in which the object is moving is changing continuously.

The velocity of the object will always be tangential to the circle. Since the veloc-
ity is changing, the object must be continuously accelerating. The acceleration is the
change in the velocity from one point to the next, divided by the time taken to get there.
Figure 3.3 shows that this change in velocity points toward the centre of the circle.

Key concept:

If an object is travelling in a circle at constant speed, its instantaneous acceleration
is always pointed exactly toward the centre of the circle.
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Figure 3.3 The velocity of an object travelling in
a circle at constant speed is always tangential to
the circle. As the object travels around the cir-
cle the change in velocity will point towards the
centre (provided this is measured over a small
time). This implies that the object is accelerating
towards the centre of the circle.

This acceleration is called the centripetal acceleration. It can also be shown that the
magnitude of the centripetal acceleration is given by

a = v2

r
(3.6)

We will not cover the details of the derivation of the direction and magnitude of the
centripetal acceleration.

3.4 Centripetal Force

Since there is a centripetal acceleration associated with the circular motion of an ob-
ject, there must be a centripetal force to produce that acceleration. Whenever an ob-
ject is in circular motion, there must be a force directed toward the centre of the circular
path of the object. We may find an expression for the magnitude of this force by substi-
tuting the expression for the centripetal acceleration (Eq. (3.6)) into Newton’s second
law; for an object of mass m this gives

F = m
v2

r
(3.7)

3.5 Sources of Centripetal Force

Given that an object is moving in a circular path, and that there is therefore a centripetal
force, where does this force come from? A few of the more common everyday sources
of the centripetal force are listed below.

• When a car drives in a circle on a flat stretch of road, or in a car park, the cen-
tripetal force is supplied by friction between the rubber tyres and the road sur-
face.

• When a car travels along an arc (i.e., turns a corner) on the motorway, the road
is typically banked – the road is angled. This allows the normal reaction compo-
nent of the contact force between the car tyres and the road to contribute to the
centripetal force.

• When a ball or some other object is swung in a circle from a string, the tension in
string provides the necessary centripetal force.

• A satellite in a circular orbit about the Earth is maintained in this circular path by
the Earth’s gravitational attraction, i.e., gravity provides the centripetal force.

Problem: A 45 kg child is riding the rollercoaster at an amusement park. A portion of the track is made up of two

semicircular sections as shown in Figure 3.4, one with a radius of 10 m and the other with a radius of 16 m. The

rollercoaster travels along this section of track at a constant speed of 7 m s–1.

(a) In what direction is the child accelerating at point A?

(b) In what direction is the child accelerating at point B?

(c) If the child was on bathroom scales, what would they read (in kg) at point A?

(d) If the child was on bathroom scales, what would they read (in kg) at point B?

Example 3.2 Angular velocity and centripetal force
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Solution:

Figure 3.4 A section of a roller coaster is shown.
The cart travels along this section at a constant
speed. The apparent weight of the child in the
cart will change depending upon where they are
along the track.

(a) As the child is travelling along a circular path at a constant speed, we know
that the velocity at each point along their path must be tangential to the path.
The direction of the acceleration of the child at each point can be found by think-
ing about the change in direction of the acceleration vector as it moves around
the path (refer back to Figure 3.3). At point A the rollercoaster must be acceler-
ating straight down.
(b) Using the same reasoning as that described in part (a), the acceleration of
the rollercoaster at point B can be identified as in the vertical upwards direction.
(c) The apparent weight of the child can be found by considering the forces act-
ing upon them. The centripetal force (on the child) is the same as the net force
acting on the child. We can find the centripetal force by using

Fnet = Fc = m
v2

r
= 45 kg×

(
7 m s−1

)2

10 m
= 220.5 N

This indicates that at point A the net force on the child is 220 N downwards.
As Fnet = mg − N , the normal force on the child must be N = 450 N− 220 N =
230 N and the scales will read 23 kg.
(d) As in part (c) the net force acting on the child is

Fnet = 45 kg×
(
7 m s−1

)2

16 m
= 138 N

This force is directed in the upwards direction so Fnet = N −mg , the normal force on the child is 450 N+138 N = 588 N
and the reading on the scales will be 59 kg.

3.6 Summary

Key Concepts

angular displacement (θ) The angle subtended by an object moving around the circumference
of a circle.

angular velocity (ω) The rate of change of the angular displacement. The unit of angular veloc-
ity (or angular frequency) is the radian per second.

centripetal acceleration The acceleration of an object due to the change in its velocity required
for it to travel around a circle.

centripetal force The force required to produce the centripetal acceleration.

Equations

θ = s

r
v = 2πr

T

ω= v

r
a = v2

r

θ =ωt F = m
v2

r
ω= 2π f
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3.7 Problems

3.1 (a) Convert the following values from radians to degrees: (i) π
6

(ii) π
4 (iii) π

2 (iv) 0.1 (v) 3π
4

(b) Convert the following values from degrees to radians: (i) 1°
(ii) 45° (iii) 60° (iv) 180° (v) 360°

3.2 In a particular rear-end car collision the driver’s head rotates
45° backward before being stopped by the headrest. What is the
average angular velocity of the driver’s head if the duration of the
collision was 0.1 s?

3.3 When an athlete throws a javelin her forearm snaps through
an angle of approximately π radians in 0.20 s. The athlete’s hand
moves with approximately constant speed, the length of her fore-
arm is 45 cm, and the combined mass of her forearm and javelin is
2.0 kg. Assuming that the system is well approximated by a mass
of 2.0 kg located 45 cm from the pivot, what force do the ligaments
holding the forearm to the elbow need to exert?

3.4 (a) A 3800 kg car travels round an unbanked corner (i.e. a hor-
izontal road) at the recommended speed of 65 km h−1. The radius
of curvature is 80 m. What is the force that the road exerts on the
car to keep it in motion around the corner?

(b) What force would the road need to exert if the car was trav-
elling at 100 km h−1?

3.5 A car is traveling around a circular race track at 180 km h−1. If

a single lap of the track is 2.4 km long, what is the angular velocity
of the car (in rad s−1)?

3.6 If the car in problem 3.5 weighs 2500 kg, what is the centripetal
force acting on the car as it travels around the track?

3.7 An adventurous ant finds herself at the end of a fan blade when
it is switched on. It is a high speed fan with blades measuring
0.20 m long. If she has a mass of 0.20 g and can hold on to the
fan blade with a maximum force of 0.0124 N. What is the maxi-
mum number of revolutions per minute the fan can run at before
she will be flung off?

3.8 An 8.0 m radius merry-go-round completes one revolution ev-
ery 7.0 s.

(a) What is the angular velocity of the merry-go-round?

(b) With what speed are children moving when they ride on the
merry-go-round?

(c) What is the centripetal acceleration these children feel when
riding on the merry-go-round?

(d) What is the average acceleration of each child over the
course of half a revolution of the merry-go-round?

(e) What is the average acceleration of each child over the
course of a full revolution turn of the merry-go-round?
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4STATICS

4.1 Introduction

4.2 Equilibrium

4.3 Torque

4.4 The Principle of Moments

4.5 Centre of Gravity/Centre of Mass

4.6 Stability

4.7 Summary

4.8 Problems

4.1 Introduction

Statics is the study of stability in systems. Generally, we are primarily interested in the
stability of an object or objects under the influence of gravity. Statics is of central im-
portance in biomechanics. The essential ideas on which statics is based allow us to un-
derstand the anatomical mechanisms by which humans and other terrestrial animals
are able to stand upright and move. Statics also provides the basis for understanding
the body shapes necessary to allow fish and other aquatic animals to remain upright
while swimming.

Key Objectives

• To understand the concepts of static, dynamic, stable and unstable equilibrium.

• To understand the concept of torque.

• To understand the principle of moments.

• To be able to solve lever problems using the concept of torque and the principle
of moments.

4.2 Equilibrium

A system is said to be in equilibrium when the net force on that system is zero and the
net torque on the system is also zero. A system is in static equilibrium when it is in
equilibrium and stationary. A system is in dynamic equilibrium when it is in equilib-
rium and also in motion, which implies that the system is travelling at constant velocity
and/or rotating at a constant rate.

Static equilibrium occurs when a seesaw is perfectly balanced, or in the ankle when
an individual stands on tip toe, or in the elbow joint when an individual holds aloft an
apple or some other object. Dynamic equilibrium occurs when a car travels along the
motorway at constant velocity, and the combined friction forces are balanced by the
driving force of the car’s engine.

Figure 4.1 An object with a wide base and a pointed top will be stable if placed on its base, but unstable if placed
on its point. This is because the torque produced by the weight force will act to rotate the object either back to the
middle (as in the stable case) or further from upright (as in the unstable case).
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A system is in stable equilibrium if it will return to equilibrium after it has been
subject to a small displacement. A system is in an unstable equilibrium if it will not
return to this equilibrium having been subject to a small displacement. As an exam-
ple, consider Figure 4.1. The object displayed is in a stable equilibrium position when
placed on its broad base, but in an unstable equilibrium when placed on its narrow top.
When placed on its base and displaced slightly, as on the right-hand side of Figure 4.1,
it will tend to fall back to its original equilibrium position. When placed on its narrow
top, a slight displacement will cause it to topple onto its side, as on the left-hand side
of Figure 4.1. These two positions are relatively stable and unstable. Clearly, an object
with a much narrower top and broader base will be more unstable when placed on its
top and more stable when placed on its base.

4.3 Torque

In the previous chapter, we discussed the acceleration and force required to keep an
object moving in a circle. The physical quantity which causes an object to begin to
rotate or move in a circle, or (more generally) to change its rate of rotation, is a torque.
A torque is not a force in the Newtonian sense: it is a moment.

Figure 4.2 A force applied to an object fixed to
a pivot point via a rigid rod will cause an angular
acceleration. That is, the angular velocity of the
object increases over time.

Definition of Moments

In physics, the word moment means ‘the prod-

uct of a quantity and its perpendicular distance

(or some power of the distance) from a given

point.’ In the case of the moment of a force

about an axis, it is the product of the force, and

the perpendicular distance between the axis

and the line of action of the force.

Suppose that an object to be accelerated into circular motion is attached to one end
of a rod, the other end of which is attached to an immobile pivot or axle, as in Figure 4.2.
Further suppose that the rod, though rigid, is very light, so that we can ignore its mass.
In order to produce circular motion we would apply a linear force to the object at right
angles to the rod. The rod will then constrain the motion of the object so that it moves
in a circle. The tension produced in the rod will provide the necessary centripetal force.

The amount of turning produced by the force applied to the rod will depend both
on the magnitude of the force and the length of the rod. The product of these two
factors gives the magnitude of the moment of the force, or the torque, τ:

τ= F d (4.1)

Torque is measured in units of N m. The torque provides us with a useful way to
measure the turning effect (i.e., the tendency to cause rotation) of a force applied to a
rod, which we call a moment arm or lever.

Notice that the definition of torque at the beginning of this section and in Eq. (4.1(
does not specify any particular spatial point as the pivot point or fulcrum about which
torques must be calculated. The axis of rotation is determined by the physical system,
and the fulcrum is selected by us and may be different from the axis of rotation. Chang-
ing the location of the fulcrum in a calculation will change the values of the torques
used in that calculation, but will have no effect on the physical behaviour of the sys-
tem and the model will still correctly predict this behaviour. While we are free to chose
whichever point we like to be the fulcrum in our calculation, it is good practice to select
the point which most simplifies the calculation.

4.4 The Principle of Moments

A torque may tend to turn a system in the clockwise (cw) or the counter-clockwise (ccw)
direction, depending on the direction of the applied force. For a system in static equi-
librium, all torques are balanced so that there is no net torque (see Figure 4.3). Since
there is no net ‘tendency to rotate’, the system will remain motionless. (A system that is
already rotating will not increase its rate of rotation if the torques are balanced.) This
condition is called the principle of moments:

Key concept:

At equilibrium, the sum of the clockwise moments equals the sum of the counter-
clockwise moments .

Therefore, at equilibrium we can write (using Σ to mean ‘sum of’)∑
Fcwdcw =

∑
Fccwdccw (4.2)
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4.5 Centre of Gravity/Centre of Mass

1 kg

0.4 m

Pivot

1 kg

10 N

22.5 N

0.9 m

1 kg

0.4 m

Pivot

1 kg

10 N

4.4 N

0.9 m

Figure 4.3 Two systems in which the torque (or moment) about a pivot is balanced.

In order to make use of the full power of the principle of moments, we will make use
of another concept: the centre of mass, also called the centre of gravity when dealing
with a uniform gravitational field (the only case we will consider here). In the previous
discussions, we were careful to stipulate that the mass of the rigid rod connecting an
object to the pivot was very light so that we could ignore its mass. The reason for this
condition is that we would like to be able to ignore the weight force of the rod itself.
This force will produce a torque about the pivot, and in many cases this force is not
negligible. In reality, any rod will have mass, so how should we include this mass in
calculations? The gravitational force will act on each part of the rod, and we will have
to add up the moments due to the mass of each part of our lever arm.

Figure 4.4 An irregular shape is hung from
one of its corners. It will always hang such that
it’s centre of gravity is directly below the point
at which it is suspended. If it is at any other
position, there is always a torque produced
by the component of the weight force that is
perpendicular to the line joining the centre of
gravity and the pivot point.

When a long ruler is carefully balanced on a pivot, the pivot point is located at the
centre of gravity. When the ruler is balanced like this, the clockwise and anticlockwise
moments balance. We can treat this situation as one in which there are equal but op-
posite moments about the pivot, or we could treat the ruler as though all its mass was
located at the centre of mass at the pivot. The distance from the line of action of the
weight force (which acts through the centre of mass) to the pivot is zero, so the total
moment (or torque) is zero. If we were to try the same exercise with an asymmetric
object we would still be able to find the balance point (see Figure 4.4), but in this case
the centre of gravity would not necessarily coincide with the geometric centre.

Figure 4.5 The ballistic motion of a complex pro-
jectile, a juggling pin. The centre of gravity is
shown as a black dot on the pin and the trajectory
of the centre of gravity is shown as a blue curve.

The centre of gravity is the point in an object at which the force of gravity may be
taken to act. The trajectory calculated for an object moving under the influence of
gravity is actually the trajectory of the centre of gravity. An example is shown in Fig-
ure 4.5. In this example, a spinning juggling pin is thrown upward at a slight angle. The
trajectory of the centre of gravity is shown as a line, which follows the parabolic arc
characteristic of two-dimensional motion with constant acceleration. Notice also that
the rotation of the juggling pin is about the centre of gravity. In general, any rotation of
an object during such motion where the only force of any significance is gravitational
will be about its centre of gravity. If the shape of an object changes during flight, as
in the case of a diver performing somersaults, the centre of gravity may not always be
located at the same point within the body, but our statement about the trajectory of the
centre of gravity still stands.
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Problem: Three people are sitting on a seesaw, as in the diagram. The masses of the two people on the right are as

shown, as are their distances from the pivot. The third person is seated on the left and is 1 m from the pivot. Given

that the seesaw is stationary, what is the mass of the third person?

Example 4.1 Principle of moments (I)

Solution:

Figure 4.6 Three people on a seesaw. What is the mass of the person on
the left?

Since the seesaw is stationary, it is in equilibrium and the
principle of moments will apply. This means that the sum of
all of the counter-clockwise moments will equal the sum of
all of the clockwise moments. The forces which produce the
moments are the weights of the people on the seesaw. The
people on the right will tend to turn the seesaw clockwise and
their total moment is the sum of their individual moments:

τclockwise = F1d1 +F2d2 = m1g d1 +m2g d2

= (200 N×2.0 m)+ (300 N×1.0 m)

= 700 N m

There is only one counter-clockwise moment due to the
weight force of the person on the left. This must be equal to
the total clockwise moment provided by the people on the
right, so

F3 ×1 m = 700 N m

Thus the weight force on the left is 700 N, meaning that the mass of the person on the left is 70 kg.

Problem: A heavy ruler is placed on a pivot as shown in Figure 4.7. A weight is hung from the right end of the ruler

and the mass of the weight is adjusted until the ruler is balanced and horizontal on the pivot. The ruler is 1 m long

and symmetric and the fulcrum (pivot point) is positioned 20 cm from the right end of the ruler. A mass of 2 kg will

exactly balance the ruler. What is the mass of the ruler?

Example 4.2 Principle of moments (II)

Solution: We treat the ruler as having a centre of mass exactly at its centre, i.e., 50 cm from each end and 30 cm from the
fulcrum. The weight of the ruler may be treated as acting through this point, thus forming an anticlockwise moment
about the fulcrum of mrulerg d2. This moment is balanced by a clockwise moment produced by the action of gravity on
the mass of the weight.

Figure 4.7 A ruler is exactly balanced by a 2 kg weight. What is
the mass of the ruler?

We do not need to include the moment due to the length of ruler
to the left of the fulcrum as this has been accounted for by the centre
of mass.
Thus the principle of moments gives us

2 kg×10 m s−2 ×0.2 m = mruler ×10 m s−2 ×0.3 m

Rearranging this gives mruler = 1.3 kg.

Problem: The elbow joint is essentially a hinge. The forearm rotates about the elbow joint, and the muscles of the

upper arm, in particular the biceps muscle, attach to the bones of the forearm just below the joint. In this example

we will calculate the force which the biceps muscle must apply to the forearm to hold a 4 kg weight horizontally in

the hand.

Example 4.3 Principle of moments (III)
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Solution:

Figure 4.8 The elbow joint as a lever. How
much force must the biceps muscle apply to
the forearm to hold a 4 kg weight stationary in
the hand?

To solve this problem we must calculate the moments about the elbow joint. Once
we have calculated the clockwise and anti-clockwise moments, we use the prin-
ciple of moments to equate the two and solve for the force applied by the biceps.
The forearm in the model we are analysing is 40 cm long, it weighs 2.5 kg, its cen-
tre of mass is located 15 cm from the elbow joint, and the biceps muscle attaches
to the forearm 4 cm from the elbow joint. These are all reasonable figures for a
moderately sized person.

The mass of the forearm and the mass held in the hand both contribute to the
clockwise moment, giving a total clockwise moment of(

2.5 kg×10 m s−2 ×0.15 m
)+ (

4 kg×10 m s−2 ×0.40 m
)= 19.75 N m

The only counter-clockwise moment is provided by the biceps muscle, thus if
the weight is held stationary the clockwise and counter-clockwise moments must
be equal so that

Fbiceps ×0.04 m = 19.75 N m

We may now solve this equation for Fbiceps to obtain

Fbiceps =
19.75

0.04
= 490 N

Thus holding a 4 kg weight in the hand (i.e., at the end of a lever arm) requires that the biceps muscle supply enough
force to hold a 49 kg weight if that weight were not at the end of a lever.

The arm is optimised for speed rather than strength. The lever arrangement by which we lift objects in our hands
does not maximise lifting strength. However this organisation of muscles and limbs does greatly increase the speed
with which the hand is able to move. The human arm is better at throwing spears than it is at lifting rocks.

Note that this analysis also explains why it is easier to lift heavy weights if they are tucked into the arm rather than
held in the hand.

Problem: In preparation for a back flip a diver weighing 80 kg stands on the very edge of a diving board, momentarily

supporting all of their weight on a single foot, as shown in Figure 4.9. The diver’s foot is 20 cm long, and the Achilles

tendon attaches at the heel and provides an upward tension force at this point. The foot articulates about the joint

located 4 cm from the heel. Assume that the only contact between the foot and the diving board occurs at the very

end of the foot 16 cm from the ankle joint. What is the tension force in the Achilles tendon, and what is the force

exerted downward on the ankle joint?

Example 4.4 Principle of moments (IV)

Solution:

Figure 4.9 The ankle joint. How much tension is required in the Achilles tendon?
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We may choose any point as the fulcrum, but the problem is considerably simplified by choosing either the point at
which the foot contacts the diving board or the ankle joint. If we choose the point at which the foot contacts the board,
then the torques about this fulcrum are produced by the Achilles tendon and the downward force exerted on the ankle
joint. We do not know the magnitude of either of these forces yet and so we will choose to use the ankle joint as the
fulcrum.

Note that the downward force on the ankle joint is not the weight force of the individual. The downward weight
force acts at the point of contact between the foot and the floor. The force on the ankle joint is substantially greater
than the weight force.

The clockwise and anti-clockwise moments about this fulcrum are shown in Figure 4.9. The normal reaction force
Fweight is equal in magnitude to the downward weight force but is exerted upward by the floor on the foot and produces
an anti-clockwise moment about the ankle. The total anti-clockwise moments about the ankle are therefore

Fweightdfoot = 800 N×0.16 m = 128 N m

This anticlockwise moment is balanced by an equal clockwise moment about the ankle. This moment is produced
by the force exerted on the heel by the Achilles tendon.

Ftendondtendon = Ftendon ×0.04 m = 128 N m

We rearrange this expression to find the force exerted by the Achilles tendon:

Ftendon = 128 N m

0.04 m
= 3 200 N

This force is produced by the tension in the Achilles tendon. It is equivalent to the tension in a cable from which a
320 kg weight is suspended!

We can now calculate the downward force exerted on the ankle joint itself. The ankle is stationary, thus the upward
and downward forces are balanced. There are two upward forces, the force exerted by the Achilles tendon at the heel
and the upward normal contact reaction force at the toe. The total upward force is therefore 4 000 N. Since the ankle
is stationary, this must be equal to the downward force exerted on the ankle joint. Note that this is equivalent to the
weight of a 400 kg mass!

This example indicates the magnitude of the forces which may be brought to bear on the joints of the human body.
It is certainly not at all surprising that these joints are often injured and have a tendency to wear out over time.

4.6 Stability

We now consider one final important application of the principle of moments and the
centre of gravity. This is the analysis of stability. An object is stable if it will either remain
in stable equilibrium indefinitely or will tend to move back to stable equilibrium when
displaced. Whether or not a system is stable can be determined using the following
rule:

Key concept:

In general, static stability occurs when the vertical line through the object’s centre of
gravity passes through its base of support.

The base of support of an object is the area in contact with the supporting surface.
Figure 4.10 illustrates this principle. The object on the left is stable, and the middle
object will fall back to this stable position as its centre of gravity lies over its base, but
the object on the right will tip over as its centre of gravity falls past its base.

Figure 4.10 Illustrations of objects displaying
static stability.

4.7 Summary
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Key Concepts

equilibrium A system is in equilibrium when the net forces and torques on that system are zero,
i.e., ΣF = 0 and Στ= 0.

static equilibrium A static equilibrium occurs when a system is in equilibrium and stationary.

dynamic equilibrium A dynamic equilibrium occurs when a system is in equilibrium and also
in motion. Dynamic equilibrium implies that the system has constant velocity and rate of
rotation.

stable equilibrium An equilibrium is stable if the system will return to equilibrium if it is subject
to a small displacement.

unstable equilibrium An equilibrium is unstable if the system will not return to this equilibrium
if it is subject to a small displacement.

moment The product of a quantity and its perpendicular distance (or some power of the dis-
tance) from a given point. For example, torque is the moment of the force.

centre of mass The point at which the total mass of a body may be considered to be concen-
trated (for many purposes) in analysing its motion.

centre of gravity The point where the total weight of a material body may be thought to be con-
centrated. In a uniform gravitational field, this coincides with the centre of mass, but the
centre of mass does not require a gravitational field.

torque (τ) The moment of force. The magnitude of the torque is the product of distance along
a line from the axis of rotation to the point of application of the force and the magnitude
of the component of the force perpendicular to this line. The tendency to cause rotation
about an axis or point.

Equations

τ= F d∑
Fcwdcw =

∑
Fccwdccw
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4.8 Problems

4.1 A waiter holds two plates of food in one hand. His forearm has
a mass of 2.2 kg and the centre of mass of his forearm is located
13 cm from his elbow joint. The centre of mass of the two plates
is located 37 cm from his elbow joint and the total mass of the two
plates is 1.1 kg. His bicep is attached to the bones of his forearm
3.5 cm from his elbow joint.

(a) What is the torque produced by the mass of the two plates?
(b) What is the torque produced by the mass of the waiter’s

forearm?
(c) What force must be exerted by the waiter’s biceps muscle

to ensure that the plates and forearm are motionless?

4.2 A second waiter works at the same restaurant as the waiter in
Problem 4.1. She is exactly the same size as the first waiter except
the distance between her elbow and the point at which her bicep
is attached is 0.5 cm shorter than his. By what percentage must
the forces her bicep muscle exerts be larger than that of the first
waiter?

4.3 A toddler weighs 10 kg and raises herself onto tiptoe (on both
feet). Her feet are 8 cm long with each ankle joint being located
4.5 cm from the point at which her feet contact the floor. While
standing on tip toe:

(a) what is the upward normal force exerted by the floor at the
point at which one of the toddler’s feet contacts the floor?

(b) what is the tension force in one of her Achilles tendons?
(c) what is the downward force exerted on one of the toddler’s

ankle joints?

4.4 The waiter in Problem 4.1 has an argument with the sous-chef
over his paycheck and proceeds to throw the plates of food he is
carrying straight up into the air. If the plates are accelerating at a
rate of 2.5 m s−2, and the center of mass of his arm is accelerating
upwards at 0.9 m s−2 what is the force being applied by the waiter’s
bicep? (Assume that the waiter’s forearm also accelerates upwards
at the same rate).

4.5 A diagram of a hypothetical 40 cm long arm is shown in Fig-
ure 4.11.

Figure 4.11 A simplified diagram of an arm showing the articulation of the lower
arm by the biceps muscle.

For the purposes of answering this question assume that the
arm itself is weightless. If the muscle attached to the arm can con-
tract at a rate of 7.0 cm s−1 with a force of 15 000 N then:

(a) What is the maximum angular velocity of the arm if the mus-
cle is attached 1 cm from the elbow?

(b) What is the maximum weight that can held in the hand if the
muscle is attached 1 cm from the elbow?

(c) What is the maximum angular velocity of the arm if the mus-
cle is attached 3 cm from the elbow?

(d) What is the maximum weight that can held in the hand if the
muscle is attached 3 cm from the elbow?

4.6 A 4 kg vase is placed on a shelf at the position shown in Fig-
ure 4.12. If the shelf itself has a negligible weight, what is the force
Fnail with which the upper nail must hold to prevent being pulled
out of the wall?

Figure 4.12 A vase sits on a shelf. The lower block acts like a pivot.

4.7 A uniform lever arm is used in conjunction with a pivot to
weigh an object A. The mass of the lever arm is not negligible but is
unknown. The pivot point may be moved relative to the lever arm.

(a) Where should the pivot be placed along the lever arm so
that the mass of the lever arm does not appear in the calculation?

(b) If the unknown mass is balanced by a 0.05 kg mass hung
from the lever arm 0.15 m from the pivot point, how much does
the unknown mass weigh, given that it is hung from the lever arm
at a point 0.3 m on the other side of the pivot point?

4.8 Which of the wheelbarrows in Figure 4.13 will require the
smallest upwards force on the handles in order to lift?

Figure 4.13 Six different ways of arranging a wheelbarrow.

4.9 Two match officials carry an injured rugby player from a rugby
field on a stretcher. The rugby player weighs 95 kg and the
stretcher is 2.5 m long. One of the stretcher bearers (bearer A) is
able to lift a weight of 60 kg; the other (bearer B) is unsure how
much weight he is able to lift.
(a) How much weight must bearer B support?
(b) How far from bearer A must the injured rugby players center of
mass be in order for the stretcher bearers to carry the load without
tipping the injured player out?
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5.9 Summary

5.10 Problems

5.1 Introduction

When a force is exerted to accelerate an object, some quantity gets used up; the source
of the force gets depleted in some way. If I drop a ball from a height of 2 m, the gravity
field of the Earth exerts a force on the ball and makes it accelerate. However, once the
ball reaches the ground, the ability of the Earth’s gravitational field to accelerate the
ball is used up. What exactly is it that is used up and how is it used? The quantity
is potential energy, in this case gravitational potential energy. The potential energy is
converted into another type of energy, kinetic energy. In this chapter we will investigate
what energy is, how it behaves and how it can be used to solve problems in physics.

Key Objectives

• To understand the concepts of work and energy.

• To understand kinetic and potential energy.

• To understand conservative and dissipative forces.

• To be able to use energy conservation to solve kinematics problems.

• To understand power and mechanical efficiency.

5.2 What is Energy?

The idea of energy is slightly different to the various concepts we have introduced so
far, such as mass, displacement, velocity, and acceleration. Energy is a more abstract
concept. An object which has a certain mass and velocity is described as having a par-
ticular kinetic energy by virtue of its mass and velocity. Similarly, an object which has
a certain mass and is located at a certain point in a conservative force field is described
as having a particular potential energy.

Energy has several important properties. The single most important property of
energy is that it is conserved.

Key concept:

The total energy in a closed system is constant over time.

5.3 Work

The word work is used frequently in everyday life and has a number of meanings in this
context. However, this word has a very specific meaning in physics. Work is one process
by which energy is transferred from one form to another. Work describes how much
energy has changed from one form to another, and what sort of process was involved
(as compared to chemical processes, or changes in energy due to heating processes).
For example, a falling object gains kinetic energy and loses potential energy, and this
transformation occurs because the gravitational field of the Earth does work on the
object to accelerate it. In the absence of other forces such as air resistance acting on
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the object, the amount of work done by the gravitational force field is the numerical
increase in the kinetic energy of the object.

When a force F with magnitude F acts on a body, and it moves a distance d in the
direction of the force, the work done is

W = F d (5.1)

The SI unit of work is the joule, symbol J, and 1 joule = 1 newton×1 metre.

This definition connects the force exerted on an object with the change in the en-
ergy of that body. The Earth exerts a gravitational force F on an object. This force acts
over a distance d – the distance that the object falls. The result is that the gravitational
force does work on the object, and the object has work done on it. The amount of work
is the same for the object and the Earth’s gravitational field, but one gains energy and
the other loses it.

The concept of work also applies when force and displacement are not in same
direction. When the force and displacement are not in the same direction, the work is
calculated using the component of force in the direction of displacement.

Work

Work is not a form of energy in the same sense

as kinetic energy or potential energy. ‘Work’

instead describes the amount of energy being

changed from one form into another by a force.

Figure 5.1 The work done by a force which produces a displacement which is not in the same direction as the force.

As illustrated in Figure 5.1, the component of the force F in the direction of the
displacement d is given by F cosθ. The work expended by the applied force in this case
is therefore given by

W = F d cosθ (5.2)

In this equation remember that F and d are the magnitude of the applied force F and
the displacement d .

5.4 Kinetic Energy

Work is the quantity of energy transferred, so if an object is able to do work then it must
have energy to spend in the first place. The kinetic energy of an object is a measure
of the work that object can do because it is moving. Consider a cricket player hitting a
cricket ball with a bat. The bat exerts a force on the ball due to the speed with which it is
moving. The faster the bat is moving when it hits the ball, the greater the force applied
and the acceleration of the ball. As another example, compare the amount of effort
involved in throwing a tennis ball and a bowling ball. Throwing a tennis ball weighing
about 55 g is relatively easy but throwing a bowling ball with a mass of just over 7 kg so
that it travels at the same speed is substantially harder.
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These examples indicate that the kinetic energy possessed by an object is somehow
dependent on both its mass and its velocity. To determine the exact form of this de-
pendence we will consider a single force, F , acting on some object. (We will keep this
as general as possible so that the expression we end up with will apply to all objects).

The amount of kinetic energy gained by an object which is initially at rest will be
equal to the amount of work done on that object by an external force (ignoring friction
for the time being). We will consider the 1D system illustrated in Figure 5.2. We start
with a mass m which is initially at rest so that the initial speed is vi = 0 and the object
has no kinetic energy. We then apply a force F for a time t and the object moves a
distance d while the force is being applied. At the end of this time, the final speed of
the object is vf = v . The object no longer has zero kinetic energy since the applied force
has done work on the object. We can calculate how much work has been done on the
object by the force, and so calculate the kinetic energy of the object.

Figure 5.2 System used for derivation of kinetic
energy formula.

The initial velocity is zero, so the average speed is just vav = 1
2 vf = 1

2 v . The distance

travelled by the object while the force is applied is given by d = vavt = 1
2 v t . Further-

more, the final velocity is the result of the acceleration produced by the applied force
(remember that F = ma) and is given by v = at . We are now able to combine all of these
facts to find an expression for the work done on the mass to accelerate it to v , and thus
the kinetic energy of the mass when it is travelling at this velocity.

The work done on the mass by the external force is

W = F d

= ma ×d (since F = ma)

= m(
v

t
)×d

(
since a = v

t

)
= mv × d

t

= mv × 1

2
v

(
since

d

t
= 1

2
v

)

When the mass reaches a velocity of v , it has had energy equal to 1
2 mv2 transferred to

it by the external force. This energy is the kinetic energy of the mass and is given by

KE = 1

2
mv2 (5.3)

In the derivation of this expression we have used speed instead of velocity and dis-
tance instead of displacement, i.e., we have used scalar quantities rather than vector
quantities. However the expression we have arrived at would still be a scalar equation
if we had used vector quantities – although it is associated with motion which has a
direction, the kinetic energy itself is a scalar quantity.

Problem: A man pushes on a car with a force of 300 N and moves it 10 m (in the direction of the force). This is shown

in Figure 5.3 below. How much work is done by the man on the car?

Example 5.1 Work done by a force

Solution:

Figure 5.3 Work is done pushing a car.
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The applied force and the displacement that is produced by this force are in the same direction. We are therefore able
to apply Eq. (5.1)

F d = 300 N×10 m = 3000 J

This technique may be used to calculate the work done by the force whether or not there is friction and whether or not
the car accelerates.

Problem: A woman pushes a toy car (initially at rest, and of mass 0.1 kg) toward a child by exerting a constant force

of 5 N through a distance of 0.4 m. What is (a) the work done on the car? (b) the final kinetic energy of the car? (c)

the final velocity of the car?

Example 5.2 Work, force, and kinetic energy

Solution: Work is done on the car by the force exerted by the woman i.e. by the 5 N force. Thus the work is calculated
using Eq. (5.1) with F = 5 N and d = 0.4 m:

W = F d = 5 N×0.4 m = 2 J

This work is energy transferred by the force to the car and is then present in the car as kinetic energy. The final kinetic
energy of the car is just the initial kinetic energy of the car plus the work done on the car.

KEf = KEi +W

= 0 J+2 J = 2 J

The final velocity of the car could be found using the kinematic equation Eq. (1.9)

d = vit +
1

2
at 2

as acceleration of the car may be calculated using the applied force and the mass of the car, and the initial velocity
of the car is zero. Since we know the distance travelled by the car we are able to calculate the time over which the
force is applied. Using this time we are then able to calculate the final velocity using the relationship between constant
acceleration and the velocity Eq. (1.5).

However, we may also use a method based on energy considerations to solve this problem. The method outlined
above will work well but this method becomes convoluted in more complicated situations. The energy method will
work just as easily in complicated situations and also those where the acceleration is not constant.

We calculate the final kinetic energy of the car and use its mass to calculate its velocity:

KEf =
1

2
mv2

f = 2 J

(Note that the kinetic energy of the car, 2 J, has same units as work as you would expect.) Now the velocity of the car
may be calculated using the mass of the car:

v2
f = 2×2 J

m
= 4 J

0.1 kg
= 40 m2s−2

Taking the square root of this result gives the final velocity of the car:

vf = 6.3 m s−1

5.5 Potential Energy

In many cases, an external force does work on an object, but that object does not end
up in motion. Lifting a box of books onto a shelf does work on the box and its contents.
A force is exerted on the box, and the box is displaced in the direction of the force. How-
ever, after the force has been applied, the box is stationary; it is sitting on a shelf. What
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has happened to the work done? This work has been stored in the box as potential

energy. The box may do work on some object if it is free to move downward.

Key concept:

Potential energy is the energy an object has because of its position.

It is not necessarily gravity that supplies the force. We could place an object next
to one end of a compressed spring. In this case, the object again has potential energy
because of its position.

Gravitational Potential Energy

Figure 5.4 The conversion of work into gravitational potential energy in a pile driver.

When an object has potential energy due to its position in a gravitational field, then
it has gravitational potential energy. Figure 5.4 shows the conversion of work into
gravitational potential energy in a pile driver. The pile driver is raised by a force to
overcome gravity until the ram has been lifted the required distance. Work is done on
the ram to raise it, and the ram gains gravitational potential energy. When the ram is
released, the gravitational potential energy is converted into kinetic energy, and when
the ram strikes the object to be driven into the ground this kinetic energy is converted
into thermal energy and sound, and work is done on moving ground out of the way.

How much gravitational potential energy does the ram acquire? Clearly, the heavier
the ram and the higher it is raised the more work it is able to do. Consider raising an
object a distance h as shown in Figure 5.5. We would like to find an expression for
the increase in gravitational potential energy of the object, so we will assume that the
object is raised at constant velocity, so that none of the work done in raising it goes into
increasing its kinetic energy.

Figure 5.5 Derivation of gravitational potential
energy

A force must be applied to the object to balance the downward force of gravity so
that the object is able to travel at constant velocity. This force is equal in magnitude
to the gravitational force but is directed upward. The work done by this force F on the
object is

W = F d = F h = mg h

since the magnitude of the force is F = mg . The increase in the gravitational potential
energy is provided by this input of work from the external force. This means that the
gain in potential energy is given by

PEgravitational = mg h (5.4)

Note that here we have been concerned only with changes in potential energy. Cal-
culations using energy will generally require determination of the amount of energy
converted from one form to another – e.g., the amount of potential energy that is con-
verted into kinetic energy – so that the only quantity which will be of interest will be
the change in potential energy. This means that instead of measuring heights from the
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centre of the Earth, we may call a convenient point in the system under consideration
the reference point, and measure heights from this point. The difference between this
reference point and the centre of the Earth will be irrelevant to calculations that require
only the height difference.

5.6 Conservative Forces

As we have seen, energy is intimately related to applied force. When performing energy
calculations, it is important to include the initial and final kinetic and potential ener-
gies. All of the applied forces must be included when determining the potential energy
of the system. There are four fundamental forces in nature and there is a potential-
energy term corresponding to each of them. In the current chapter we are concerned
only with gravity, and we will later consider the electrical force and its corresponding
potential energy. We will not have cause to discuss the potential energy corresponding
to the strong and weak nuclear forces.

As may be seen in the worked examples, potential energy can be converted into ki-
netic energy, and vice versa. But what about friction? Friction does not remove energy
from the larger system, but it does convert it into forms which depend on the micro-
scopic behaviour of the system. For example, when a block slides across a surface in
the presence of friction the block and the surface heat up. Some of the kinetic energy of
the block has been transforemd into thermal energy, i.e., friction has converted kinetic
energy into thermal energy. It is very hard to keep track of this microscopic behaviour
and so friction is normally treated as a special kind of force – a dissipative force. A
dissipative force removes mechanical energy from the system under consideration.

Forces which do not do this are called conservative. Conservative forces are those
which do not change the amount of mechanical energy in the system. ‘Mechanical
energy’ is just another name for the kinetic plus the potential energy in mechanical
systems such as mass–spring, pendulum, or gravitational systems. The forces acting in
a mass–spring or pendulum system are conservative and we are able to derive expres-
sions for the potential energy of these systems (and we will do this in a later chapter on
Simple Harmonic Motion). The electrostatic force is also conservative.

Non-conservative forces are normally dissipative; they are forces which channel
energy out of the system under investigation into microscopic or molecular motion.
Work done by non-conservative forces such as friction will result in a reduction of the
mechanical energy of the system. This will appear as a lower velocity than there would
be in the absence of friction, or an object gaining less potential energy than it would in
the absence of friction.

5.7 Conservation of Total Energy

The principle of the conservation of energy is one of the fundamental principles of
physics.

Key concept:

The Principle of the Conservation of Energy: The total amount of energy in a closed
system does not increase or decrease. A closed system is one which does not ex-
change energy with its surroundings.

In all experiments performed to date, it has been found that energy is never lost,
and new energy is never made. All observations demonstrate that energy merely changes
from one form to another. Kinetic energy may become potential energy of various
forms and vice versa. The principle of conservation of energy applies to the total energy
of a system. It does not necessarily apply to the mechanical energy of a system alone,
but if the energy dissipated by friction and other non-conservative forces is included
then the total amount of energy has never been observed to change.

Table 5.1 lists the energy produced or used by a number of well-known processes.
Note that the first entry, the energy released by the Big Bang, is the total amount of en-
ergy available in the universe.
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Event Energy (J)
The Big Bang 1068

Energy released in a supernova explosion 1044

Solar energy incident on the Earth annually 5×1024

Energy release during eruption of Krakatoa 1018

Annual electrical output of power plant 1016

Energy released in burning 1000 kg of coal 3×1010

Kinetic energy of a large jet aircraft 109

Energy released in burning 1 L of gasoline 3×107

Daily food intake of a human adult 2×107

Kinetic energy of cricket ball hit for six 103

Work done by a human heart per beat 0.5
Work done turning a page in a book 10−3

Energy in discharge of a single neuron 10−10

Typical energy of an electron in an atom 10−18

Energy to break one bond in DNA 10−20

Table 5.1 The Energy Scale – the energy released by (mostly) common events, from the largest to some of the
smallest (in joules).

5.8 Power

The definition of work given previously in Eq. (5.2) does not refer in any way to the
time taken for the work to be done. The same amount of work is done by a runner who
sprints up a hill and by a pedestrian who walks slowly up the hill, stopping regularly
for rests. Clearly there is an important difference between these two cases which is
not captured by the concept of work alone. The rate at which work is done is also an
important quantity.

The rate at which work is done is the power. The power is defined to be the amount
of work done divided by the time it takes to do this work:

Power = work done

time taken

or using mathematical symbols

P = W

∆t
(5.5)

We have used ∆t to indicate that we are specifically interested in the time taken to do
the work.

The SI unit of power is the watt, which has the symbol W. (Take care not to confuse
this with the variable W which is work, measured in J.)

1 watt = 1 joule s−1

i.e., 1 W is produced when work of 1 J is done every second. Since the power is

Description Power (W)
Sleeping 83
Sitting at rest 120
Sitting in a lecture 210
(Awake!!)
Walking slowly 265
Cycling at 15 km/h 400
Playing basketball 800

Table 5.2 Rate of energy expenditure in various
activities.

the work done per second, we are able to rewrite the definition so that it is a little more
useful for solving many problems. We note that the work is the force multiplied by the
distance, and use the fact that the velocity is the distance divided by the time:

P = W

∆t
= F d

∆t
= F

d

∆t

so that we end up with

P = F v (5.6)

If an object is moving at constant velocity while a force is being applied to it (such as
when there is an opposing force) then Eq. (5.6) will be useful.

Table 5.2 shows the power output of the human body while undergoing a variety of
activities.
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Problem: Suppose that a 0.3 kg ball is dropped a vertical distance of 7 m. What is its final speed?

Example 5.3 Conservation of total energy I

Solution: We could solve this problem using the kinematic equations, first by calculating the time taken to fall this
distance under the influence of the acceleration due to gravity and then using this time to calculate the final velocity
of an object with this acceleration. However, we will give a solution to this calculation using energy methods, which is
typically easier for more complex problems, particularly those in which the acceleration is not necessarily constant.

To begin with we set the reference point (the level of zero gravitational potential energy) at the bottom of the ball’s
fall. All we need to know is how much potential energy is converted into kinetic energy and to do this we need to know
only the change in height, how far the ball falls. The total energy of the object is the same before and after it falls through
7 m.

We begin by writing down the balance of the final and initial energies as an equation,

KEf +PEf = KEi +PEi

Here the subscript ‘f’ represents an energy after the downward motion, while the subscript ‘i’ represents an energy
before the downward motion.

The initial kinetic energy is zero and the initial potential energy is given by Eq(5.4), PEgravitational = mg h. The final

kinetic energy is given by Eq(5.3), KE = 1
2 mv2 and the final potential energy is zero. We substitute these expressions

into the energy balance equation along with the known numerical values to get

1

2
0.3 kg× v2 +0 J = 0 J+0.3×10×7 J

Finally we rearrange to find v2 and then take the square root,

v2 = 0.3×10×7 J
0.3 kg ×2 = 140 m2s−2

v =
�

140 m2s−2 = 11.8 m s−1

Problem: Calculate the speed of the totally frictionless rollercoaster shown in Figure 5.6 when it reaches the ground

if it starts at rest 20 m above the ground.

Example 5.4 Conservation of Total Energy II

Solution:

Figure 5.6 The velocity of a frictionless roller coaster calculated using gravitational potential energy.

This is an example of a problem which would be very difficult to solve using kinematic methods. We would need to
know all of the details of the rollercoaster’s path as it moved from the high point to the ground. To use the energy
method, however, all we require is the initial and final heights and the initial velocity. We do not even need to know the
mass of the rollercoaster as this will cancel out of the energy balance equation.

The first step is, as usual, to set the reference level to some appropriate value and then to write down the energy
balance equation. In this case the appropriate level is the bottom of the rollercoaster’s ride and the balance equation is
then

KEf +PEf = KEi +PEi +Wapplied
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Note also that we have include a term Wapplied. This term is necessary to include any energy changes due to forces
which are applied to the rollercoaster apart from gravity. In this example we have stated that the rollercoaster is entirely
frictionless so that this term may safely be set to zero.

Having written down our energy balance equation we find that the mass of the roller coaster appears on both sides
of the equation and so may be cancelled. We then proceed as before, solving the equation for v2, taking the square root
and finding the required speed.

1

2
mv2 +0 = 0+mg h +0

v2 = 2g h = 2×10 m s−2 ×20 m = 400 m2s−2

v = 20 m s−1

Problem: A very small bus, with a mass of 500 kg, travels down a slope as shown in Figure 5.7 and arrives at the

bottom of the slope travelling at a speed of v = 15 m s–1. The slope is 87.5 m long and starts at 20 m above the end

point. Calculate the average force of friction on the bus.

Example 5.5 Energy conservation and dissipative forces

Solution:

Figure 5.7 The effect of friction in energy calculations.

We begin by setting the reference point at the base of the slope. This
allows us to calculate the initial potential energy:

PEi = mg h = 500 kg×10 m s−2 ×20 m = 100 000 J

At the base of the slope this potential energy will have been com-
pletely converted into the kinetic energy of the bus, but some of it
will have been dissipated as friction. The kinetic energy of the bus at
the base of the slope is

KEf =
1

2
mv2 = 250×152 J = 56 250 J

This is somewhat less than the original potential energy of the bus:
the difference is the (negative) work done on the bus by friction. The work done on the bus is negative since the dis-
placement of the bus is in the opposite direction to the friction force on it, and thus the product of the force and the
displacement (i.e., the work) is negative.

Wfriction = KEf −PEi = 56 250 J−100 000 J =−43 750 J

Since we know that work is given by the force multiplied by the distance travelled in the direction of the force we are
now able to calculate the magnitude of the friction force on the bus:

Wfriction = faveraged

faverage = 43 750 J

87.5 m
= 500 N

Note that friction is probably not constant along the whole length of the slope so that the quantity we have calculated
is the average of the force, and it is directed up the slope.
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Problem: A force of 500 N is required to overcome the frictional forces acting on a medium-size car travelling at

65 km h−1. How much power must the car produce to maintain a speed of 65 km h–1?

Example 5.6 Force and power

Solution: First we must convert the speed from 65 km h−1 into the appropriate SI units, i.e., m s−1. Since there are 3600
seconds in an hour we have

65 km h−1 = 65 km h−1 × 1000 m

1 km
× 1 hr

3600 s
= 18 m s−1

Thus in 1 s the car travels 18 m. We are now able to calculate the amount of work that the car does in 1 s:

W = F d = 500 N×18 m = 9000 J

The car does this much work every second, so the power expended by the car is

P = W

∆t
= 9000 J

1 s
= 9000 W = 9 kW

Alternatively we can use Eq. (5.6) in this problem, since the speed of the car is constant:

P = F v = 500 N×18 m s−1 = 9000 W

as before.

Problem: A 70 kg man runs up a flight of stairs 3 m high in 2 s. What average power does he produce in order to

achieve this?

Example 5.7 Power

Solution:

Figure 5.8 A man runs up a flight of stairs and gains
3 m of elevation in 2 s.

The man must do work against gravity in order to raise his centre of gravity
the required 3 m.

Wapplied = ∆KE+∆PE

= 0 J+∆PE

= mg h

= 70 kg×10 m s−2 ×3 m = 2100 J

The total work done in climbing the stairs is 2100 J. Now we calculate
the power output by dividing the work done by time taken to do the work:

Average power = W

∆t
= 2100 J

2 s
= 1050 W

The total power output is 1050 W. This is a substantial power output for a
human, given that the baseline metabolic rate is around 100 W and playing
basketball requires a power output of about 800 W (see Table 5.2).

Mechanical Efficiency

In this discussion of power output, it is assumed that all of the energy provided to a
machine is effectively utilised as work. Seen in this way, the human body is a machine
that is powered by the body’s metabolism. No real machine conforms exactly to this
ideal. In real-world cases, some of the energy input into the machine is wasted by the
machine; the input energy is not output as work, since at least some will be lost to dis-
sipative forces. There will always be some waste heat or sound generated by a real ma-
chine. To quantify this idea, we will define the mechanical efficiency, η, of a machine
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Task Approximate Efficiency (%)
Cycling (bicycle producing 370 W) 20
Swimming on surface less than 2
Swimming underwater 4
Shovelling 3

Table 5.3 Mechanical efficiency of some everyday activities

as

η= Efficiency = Work out

Work in
= Work output

Energy used
(5.7)

Below is a table of the mechanical efficiency of a number of energy-intensive every-
day activities. For comparison, the efficiency of a typical petrol engine is about 40%.

Problem: A certain block and tackle is 40% efficient. If an individual does 180 J of work pulling on the pulley rope,

how much work could be done by the other pulley rope?

Example 5.8 Mechanical efficiency

Solution:

Work output = 180 J× 40

100
= 72 J

The rest of the input energy, 180 J−72 J = 108 J has probably been converted into heat energy, i.e., the pulley will warm
up as it is used.

Problem: At what rate is energy being produced by a cyclist when cycling with a power output of 370 W and a bicycle

mechanical efficiency of 20%?

Example 5.9 Power and efficiency

Solution: We solve this problem by applying Eq. (5.7)

20% = 20

100
= 0.2 = efficiency = power out

power in
= 370 W

Pin

Therefore the cyclist produces energy at a rate of

Pin = 370 W

0.2
= 1850 W!

Again compare this energy expenditure with a value of about 800 W which is required to play basketball.

5.9 Summary

Key Concepts

energy The capability of a physical system to do work on another system. The SI unit of energy
is the joule (J). 1 J = 1 N m = 1 kg m2 s−2.

work The transfer of energy from one system to another, in particular in the case where a force
causes a body to move in the direction of the force.

kinetic energy (KE) Energy that an object has by virtue of its motion.

potential energy (PE or U ) Energy that an object has by virtue of its position.

mechanical energy The sum of the kinetic and potential energy of a system.

dissipative (non-conservative) force A force which removes mechanical energy from a system,
e.g., friction forces which convert mechanical energy into thermal energy.

conservative force A force which does not remove mechanical energy from a system, e. g. grav-
ity.
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conservation of total energy The total amount of energy in a system does not change when
there are no dissipative forces acting. Energy is never created or destroyed it is only trans-
formed between the different types of energy. Dissipative forces do not destroy energy,
but they remove it from the system being considered.

power (P ) The power expended is the amount of work done divided by the time it takes to do
this work. It is the rate at which work is done.

mechanical efficiency The mechanical efficiency of a machine is the proportion of the input
work that is provided by the machine as output work.

Equations

W = F d KE = 1

2
mv2

PEgravitational = mg h P = W

t
= F v

η= Work out

Work in
= Work output

Energy used
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5.10 Problems

5.1 In Figure 1.5, the ball had an initial vertical velocity of 30 m s−1.
Prove that the maximum height reached is 45 m using energy ar-
guments instead of kinematic equations.

5.2 A pulley system is used to raise a 30 kg load upwards at a steady
rate. The energy input to the system is 1000 J every second and the
efficiency of the system is 50% (that is, half the energy input is used
to do work on the load). How fast is the load being raised?

5.3 Two 30 kg children in a 20 kg cart are stationary at the top of a
hill. They start rolling down the 80 m tall hill and they are travelling
at 30 km h−1 when they reach the bottom. (The cart had brakes!)
How much work was done on the cart by friction during its travel
down the hill? (Note the use of the word on and remember to spec-
ify the sign of the work done.)

5.4 A car travelling at 50 km h−1 brakes as hard as it can and stops
in a distance of 15 m. Suppose that the maximum braking force
is not dependent on speed i.e. the coefficient of kinetic friction is
constant. What is the shortest stopping distance when the car is
travelling at 75 km h−1?

5.5 A 20 kg box slides 45 m from the top down to the bottom of an
incline which is at an angle of 10° to the horizontal. The box is sta-
tionary at the top of the slope and is accelerating down the slope
at a rate of 1.0 m s−2.

(a) How much work is done by the force of gravity on the box?

(b) How much work on the box is done by the frictional force?

(c) What is the kinetic energy of the box at the bottom of the
slope?

(d) How much gravitational potential energy has the box lost
while traveling down the slope?

5.6 A 70 kg physicist is running up the stairs of the physics building
and makes it up 48 m vertically in 1 minute.

(a) What is the physicist’s power output while running up the
stairs?

(b) If the physicist’s work efficiency is just 3% at what rate were
they using metabolic energy?

(b) If the physicist’s metabolism can provide 5.6×106 J of energy
before they need a rest, how long could they continue run-
ning up the stairs?

5.7 An 85 kg sky diver is falling through the air at a constant speed
of 195 km h−1. At what rate does air resistance remove energy from
the sky diver?

5.8 The human body loses heat at a rate of 120 W when sitting qui-
etly at rest. If a 65 kg student takes 100 hours to read War and Peace
by Leo Tolstoy, how high could they have been lifted if all of the
heat energy lost was utilised to lift them against gravity (assuming
that the force of gravity on the student remains constant)?

5.9 An 8 g bullet leaves a gun at 700 m s−1.

(a) What is the maximum height that this bullet could reach (ig-
noring air resistance)?

(b) If the gun is aimed at an angle of 30° above the horizontal
what height will the bullet reach (again ignoring air resis-
tance)?

5.10 A crane is lifting a 500 kg payload straight up at a constant
speed of 0.7 m s−1.

(a) What is the power output of the crane (ignoring losses)?

(b) If it takes the crane 2 minutes to raise the payload to its final
height, how far above ground is this?

(c) If the cable were to break as the payload reaches its final
height, how fast would it be travelling as it hit the ground?
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6MOMENTUM

6.1 Introduction

6.2 Linear Momentum

6.3 Newton’s Laws and Momentum

6.4 Collisions

6.5 Elastic Collisions

6.6 Summary

6.7 Problems

6.1 Introduction

In this chapter we will discuss another conserved mechanical quantity: the linear mo-
mentum. Just as the energy can be used to solve kinematics problems, we will use the
momentum to solve problems involving the interaction of objects.

Key Objectives

• To understand the concept of linear momentum and its relationship to Newton’s
three laws.

• To be able to identify situations in which momentum is conserved and situations
in which it is not.

• To understand the difference between elastic and inelastic collisions.

• To be able to solve kinematics problems using the conservation of momentum.

6.2 Linear Momentum

The linear momentum is a vector quantity defined as follows:

Key concept:

The linear momentum of an object is the mass of that object multiplied by its ve-

locity.

The symbol commonly used for momentum is p . The mathematical expression for
the linear momentum is

p = mv (6.1)

There is a relationship between momentum and Newton’s three laws. The refor-
mulation of Newton’s laws in terms of momentum changes will show that the total mo-
mentum of a system is conserved in the absence of external forces.

6.3 Newton’s Laws and Momentum

Newton originally wrote his three laws in terms of the momentum. To see how this
would be done, remember that Newton’s second law relates the force on an object to
its mass and acceleration. The acceleration can be written as the change in velocity
divided by the time over which that change occurs, so

F = ma

= m
∆v

∆t

= ∆ (mv )

∆t

= ∆p

∆t
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Colliding Objects Mass (kg) Collision Duration, ∆t (ms)
Golf ball (collision with club) 0.047 1.0
Cricket ball (with bat) 0.156 2.0
Tennis ball (with racquet) 0.058 4.0
Soccer ball (with boot) 0.425 8.0
Basketball (with floor) 0.55 20

Table 6.1 Approximate interaction times of common events

This is an indication of the importance of the momentum idea; in words, the deriva-
tion above says

Key concept:

The rate of change of momentum is equal to the net external force.

In other words, the greater the force, the greater the change of momentum per unit
time.

On the basis of the connection between force and momentum, we will define a new
quantity: the impulse. The impulse is the name given to the change in the momentum,
and is thus given by the expression

∆p = F∆t (6.2)

for a fixed-magnitude force. The longer the interaction time, the greater the impulse,
i.e., the greater the change in momentum. If the force is varying with time, then the
change in momentum over the time interval is the average value of the force. In Ta-
ble 6.1 we list some common events and the approximate time intervals over which
these interactions occur.

We now consider Newton’s third law – ‘for every force there is an equal and opposite
force’ – in the light of the relationship between forces and momenta. A way of stating
Newton’s third law is that forces always appear in third-law force pairs (action–reaction
pairs). These third-law paired forces are equal and opposite at all times. This means
that whenever a force changes there will be a reaction force with the same magnitude
somewhere that is changing in the same way, but which is pointing in the opposite
direction, and is acting on the other body in the interaction. In other words, when
the momentum of one object changes, we can be sure that the momentum of another
object will be changing by exactly the opposite amount. This point may be stated as a
conservation law:

Key concept:

Newton’s third law requires that momentum be conserved.

6.4 Collisions

The conservation of momentum is extremely useful, particularly in the solution of
problems which involve two or more objects that interact with each other. The sim-
plest such interaction is the ‘collision’, in which two objects run into each other, and
their motion changes due to the contact forces acting during the collision. However, it
should be understood that these methods apply equally to any interaction between two
or more objects, regardless of the nature of the forces which mediate the interaction.

As a simple example, consider the collision between a blue ball and a red ball. The
blue ball coming from the left collides with the (slow) red ball, as illustrated in Fig-
ure 6.1. During the collision (i.e., for the short time, ∆t ), the blue ball exerts a force, F B,
on the red ball, and the red ball exerts a force, F R, on the blue ball.

Newton’s third law states that action and reaction forces are equal and opposite, so
that F R =−F B; therefore

F R∆t = −F B∆t

So ∆pR = −∆pB
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Figure 6.1 A simple example of the use momentum conservation in a linear collision.

We have thus shown that the total momentum does not change during this collision,
i.e.,

∆p total =∆pR +∆pB =−∆pB +∆pB = 0

Note that an important part of this calculation was the fact that there were no ex-
ternal forces present; the only forces involved were an action–reaction pair. We would
find that the momentum was not conserved if there had been external forces acting on
the system, as these would not have been part of action–reaction pairs in the system, so
that we would not have been able to apply Newton’s third law as we did. Recall also that
the rate of change of momentum is equal to the net external force; an external force on
our two-ball system would change their combined momentum.

Collisions are usually thought of as being between two or more objects whose prop-
erties are very simple. So simple, in fact, that we can broadly categorise all collisions
into two types: elastic and inelastic collisions.

Elastic Collisions: These are collisions in which:

• momentum is conserved (if no external forces act on the bodies), and

• kinetic energy is also conserved.

Figure 6.2 An inelastic collision in which the ob-
jects stick together (a ’sticky’ inelastic collision).

In these collisions, kinetic energy is conserved, since no energy is dissipated by fric-
tion, or by heating up the colliding bodies. Often, collisions between very hard objects
may be treated as elastic, since these objects do not deform.

Inelastic Collisions: These are collisions in which:

• momentum is conserved (if no external forces act on the bodies), and

• kinetic energy is not conserved – some of the kinetic energy is converted into
thermal energy or sound etc. by dissipative forces.

Inelastic collisions often involve soft, deformable objects. On collision, these ob-
jects change their shape in response to the contact forces produced by the collision.
This deformation may warm up the objects—this means that kinetic energy has been
removed during the collision and converted into thermal energy in the objects. Objects
may also emit loud sounds on collision. Noise produced by the collision will also carry
off energy.

Sticky Inelastic Collisions: A subgroup of the inelastic collision category are those
collisions where the objects stick together after they have collided (as in Figure 6.2).
These collisions are sometimes called ‘totally’ or ‘sticky’ inelastic collisions. Sticky col-
lisions are easier to analyse than other inelastic collisions because the objects share a
common velocity after the collision.
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6.5 Elastic Collisions

Elastic collisions are often easier to analyse than inelastic collisions for the simple rea-
son that we have more information at our disposal. We are able to use the fact that
kinetic energy, as well as momentum, is conserved. This additional information allows
for significant simplifications to the solution of elastic collision problems.

We will begin by analysing one-dimensional collisions, i.e., collisions which are
‘head-on’. Since we are dealing with one-dimensional problems, we are able to treat
the velocity, and hence the momentum, as scalar. We can do this since the velocity is
only able to point in two directions, so can only be positive or negative with respect to
a chosen direction.

Figure 6.3 An illustrative example of an elastic
collision.

Collision problems such as those illustrated in Figure 6.3 may be solved using fun-
damental principles such as energy and momentum conservation. However, it is often
possible to solve problems like these using the following key concept:

Key concept:

The relative speed of the objects before the collision equals the negative of their rel-
ative speed after the collision.

To show this, we use the principle of momentum conservation

m1v 1i +m2v 2i = m1v 1f +m2v 2f (6.3)

and the conservation of kinetic energy

1

2
m1v 2

1i +
1

2
m2v 2

2i =
1

2
m1v 2

1f +
1

2
m2v 2

2f (6.4)

Combining these two equations, and employing a fair bit of algebra, gives

v 1i −v 2i =− (v 1f −v 2f) (6.5)

This expression states that the difference between the initial velocities is equal to
the difference between the final velocities. The difference between the initial velocities
is the velocity of one object as seen by the other object.

For example, suppose two cars are heading toward each other, each travelling at
50 km h−1. The car travelling in the positive-x direction has a velocity of +50 km h−1,
and the car travelling in the negative-x direction has a velocity of −50 km h−1. The rel-
ative velocity of these two cars is (+50 km h−1) − (−50 km h−1) = 100 km h−1. This is
the velocity of the oncoming car as observed by the occupants of the other car. After an
elastic collision, the car which was originally oncoming must be receding at 100 km h−1

for kinetic energy to be conserved.

Problem: Consider the elastic head-on collision illustrated in Figure 6.4. If the collision is totally elastic, what are

the final speeds of the two balls?

Example 6.1 Elastic collision

Solution: This can be treated as a one-dimensional momentum-conservation problem. Using the rule that the ap-
proach and recoil relative velocities are equal for elastic collisions in the absence of external forces, we may write

v1i − v2i = − (v1f − v2f)

10− (−20) = v2f − v1f
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Figure 6.4 An example of an elastic collision
solved using approach and recoil velocities.

so that the final velocities of masses one and two are related by

v2f = 30+ v1f

We are still not able to determine the velocities of the two masses after the
collision. We need more information. Fortunately there is information that we
have not used yet – the conservation of momentum

m1v1i +m2v2i = m1v1f +m2v2f

4×10−2×20 = 4v1f +2v2f

Substituting our expression for v2 f into the latter equation gives

0 = 4v1f +2(30+ v1f)

6v1f = −60

v1f = −10 m s−1

Using this value for v1f we are able to find v2f from our earlier expression.

v2f = 30+ (−10) = 20 m s−1

For this particular case, each of the two masses has just reversed its direction, so
it is clear that we have successfully solved for the elastic collision case where the
total kinetic energy is conserved.

Problem: Consider the inelastic collision illustrated in Figure 6.5. In this example, the left ball has a mass of 3 kg

and is initially travelling to the right with a velocity of 9 m s–1, and the right ball has a mass of 2 kg and is travelling to

the right with a velocity of 4 m s–1. What is the velocity of the balls when they are stuck together after the collision?

Example 6.2 Totally inelastic collision

Solution:

Figure 6.5 An example of a sticky inelastic collision.

First calculate the initial momentum of the system,

p i = m1v 1i +m2v 2i

= 3×9+2×4

= 35 kg m s−1

Then, calculate the final momentum of the system. Since the balls are now stuck together they have the same velocity

p f = (m1 +m2) v f

= (3+2) v f

= 5v f

But p f = p i so that,
5v f = 35 ⇒ v f = 7m s−1
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Problem: Suppose that the red ball in Example 6.2 is moving in the opposite direction. What effect does this have on

the final velocity?

Example 6.3 Totally inelastic collision

Solution: First calculate the initial momentum of the system.

p i = m1v 1i +m2v 2i

= 3×9−2×4

= 19 kg m s−1

Then calculate the final momentum, which is

p f = (m1 +m2) v f

= (3+2) v f

= 5v f

But p f = p i, so that
5v f = 19 ⇒ v f = 3.8 m s−1

6.6 Summary

Key Concepts

momentum (p) A vector quantity defined as the product of mass and velocity. The SI units of
momentum are kg m s−1.

impulse The product of the average value of a force multiplied by the time interval for which it
acts. The impulse equals the change in momentum produced by the force. The units of
impulse are the same as for momentum.

elastic collision A collision of bodies in which the total kinetic energy is the same before and
after the collision.

inelastic collision A collision of bodies in which total kinetic energy is not conserved.

sticky inelastic collision An inelastic collision where the two objects are stuck together after the
collision. Sometimes known as a totally (or perfectly) inelastic collision.

Equations

p = mv

F = ∆p

∆t
m1v 1i +m2v 2i = m1v 1f +m2v 2f
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6.7 Problems

6.1 How fast do the following need to be travelling in order to have
a momentum of 10 kg m s−1 ?

(a) An Airbus A380 aeroplane carrying 853 belly dancers, total
weight 560×103 kg.

(b) An ordinary land-based bus carrying 40 belly dancers, total
weight 6000 kg.

(c) A single 50 kg belly dancer.

(d) A 3.5 kg pet cat (perhaps owned by a belly dancer).

(e) A 5 g moth, being chased around by a belly dancer.

6.2 Car manufacturers conduct crash tests on their cars in order
to improve crash safety. In the event of a crash the head of any
child travelling in the front seat can strike the glove compartment
at considerable (relative) speed, even if the child is wearing a seat-
belt.

(a) The manufacturers of a particular brand of car conduct
head-on collision tests and find that in the absence of a passen-
ger side air bag, a child’s head (which has a mass of 3.5 kg) goes
from a speed of 40 km h−1 relative to the dashboard just before its
collision to rebounding from the dash board at 15 km h−1 just af-
ter the collision. This collision lasts just 0.08 seconds. What is the
average force exerted on the child’s head during this collision?

(b) The manufacturer wishes to reduce the average force in-
volved in such a collision to 200 N. In order to achieve this they
install a passenger airbag on the front of the glove compartment
which quickly inflates in the event of a crash and deflates as the
child’s head pushes into it, effectively increasing the amount of
time it takes to slow the child’s head (i.e., the collision lasts longer).
How long would the collision between the child’s head and the
airbag need to last to reduce the speed of the head relative to the
dashboard from 40 km h−1 to 0 km h−1 without exceeding the av-
erage force quoted above?

6.3 A 3500 kg car hits an 80 kg pedestrian who is standing in the
middle of the road. Before the collision the car was travelling at
30 km h−1 and the pedestrian was stationary. After the collision
the car was travelling at 28.5 km h−1. At what speed will the pedes-
trian be flung down the road (in km h−1)?

6.4 Two basketball players collide head-on. Player A weighs 80 kg
and is travelling 2.5 m s−1 to the right while Player B weighs 68 kg

and is travelling 1.2 m s−1 to the left. After the collision Player A is
travelling at 1.0 m s−1 to the right.

(a) What is the change in momentum of Player A?
(b) If the collision lasted 0.1 s, what is the average force Player

B must have exerted on Player A during the collision?
(c) What is the average force that Player A must have exerted

on Player B during the collision?
(d) What is the change in momentum of Player B?
(e) What is the final velocity of Player B?

6.5 An enthusiastic kitten collides with a ball of string that is
rolled towards it. The 0.5 kg kitten is travelling at 0.5 m s−1 due
east before the collision and the 0.6 kg ball of string was travel-
ling at 0.7 m s−1 due west. If the kitten grabs the string during
the collision and does not let go, what is the final speed of the kit-
ten+string?

6.6 An 85 kg runner is accelerating at a rate of 2 m s−2 and a 65 kg
runner at a rate of 3 m s−2. If the heavier runner started at a speed
of 1 m s−1 while the lighter runner started off stationary then how
long is it before the runners have the same momentum?

6.7 A 40×103 kg train is travelling at 8.3 m s−1 when the engineer
sees a sheep on the tracks. She throws the emergency brakes on.
The emergency brakes can apply a maximum force of 11×103 N.

(a) How long is it before the train will come to a complete stop?

(b) The sheep, startled by the sparks and noise of the emergency
brakes, trots off the tracks. The engineer is able to release the
brakes. If the brakes had been applied for 11 s, how fast is the
train travelling now?

6.8 A kererū (New Zealand wood pigeon) travelling at 1.5 m s−1

due west has an elastic collision with an Airbus A380 aeroplane.
Fortunately for the kererū, the A380 was only travelling at 0.1 m s−1

in an easterly direction at the time. With what speed is the kererū
travelling after the collision?

6.9 The kererū from Problem 6.8, having proven itself somewhat
careless, has a totally inelastic collision with a cat. If, just before
the collision, the 0.65 kg kererū was travelling 2.0 m s−1 north and
the 3.0 kg cat was traveling 5.5 m s−1 south, what is the velocity of
the ball of fur and feathers just after the collision?
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7SIMPLE HARMONIC MOTION

7.1 Introduction

7.2 Hooke’s Law

7.3 Simple Harmonic Motion

7.4 The Simple Pendulum

7.5 Summary

7.6 Problems

7.1 Introduction

In Chapter 3 we noted that circular motion repeated once the object had completed an
entire circuit around the circle. In this respect, circular motion is periodic, and we were
able to define the period of the motion. An object does not have to travel in a circle
for its motion to be periodic. We will call any motion that repeats after a given period
oscillatory motion. In this chapter we will investigate the general rules that govern the
behaviour of oscillatory motion.

A very large number of physical systems are oscillatory and display behaviours
which are characteristic of oscillations. There are many examples in the physical envi-
ronment, from vibrations caused by trucks going over bridges to musical instruments.
In the biological sciences there are a very large number of examples: many organisms
detect the approach of predators by the vibrations produced by their approach, the in-
ner ear works by transmitting sound-wave energy into a series of vibrating bones, and
so on. The theory of oscillations is the base from which a large amount of physics de-
velops.

Key Objectives

• To develop an understanding of simple harmonic motion (SHM).

• To understand the relationship between Hooke’s law and simple harmonic mo-
tion.

• To be able to calculate the period and frequency of a mass–spring oscillator.

• To be able to calculate the period and frequency of a simple pendulum.

7.2 Hooke’s Law

We will begin our discussion of oscillations with an investigation of the behaviour of
springs. We begin at this point since the ideal massless spring is a relatively simple
system and is a good model for the vibrations seen in a large number of more complex
systems.

Figure 7.1 The force exerted by a spring in-
creases with increasing displacement from equi-
librium.

A spring is characterised by the fact that the further you stretch it, the harder it
pulls back. Alternatively, the more you compress a spring, the harder it pushes back
(see Figure 7.1). In mathematical language, the magnitude of the force exerted by the
spring on the object attached to the spring is proportional to the ‘stretch’ of the spring.
The ‘stretch’ of the spring is not how long the spring is – it indicates how far you have
pulled the spring from its ‘natural’ position, i.e., the position that the spring will sit in
if no force is applied to it. The force exerted by the spring is called the restoring force,
and the natural resting position of the spring is the equilibrium position of the spring.

With these definitions we can now state the defining relationship between force
and displacement for springs:

Key concept:

For springs (and many other elastic materials) the magnitude of the restoring force
is proportional to the displacement of the spring from its equilibrium position.

Introduction to Biological Physics for the Health and Life Sciences Franklin, Muir, Scott, Wilcocks and Yates
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This statement, known as Hooke’s law may be put in mathematical terms as fol-
lows:

F =−kx (7.1)

The constant k is called the spring constant (and is a property of a given spring)
and the distance from the equilibrium position is x. The larger the spring constant,
the larger the force you would need to apply to the spring to stretch it. The negative
sign indicates that the direction of the restoring force is always towards the equilibrium
position.

The same discussion applies to compressing springs. This discussion will apply
equally to systems which are not springs, but which respond to deforming forces in a
similar way. For example, we could analyse a situation such as that shown in Figure 7.2
in which we bend a plastic ruler by applying a sideways force to its free end. The ruler
will return to its equilibrium position (straight) when we no longer apply a bending
force to it; Hooke’s law applies to the ruler and we could determine the spring constant
of the ruler if we so desired.

Figure 7.2 Bending a plastic ruler or some other
flexible rod will result in a restoring force that may
obey Hooke’s law. Energy in Hooke’s Law Deformations

In order to stretch or compress a spring, an external force (i.e., external to the spring)
must have initially been applied to the object to overcome the spring’s restoring force.
Work must be done by this external force to stretch or compress the spring. The amount
of work done is given by the product of the external force doing the work and the dis-
tance over which that force operates. The force increases linearly with distance, so the
average is half the maximum value. So the work done to compress the spring by a dis-
tance x is

Rubber Bands and Hooke’s Law

Some materials that we might expect to obey

Hooke’s law, like rubber bands, do not neces-

sarily do so. We will see in Chapter 10 that

Hooke’s law requires the strain produced to be

proportional to the stress applied. Some ma-

terials, while ‘stretchy’ have a molecular struc-

ture that stretches in a non-linear fashion for

even small stresses.

W = Faverage ×d

= 1

2
kx ·x

Thus the work done stretching or compressing a spring is given by

W = 1

2
kx2 (7.2)

The work done on the spring is recoverable, that is, once we have done work on a
spring, that spring will then be able to do work on something itself. In other words,
we have stored energy in the spring. The energy stored in this way is potential energy
and is equal to the amount of work we have done on the spring. The potential energy

stored in a spring is therefore given by

PE = 1

2
kx2 (7.3)

In the above we have used only Hooke’s Law. This means that the expression we are
left with is true for any system that obeys Hooke’s Law: energy may be stored in all such
systems.

7.3 Simple Harmonic Motion

Suppose that we have a mass attached to a spring and that we stretch this spring. We
have done work on the spring, and the spring has stored this work as potential energy.
The spring exerts a restoring force on the object. What will happen if we release the
mass? We will consider the case where there is no friction between any of the compo-
nents of the system.

To begin with, the mass will accelerate back toward the equilibrium point under
the influence of the restoring force. As it approaches the equilibrium point, the restor-
ing force will decrease as the displacement from the equilibrium point decreases, and
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Figure 7.3 The force exerted by the spring in this case always points upwards but the net force (restoring force) on
the mass always points towards the equilibrium point, thus this system will exhibit periodic motion. If the restoring
force can be described using Hooke’s law then it will exhibit simple harmonic motion.

when the mass reaches the equilibrium point, the restoring force will have reduced to
zero. This means that at the equilibrium point, the acceleration of the mass has reduced
to zero.

The velocity of the mass is not zero, however. If we consider the potential energy
of the spring at the point at which we release the mass, we can see that the potential
energy decreases from this point as the spring does work to accelerate the mass. When
the spring is at its greatest stretch, the potential energy is at its maximum value, and
when the mass reaches the equilibrium point, the potential energy of the spring drops
to zero. The potential energy stored in the spring has been returned to the mass as
kinetic energy.

The potential energy of the spring was greatest at maximum stretch, at which point
the kinetic energy of the mass was zero. Similarly, at the equilibrium point, the po-
tential energy of the spring is zero and the kinetic energy of the mass is at its greatest
value. This means that the velocity of the mass is at its maximum value when the mass
reaches the equilibrium point.

The mass will overshoot the equilibrium point and continue moving. The restoring
force of the spring begins to grow once more, but the force is pointing in the opposite
direction to the velocity of the mass. This force will therefore cause the mass to deceler-
ate, and its kinetic energy will decrease. There is a point when the kinetic energy of the
mass has been entirely converted into potential energy of the spring. However, since
the kinetic energy of the mass originally came from the initial stretch of the spring, we
will have that same quantity of potential energy stored once again when the spring is
compressed. Thus the mass has gone from one side of the equilibrium point to the
other side, compressing the spring to the same distance from the equilibrium point as
its initial stretch.

The mass will now begin to accelerate back toward the equilibrium point, and again
it will overshoot, and again it will stop when it gets as far on the other side of the equi-
librium point as it was to begin with. This process will continue over and over again
without stopping. This is what we mean by an oscillation: a restoring force with the
form of Hooke’s Law will produce an oscillation about an equilibrium position which
will continue indefinitely. In a real situation, friction forces will always oppose the mo-
tion of the mass regardless of the direction in which it is heading, and so over time will
dissipate the kinetic energy. As a result, the mass will to come to rest at the equilibrium
point after a time which is dependent on the size of the friction forces.

Oscillations of this kind are very common in nature and have a particularly simple
form. Such an oscillation is often called a simple harmonic motion or SHM. An un-
derstanding of SHM is particularly useful, as even oscillations which are much more
complex than simple harmonic motion can always be modelled as a sum of SHMs with
different periods. (This is known as the Fourier theorem.) In this way, we are able to
use the physics of SHM to analyse vibrations as diverse as those which produce the
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sounds from musical instruments, or the vibrations of the vocal cords which produce
the human voice.

Simple harmonic motion is periodic; after a set time the system will return to its
initial state. The system will then repeat itself and again return to its initial state after
the same amount of time. Each oscillation is called a cycle, and the time taken for the
system to return to its initial state, i.e., for one full cycle of oscillation, is called the
period, T . Since the system has a period, we are able to define a frequency for the
system: the number of cycles per time interval. The frequency, f , in SI units of hertz
(Hz), is the number of cycles per second. For example, if it takes a system 0.1 s to go
through one complete cycle, then its period is T = 0.1 s, and there will then be 10 such
cycles every second, so the frequency of the oscillation is f = 10 Hz. The relationship
between period and frequency is

f = 1

T
(7.4)

which is equivalent to

T = 1

f
(7.5)

Problem: The spring in a toy gun has k = 50 N m−1, and is compressed 0.15 m to fire a 2 g plastic bullet. With what

speed will the bullet leave the gun?

Example 7.1 Potential energy in a spring

Solution: All of the potential energy stored in the spring will be delivered to the plastic bullet as kinetic energy. Thus we
begin by calculating the potential energy stored in the spring, which is

PE of spring = 1

2
kx2 = 1

2
×50 N m−1 ×0.152 m2 = 0.563 J

We now use the fact that all of this potential energy is converted into the kinetic energy of the bullet to write

1

2
mv2 = 0.563 J

1

2
×0.002 kg× v2 = 0.563 J

We are then able to calculate the speed of the bullet. Since

v2 = 563 m2 s2

thus the speed of the bullet is
v = 24 m s−1

The Relationship Between Circular Motion and SHM

Consider the following example. A black ball is constrained to move in a circle, as
shown in Figure 7.4. The ball moves at constant speed around the circle. Since the
motion is two dimensional, we may resolve the motion into its components along the
horizontal and vertical axes. We will consider only the component of the motion in the
x-axis and represent the motion in the x-axis by a blue ball.

As the black ball moves around the circle, the blue ball (the x-component of its
position) will oscillate back and forth along the x-axis. If the angle between the x-axis
and the black ball is θ, the distance from the centre of the circle to the blue ball is

x = r cosθ (7.6)

Next, consider the centripetal force required to keep the black ball moving around
the circle (see Figure 7.5). This force is always directed from the black ball toward the
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Figure 7.4 Plotting the x-component of the position of an object moving in a circle traces a sine graph.

centre of the circle so that its direction is continually changing. This force will also
have vertical and horizontal components. We can find the horizontal component of
this force in the same way as we found the horizontal component of the displacement.
The angle between the centripetal force vector and the x-axis is again θ and thus the
x-component of the centripetal force will be given by

Fx =−Fc cosθ

Note the minus sign! The force is pointing toward the centre of the circle, and thus
the x-component of this force will point in the negative-x direction while the black ball
is in the positive-x sector of the circle, and in the positive-x direction when the black
ball is in the negative-x sector of the circle.

Figure 7.5 Plotting the x-component of the force (red vector) on an object moving in a circle traces a sine graph that
is 180° out of phase with the position graph (see Figure 7.4).

If we combine the expression for the x component of the centripetal force and the
x-component of the displacement, we get

Fx = −Fc
x

r

= −
(

Fc

r

)
x

= −kx

where in the last step we have set k = Fc
r (this means that if we know k and the max-

imum restoring force we can work out the radius of this circle). This derivation has
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shown that the blue ball, the x-component of the black ball’s motion, obeys Hooke’s
Law. This means that the blue ball is undergoing simple harmonic motion along the
x-axis. It is worth noting that the same analysis could have been done on the vertical
component of the black ball’s motion and we would have found exactly the same thing.

Key concept:

The horizontal and vertical components of the motion of an object in circular mo-
tion at constant speed are examples of simple harmonic motion.

Now we are able to apply the insights we obtained for circular motion to simple
harmonic motion. We will find it useful in future to write the displacement of an object
undergoing simple harmonic motion using the equation found above (Eq. (7.6). We
know from our discussion of circular motion that we may replace the angle θ in this
expression using Eq. (3.3) to get

x = A cos(ωt ) (7.7)

In this expression we have used the symbol A for the maximum displacement from
the equilibrium position, commonly called the amplitude of the oscillation. Eq. (7.7)
is preferable to Eq. (7.6) since the time dependence of the displacement can be clearly
seen.

We can write similar expressions for the velocity and acceleration of an object un-
dergoing simple harmonic motion:

v = vx = −vmax sin(ωt ) (7.8)

a = ax = −amax cos(ωt ) (7.9)

The coefficients vmax and amax are the maximum velocity and acceleration, which oc-
cur at x = 0 and x = A respectively. Note that the velocity and acceleration are both
negative. First consider the acceleration. The negative sign indicates that when the
displacement of the spring is positive, then acceleration is in the negative direction
i.e., back toward the equilibrium point. Similarly, when the displacement is negative,
the acceleration is positive, again pointing back toward the equilibrium position. The
velocity is slightly more complicated as it is a sine function, unlike the displacement
and accleration which are cosine functions. When the displacement is at its maximum
value at t = 0, velocity is zero. After this the displacement decreases and the velocity
is negative, i.e., pointing toward the equilibrium position. As the oscillator passes the
equilibrium point, the displacement (and acceleration) are zero, but the velocity is at
its maximum value. After this the displacement increases in the negative direction un-
til it reaches its negative maximum, while the velocity decreases to zero (but still points
in the negative direction). Then the displacement begins to decrease and the velocity
turns around and points in the positive direction, toward the equilibrium again. These
changes may be seen by comparing Figures 7.5 and 7.6.

Figure 7.6 Plotting the x-component of the velocity (blue vector) on an object moving in a circle traces a sine graph
that is 90° out of phase with the position graph (see Fig. 7.4). In other words the velocity is at the maximum when
the displacement from equilibrium is zero.
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Maximum Velocity in SHM

We will now calculate the maximum velocity of a mass attached to a spring and un-
dergoing SHM. The total energy of a system undergoing simple harmonic motion is
conserved, so the total energy at any point in the cycle of the oscillator is just the po-
tential energy stored in the spring plus the kinetic energy due to the velocity and mass
of the object attached to the spring

E = 1

2
kx2 + 1

2
mv2 (7.10)

At the endpoints of the oscillation when the mass is as far from the equilibrium
point as it gets, the distance from the equilibrium point is just the amplitude of the
oscillation, i.e., x = ±A. For an instant at each of these points the mass is stationary.
This means that the kinetic energy at this instant is zero and the potential energy of the
spring reaches its maximum value i.e., PE = 1

2 k A2. Since the energy of this system is
conserved (we are ignoring friction) we observe that the total energy of the system is
thus equal to this maximum potential energy Etotal = 1

2 k A2.
At the centre of the oscillation, i.e., at the instant when the mass passes the equi-

librium point, the position is x = 0 and the potential energy of the system is zero. This
means that all of the energy of the system is contained in the kinetic energy of the os-
cillating mass, thus Etotal = 1

2 mv2
max; this is also the point at which the velocity is a

maximum so we have used a subscript ‘max’. This maximum kinetic energy is equal to
the total energy of the system, and is also equal to the maximum potential energy. We
are able to equate the two:

Etotal =
1

2
k A2 = 1

2
mv2

max

We are now able to solve this equation for the maximum velocity of the oscillator. A
small amount of algebra gives

vmax =
√

k

m
A (7.11)

Period and Frequency of SHM

Now that we have found an expression for the maximum velocity of the mass on a
spring oscillator we are in a position to find an expression for the period and frequency
of this oscillator. To do this we use the relationship between simple harmonic motion
and circular motion. In the discussion of the relationship between circular motion and
SHM, we noted that the horizontal component of a black ball moving around the cir-
cumference of a circle at constant speed undergoes simple harmonic motion. When
the ball passes the highest point in the circle (i.e., directly above the centre point), the
horizontal component of its velocity is at its maximum value. At this point, the vertical
component of the ball’s velocity is zero and the horizontal component is equal to the
velocity of the ball. This is also the point at which we have calculated the maximum
velocity of our object undergoing SHM.

We also know that the time it took the ball to travel around the circle (the period) is
given by the distance travelled divided by the velocity, i.e.,

T = 2πr

vmax
= 2πA

vmax

We have used the fact that the radius of the circle is equal to the amplitude of the
SHM in the last equality. We now substitute into this our expression for the maximum
velocity, Eq. (7.11), then a little algebra gives us an expression for the period of this
oscillator as

T = 2π

√
m

k
(7.12)

The angular frequency of the oscillator is then found using Eq. (7.4) and is given by

f = 1

2π

√
k

m
(7.13)
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Alternatively, we can calculate the angular frequency in radian s−1

ω=
√

k

m
(7.14)

since ω= 2π f , and thus vmax =ωA.

7.4 The Simple Pendulum

We have so far considered simple harmonic motion using a mass on a spring as our
model. This is not the only example of simple harmonic motion. We will now consider
another important example – the simple pendulum. The pendulum consists of a mass
hanging from a light cord and swinging from side to side. In this case the equilibrium
point is the point at which the pendulum is hanging straight down, and the force which
tends to restore the pendulum to this equilibrium position is provided by gravity. In the
following we will assume that the pendulum is only slightly displaced from its equilib-
rium position.

As can be seen in Figure 7.7, the gravitational force may be resolved into compo-
nents along the pendulum cord and perpendicular to it. It can be shown that the restor-
ing force is given by

Fperp ≈−kx

with

k = mg

L
(7.15)

Figure 7.7 The simple pendulum

The force is a restoring force with the same form as Hooke’s Law and the motion of
the simple pendulum is simple harmonic motion. We can also calculate the period of
the pendulum using Eq. (7.15) and Eq. (7.12):

T = 2π

√
L

g
(7.16)

where L is the length of the pendulum. Note that the period of the pendulum’s swing
is independent of the mass of the object hanging from the pendulum, and varies only
with the length of the pendulum and the gravitational acceleration (a pendulum will
swing more slowly on the Moon than it does on Earth).

Problem: How long is a simple pendulum with a period of exactly 1 s?

Example 7.2 Period of SHM

Solution: To solve this problem we rearrange Eq. (7.16) to get

L = g

(
T

2π

)2

We now just enter the known values and calculate the required length, which is

L = g

(
T

2π

)2

= 9.8 m s−2 ×
(

1 s

2π

)2

= 0.25 m
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7.5 Summary

Key Concepts

frequency ( f ) The number of repetitions of a complete oscillation per unit time. Measured in
cycles per second, or hertz (Hz).

period (T ) The time interval between the successive occurrences of a particular phase of an
oscillation.

simple harmonic motion, SHM A type of periodic motion in which the restoring force is pro-
portional to the displacement from the equilibrium position.

Hooke’s law Within the elastic limits of a material, the strain is proportional to the stress i.e., the
amount of deformation is proportional to the distorting force.

spring constant (k) The ratio of force applied to a spring to the resulting change in length.

Equations

F =−kx vmax =
√

k

m
A =ωA

PE = 1

2
kx2 T = 2π

√
m

k

KEmax =
1

2
k A2 ω=

√
k

m

f = 1

T
T = 2π

√
L

g

T = 1

f
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7.6 Problems

7.1 A spring is pressed against a wall so that it is compressed by
0.25 m (i.e. it is 0.25 m shorter than its equilibrium length). The
spring is then released. The spring constant is k = 35 N m−1, and
the spring weighs 50 g. What is the speed at which the spring
leaves the wall?

7.2 How long is a simple pendulum with a period of 5 seconds?
How long would this pendulum have to be if it were to operate on
the moon with the same period? (gmoon = 1.62 m s−2)

7.3 During an earthquake a skyscraper is designed to sway back
and forth with simple harmonic motion with a period of 8 sec-
onds. The amplitude at the top floor for a particular earthquake
is 70 cm. With respect to the simple harmonic motion of the top
floor, calculate the following quantities:

(a) The radius of the circle used to represent the SHM.
(b) The speed of the object moving round the circle.
(c) The angular velocity.
(d) The maximum speed of the top floor.

7.4 When a sound wave with a certain intensity is detected by
the tympanic membrane (eardrum) the amplitude of the resultant
motion is 1.0 nm (1.0× 10−9 m). If the frequency of the sound is
600 Hz what is the maximum speed of the membrane oscillation?

7.5 A fly beats its wings at a frequency of 1200 Hz. If the expan-
sion and contraction of the wing muscles of the fly exhibits simple
harmonic motion, the angular displacement of each wing of the
fly also exhibits simple harmonic motion, the length of the wing
muscles varies from 750 µm to 600 µm over the course of one beat
of its 1.00 cm long wings, and the wing tips move through an arc of
150° then:

(a) What is the time period of a single beat of the fly’s wings?

(b) What is the maximum velocity of the mobile end of the wing
muscle?

(c) What is the maximum angular velocity of the wing?

(d) What is the maximum speed of the wingtip?

7.6 Four identical springs used as part of a car’s suspension sys-
tem, one on each wheel. The springs compress by 6 cm when the
weight of the 1900 kg car is applied to them.

(a) What is the spring constant of each of the springs?

(b) With what frequency will the suspension bounce if given a
jolt?

(c) If the springs are chopped in half (which will double the
spring constant) with what frequency will the suspension
bounce now?

7.7 A 5000 kg floating pier is moved up and down by the changing
tide. If the period of this motion is 12 hours and the amplitude is
2.5 m and we treat the motion as being simple harmonic then:

(a) What is the frequency of the motion?

(b) What is the maximum vertical velocity of the pier?

(c) What is the maximum vertical acceleration of the pier (hint:
use circular motion as an analogue)?

7.8 A small 5 g fly is buzzing along and hits a spider web. The spi-
der web catches the fly and proceeds to oscillate with a time period
of 0.09 s and an initial amplitude of 1.9 cm.

(a) With what velocity was the fly flying before it hit the web?

(b) What is the maximum force that the web exerts on the fly
(hint: use circular motion as an analogue to find the maxi-
mum acceleration of the fly)?

(c) What is the spring constant of the web?

7.9 A particular person’s lower leg is 56 cm long and weighs 9.5 kg.
If allowed to swing freely, with what time period would the leg
swing? Is this close to what you would estimate such a person’s
walking pace is? (Treat the leg as a simple pendulum with length
equal to half the leg length and all the leg’s mass concentrated at
this point.)
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8.1 Introduction

Waves of many kinds, from ocean waves to sound and light waves, are a common fea-
ture of everyday life. Information about the environment is carried by light and sound
waves, so these are of critical importance to biological organisms. Energy, in the form
of heat or light, can travel as an electromagnetic wave. Furthermore, in health-science
technology, a large class of diagnostic instruments rely on the propagation and reflec-
tion of various kinds of wave, for example ultrasound, or various kinds of microscopy.

In this chapter we will investigate the nature of oscillations and waves. Normally,
but not always, waves travel as a disturbance in some medium. (Electromagnetic waves
can travel through a vacuum, and will be discussed in Optics.) We will show that wave
motion is deeply connected to oscillations in the medium in which the wave propa-
gates.

Key Objectives

• To understand the connection between simple harmonic motion (SHM) and wave
motion.

• To understand the concepts of phase, frequency, wavelength and wave velocity.

• The understand superposition and interference of waves.

• To understand the phenomenon of beats.

• To understand reflection of waves by barriers and the production of standing
waves.

• To understand the transmission of energy and power by wave motion.

8.2 SHM and Waves

Figure 8.1 The relationship between SHM and
wave propagation. The oscillators at P and Q are
spaced one wavelength apart and are exactly in
phase.

When a wave propagates, each spatial point on the wave is oscillating in simple har-
monic motion. The wave is the result of these oscillations, and the fact that each oscil-
lator is in a strict phase relationship with every other point, i.e., if an oscillator is one
quarter of a cycle ahead of another oscillator at a particular time, this is true at all times.

In Figure 8.1, we represent a wave by a row of mass–spring oscillators. Each of these
oscillators has the same spring constant, the same mass, and oscillates with the same
amplitude. This means that they will all oscillate with the same period and frequency.
However, each of these springs is oscillating slightly ahead or slightly behind each of its
neighbours; each spring is at a different point in its cycle. This lead or lag is progressive,
so moving from left to right each spring is slightly further behind the spring on the
extreme left. Notice that the spring at point Q has fallen so far behind the spring at
point P that is now oscillating in time with the spring at point P, i.e., it is exactly one
cycle behind the spring at point P. It is because of this lead or lag between successive
springs that this set of oscillators forms a wave. Each evenly spaced spring must be the
same proportion of a cycle ahead of or behind its neighbours as every other spring. The
distance from spring P to spring Q is called the wavelength, usually represented by the
Greek letter lambda (λ).

Introduction to Biological Physics for the Health and Life Sciences Franklin, Muir, Scott, Wilcocks and Yates
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Figure 8.2 The propagation of a wave in a mass–spring system.

8.3 Frequency, Wavelength and Speed

In Figure 8.2, we have reproduced Figure 8.1, but at a sequence of successive times. In
this figure, the crests of the wave (which were at points P and Q at t=0) are moving to
the right. In the top diagram, the oscillators at P and Q are at the maximum vertical
position, and the oscillator midway between is at the minimum vertical position. After
a time equal to the period of these oscillators (the bottom of Figure 8.2), the oscillators
at P and Q are again at the maximum vertical position. A continuous film made up of
snapshots of the oscillator positions at successive instants (a set of which are illustrated
in Figure 8.2), shows that during one period (of the oscillators), the wave-crest initially
at point P has moved one wavelength to the right to point Q. We can calculate speed
velocity with which the wave-crests are travelling:

vwave =
|∆x|

t
= λ

T
= f λ

In the last step, we used the fact that the period of an oscillator undergoing simple
harmonic motion is related to its frequency by f = 1/T . The velocity, frequency and
wavelength of a wave are related by

v = f λ (8.1)

8.4 The Form of the Wave

The waveform that we have illustrated in Figure 8.1, using a line of mass–spring oscil-
lators, is the familiar sine or cosine wave. We choose the cosine function to represent a
propagating wave:

y = A cos

(
2π

(
x

λ
± t

T

))
(8.2)
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The plus/minus symbol indicates the direction of travel as described below. Here A is
the amplitude of the wave. In this expression we have used the wavelength λ and the
period T . We can rewrite this in terms of some alternative parameters: the wavenum-

ber k and the angular frequency ω. The wavenumber is related to the wavelength by
the expression,

k = 2π

λ
(8.3)

and it is related to how many cycles per metre (specifically, it is the angle in radians

Choice of Cosine

Mathematically, we could equally well choose

a sine function; think about the way the film

of a mass on a spring is the same no matter

which frame we decide to label as t = 0. The

choice of cosine here is so that the wave de-

scribed has a peak at x = 0 when t = 0.

travelled through by that number of cycles), rather than the number of metres per wave
cycle (which is what the wavelength tells us). The angular frequency is related to the
frequency in hertz by

ω= 2π f (8.4)

and converts the frequency in hertz (i.e., in cycles per second) into the angular fre-
quency in radians per second.

In terms of the wavenumber and the angular frequency the expression for a wave
becomes somewhat simpler:

y = A cos(kx ±ωt ) (8.5)

Compare this expression with Eq. (7.7), which describes the displacement of a simple
harmonic oscillator as a function of time. The expression for the wave, Eq. (8.5) is a
generalisation of the expression for the displacement of a simple harmonic oscillator
and describes the displacement of simple harmonic oscillators at each point in the x
direction.

The section of Eq. (8.5) between the brackets, the argument of the cosine function,
is known as the phase of the wave. Varying the phase in this expression can be achieved
by changing the point under observation (i.e., changing x) or by changing the time at
which a particular point is observed (by changing t ).

Note that x
λ in Eq. (8.2) is just the number of wavelengths we have changed in posi-

tion. The ratio t
T is the number of periods that have elapsed.

Finally note that the phase of the wave in Eqs. (8.2) and (8.5) has a ± operation.
This means that at this point in the expression we may substitute either a ‘+’ or a ‘−’.
The difference between these is that if we substitute a ‘−’ sign then the expression will
represent a wave travelling in the positive x direction (customarily shown as moving
to the right) and if we substitute a ‘+’ sign then the expression will represent a wave
travelling in the negative x direction.

8.5 Types of Wave

Up until this point we have considered waves as a collection of mass–spring oscilla-
tors undergoing simple harmonic motion. We have assumed in Figures 8.1 and 8.2 that
these mass–spring systems are oscillating up and down and the wave is propagating
horizontally. This has been useful to illustrate the connection between wave motion
and simple harmonic motion, but it is by no means the only possible arrangement
of the oscillators underlying wave motion. These oscillators may be any system that
undergoes simple harmonic motion (such as a collection of pendula) and the oscil-
lation need not be perpendicular to the direction of the wave’s propagation. We will
henceforth dispense with the underlying oscillators and concentrate on the behaviour
of waves as they propagate and combine. We will first define two distinct kinds of wave:
transverse waves, and longitudinal waves.

Figure 8.3 In a transverse wave each point in
the wave moves perpendicular to the direction of
motion of the wave.Transverse Waves

A transverse wave is one in which the medium in which the wave is travelling is oscil-
lating in a direction which is perpendicular (i.e., transverse) to the direction in which
the wave is propagating. The waves shown in Figures 8.1 and 8.2 are transverse waves.
The waves produced in a shaken string or cable are transverse. A transverse wave is
also shown in the Figure 8.3.

Electromagnetic waves, which will be covered later in this book, are another exam-
ple of a transverse wave.
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Longitudinal Waves

As well as transverse waves, there is another class of waves in which each spatial point
in the medium in which the wave is propagating is oscillating in the same direction as
the wave is propagating. Such as wave is known as a longitudinal wave. Such a wave is
shown in Figure 8.4.

Figure 8.4 In a longitudinal wave each point
in the wave moves parallel to the direction of
motion of the wave.

An important example of a longitudinal wave is the pressure wave in air that we
experience as sound.

8.6 Superposition and Interference

What happens when two waves of the same type meet and overlap? They superpose,
creating a new oscillation. The addition of waves is achieved by adding their displace-
ments (that is, their instantaneous displacement caused in the medium, not the max-
imum) at every point. These displacements add like scalar quantities (simple positive
or negative numbers) at every point of the two waves, so that if at an instant in time,
the displacement of one wave at point x is 1 m and the displacement of the other wave
at the same point x is 2 m, then the displacement of the wave which results from the
superposition of these two waves has an displacement of 3 m at x at this instant.

The primary phenomenon which results from superposition is interference. In-
terference, at its extremes, can be either a completely constructive or completely de-

structive process.
Constructive interference occurs when the two waves which overlap have the same

wavelength and frequency and are ‘lined up’ so that crests of one wave are in the same
place as the crests of the other wave. When this happens, the two waves are said to
be in phase. This is illustrated in Figure 8.5. The displacements at each crest will add
to give a resultant wave with an amplitude which is twice as high as the crest of each
individual wave. At each trough, the displacements will add to give a trough which is
twice as deep as the trough of each individual wave. Thus the wave which results from
the purely constructive interference of these two identical waves will have twice the
amplitude of each of the component waves.

Figure 8.5 The completely constructive interfer-
ence of two identical waves.

Destructive interference occurs when the two component waves are completely
misaligned. This means that the crests of one wave are lined up with the troughs of the
other and vice versa, and when this happens the waves are said to be completely out of

phase. The misalignment needed for completely destructive interference is illustrated
in Figure 8.6. One wave has a crest at point x and the other wave has a trough. The am-
plitude of these two waves is identical so the crest of one wave will exactly cancel out
the trough of the other wave. Thus the amplitude of the resultant wave will be exactly
zero at x. The same argument applies everywhere along both waves: at each point the
displacement of one wave is exactly opposite to the displacement of the other wave, so
that the two waves will exactly cancel each other out. Generally, the resultant displace-
ment of the disturbance at each point in the medium is a time-dependent quantity;
sometimes waves add, sometimes they cancel one another.

Figure 8.6 The completely destructive interfer-
ence of two identical waves.

For the health sciences, one of the most important consequences of the interfer-
ence of waves is the diffraction of light. This will be treated carefully in the Optics
chapters, and limits the resolution of optical imaging devices such as microscopes and
the human eye.

8.7 Beats

In the previous section we considered constructive and destructive interference be-
tween two identical waves, i.e., waves that had the same frequency and wavelength,
and the same amplitude. In this section, we will consider an interference phenomenon
which occurs when the two superposing waves are not identical. When two waves have
different frequencies, the phenomenon of beats will be observed.

Consider a single position in space where these two waves with similar, but not
equal, frequencies superpose. Suppose that initially both waves have a crest at this
point. After a time corresponding to the period of the higher-frequency wave, this
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higher-frequency wave will have returned to a crest, but the other wave will not. This
means that the amplitude of the superposition disturbance will be less than it was ini-
tially. After another cycle of the high-frequency wave, the two waves will be even further
out of sync, and the amplitude of the superposition wave will have decreased further.
This process will continue until the two waves are more-or-less completely out of phase
and then the process will begin to reverse. Eventually the crests of the low frequency
wave will again occur at the same time as the crests of the high frequency wave and the
superposition wave will be back to maximum amplitude.

Figure 8.7 Oscillations in the amplitude of the
superposition of two waves of period T and 1 1

6 T .
Note that these graphs are plotted as functions of
time, not as functions of position.

With time, the amplitude of the superposition wave decreases to a minimum and
then increases again to its initial value. In the case of sound waves this is heard as a
‘beat’ in the loudness of the sound (this may be heard, for example, when tuning guitar
strings). Beats are an oscillation in the amplitude of a superposition wave. In Figure 8.7,
the amplitude of the superposition wave is shown as a solid line and we have drawn
an envelope over this wave by connecting adjacent maxima with a dotted line. This
envelope shows the beats in the maximum amplitude of the superposition wave.

As may be seen in Figure 8.7, the wave formed by the superposition of two waves
with slightly different frequencies has two important frequencies. The first is the actual
frequency of the resulting disturbance (the carrier wave), which is shown as a solid line
in Figure 8.7. The second is the frequency with which the maximum amplitude of the
superposition wave changes, the frequency of oscillation of the envelope shown as a
dotted line. Some algebra and trigonometry reveals that the beat frequency, i.e., the
frequency of the envelope is given by,

fB =
∣∣ f1 − f2

∣∣ (8.6)

Here f1 and f2 are the frequencies in hertz of the two component waves. In the case of
sound waves, the result is a pressure disturbance that the ear hears as the average fre-
quency, changing ‘loudness’ at the beat frequency. The smaller the difference between
the frequencies of the two superposing waves, the slower the beat frequency.

8.8 Reflection

Figure 8.8 Reflection from a post with a fixed
attachment point.

Another important wave phenomenon is reflection. This is observed when water waves
hit a wall of some sort, or light waves hit a mirrored surface. In this section we will
briefly discuss two different ways in which waves reflect from barriers. These two kinds
of reflection are determined by the kind of barrier that the wave encounters. To il-
lustrate this, we will use the example of a pulse travelling along a piece of string and
reflecting from a post to which the string is attached.

In Figure 8.8, the string is not able to move at the point of attachment. When this
happens, the reflected wave is inverted and travels back along the string ‘upside down’.
In the case of a pulse travelling along a piece of string this is a π (radians) phase change.
Adding π to the phase of the wave given in Eqs. (8.2) and (8.5) will change the sign of
the operation, and the result will be a wave which is half a wave ahead of or behind
the original wave and travelling in the opposite direction. Such a wave will be ‘upside
down’ with respect to the original wave.

Figure 8.9 Reflection from a post with a move-
able attachment point.

For a fixed attachment a pulse on a string will undergo a π phase change on reflec-
tion. The fixed attachment point forces the amplitude of the wave to be zero at the
attachment point. The only way that the wave is able to achieve this is if the reflected
wave at that point superposes with the incoming wave to give zero total amplitude.
This means that the reflected wave has to be equal in magnitude but in the opposite
direction at all times at the attachment point. This is achieved by shifting the phase of
the reflected wave by π.

In the second case (Figure 8.9) the attachment point is not fixed and thus the phase
of the reflected wave does not have to shift by π with respect to the incoming wave.
This is modelled by a string attached to a post with a moveable ring. The reflected
pulse travels back along the wave with the same orientation as the incoming wave. The
incoming and reflected waves will superpose at the attachment point to give a wave
which has twice the amplitude of the incoming wave on its own.
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8.9 Standing Waves

When we have two waves which have the same wavelength and speed (and so the same
frequency), but are travelling in opposite directions through the same medium, we get
an interesting consequence: a standing wave. As we saw in the previous section, a
wave incoming to a barrier and the reflected wave superpose, with the reflected and
incoming waves propagating in opposite directions, so reflection is a case where such
counterpropagating waves are formed.

Figure 8.10 A standing wave formed by multiple
reflections between two barriers.

In Figure 8.10, the blue line represents a wave which propagates to the left, and
red a wave heading to the right. The superposition of these two waves is represented
by the green line. The green waveform is the standing wave which results from such
counterpropagating waves. In each of the diagrams in Figure 8.10 we see the red and
blue waves propagate in their respective direction and the construction of the green
wave by the superposition of these two waves. The displacement of the resultant wave
varies with time, but wavelength of the green superposition wave does not change, and
neither does the location of the positions which have zero displacement at all times
(called the nodes) and those which have the maximum movement. Note that the peaks
of the green wave do not propagate to the left or right, they simply oscillate up and
down. This is the reason the green superposition wave is known as a standing wave.

8.10 Waves and Energy

Energy

Waves have two extremely useful characteristics: they may be used to transmit energy
from one place to another and they may be used to transmit information from one
place to another. The second of these is apparent in everyday life: radio waves are used
to transmit voice messages, text messages and data between cell phone and computers;
light waves transmit information about the world about us into our eyes; sound waves
transmit information to our ears, and so on.

The transmission of energy by waves is also experienced in everyday life. It is well
known that very loud sounds can damage ears and even break the ear drum. Lasers
are used to burn off tattoos and may be used to cauterise wounds. Wave energy may
be even more destructive; earthquakes are an instance of the transmission of energy
by waves, in this case seismic waves. Water waves may cause significant damage to
coastal areas during storms, and tsunami are a particularly catastrophic example of
the transmission of energy by wave motion. Wave energy has also recently begun to be
harnessed for the production of electricity, in solar cells and ocean wave generators.

In an earlier section we saw that a wave is a sequence of simple harmonic oscil-
lators. Each of these oscillators has the same amplitude and frequency. We have also
seen that the potential energy stored in a mass–spring oscillator is given by

PE = 1

2
k A2

where A is the amplitude of the oscillation of the mass–spring system. When a wave
transmits energy from one place to another it does so by causing the underlying medium
(if there is one) to oscillate at some remote point. If the underlying medium was a
sequence of mass–spring oscillators, this would mean that the energy arriving at the
remote point would be proportional to the square of the amplitude of the incoming
wave.

This is the case in general, not just for the case where the underlying medium is a
sequence of mass–spring oscillators.

Key concept:

The energy transmitted by a wave is proportional to the square of the amplitude of
that wave.
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Power and Intensity

Two quantities related to the energy are the power (which we have encountered previ-
ously) and the intensity. Power is a measure of how much energy is transmitted per unit
time, P = W

t . Intensity is a measure of how much power per unit area and is measured
in watts per square metre.

I = P

A
(8.7)

where P is the power and A is the area over which it is spread.
Intensity is not a very useful measurable quantity in many of the situations we have

previously discussed in Mechanics. However, when we are interested in the transmis-
sion of energy by waves, the wave motion is not likely to be confined to a single path
through a material, but rather large areas of the medium will be oscillating, so how
the energy is spread out may also be of interest. (Intensity may also be relevant when
dealing with large numbers of moving objects, such as a beam of particles.)

The Sun is the most important source of energy in our natural environment on
Earth. There are very few organisms that do not ultimately derive the energy that they
need to live from the Sun. Energy produced by the nuclear fusion processes operating
in the Sun is transmitted to the Earth as electromagnetic waves, i.e., ‘sunlight’. On a
clear day in summer the Sun provides about 1 kW m−2. In other words, approximately
1000 joules of energy arrive on every square metre exposed to the Sun every second. In
winter, the Sun is low in the sky and even on a clear day sunlight will deliver only about
0.3 kW m−2 to the same horizontal surface.

Figure 8.11 (Left) Examples of common regular periodic waveforms. (Right) Waveforms produced by a variety of
different musical instruments. All of these waveforms represent the same note played on different instruments.

8.11 Complex Waveforms

The waves which we have so far encountered have all been sine waves, that is they are
all waves which are well described by Eq. (8.5) or Eq. (8.2). Very few waves in nature
are this simple. However all waves which repeat may be constructed from the pure
sine waves we have discussed here. Figure 8.11 illustrates some of the more regular
periodic waves which tend to occur most often in technological applications. Periodic
waves are not necessarily this regular and some less-regular periodic waves are also
shown in Figure 8.11.
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Musical (and Vocal) Tone)

Musical tones are the result of the interaction of the human auditory system with peri-
odic pressure waves produced by a wide variety of musical instruments. Several of the
waveforms produced by common instruments are shown in Figure 8.11. These wave-
forms are significantly different but all represent the same note. The difference in the
waveform results in the different sound produced by the trumpet and the violin (for
example). Clearly then, a change in the shape of a periodic waveform can radically
change the sound that is perceived by the human ear. An unintended change in the
shape of a waveform can thus have significant consequences to the way an instrument
or a piece of music sounds.

As an example, consider a pure 1 kHz sine wave produced by an electronic signal
generator. Suppose this signal becomes distorted due to a fault in the amplifier used
prior to sending this signal to a set of loudspeakers. This distorted signal sounds very
different to the original pure 1 kHz sine wave. The reason for the change in the sound is
that the new periodic wave is now the result of a number of higher frequency sine waves
and thus we will hear not just a 1 kHz signal, but also some signals at 2 kHz, 3 kHz and
higher. These signals are called harmonics and are all signals with frequencies that are
multiples of the frequency (1 kHz) of the original signal. Distortion is thus undesirable,
as it will result in poor reproduction of sound. Recorded speech can become almost
incomprehensible with even moderate distortion.

8.12 Summary

Key Concepts

wavelength (λ) The length of one complete waveform, the distance from one peak to the next
in a wavetrain. Measured in metres (m).

wave speed (v) The speed at which a crest or trough of a wave travels.

phase The argument of the cosine function in the mathematical expression for a wave.

transverse wave A wave in which the medium, in which the wave is propagating, oscillates in a
direction which is perpendicular to the direction of propagation of the wave.

longitudinal wave A wave in which the medium, in which the wave is propagating, oscillates in
a direction which is parallel to the direction of propagation of the wave.

superposition The addition of two waves; the displacements of the waves add like scalars at
each point in space.

constructive interference The interference of two waves which have the same wavelength and
frequency and which are in phase. Peaks and troughs of the two waves coincide every-
where so that the amplitude of the superposition is greater than that of each of the indi-
vidual waves. If the two interfering waves have the same amplitude then the amplitude of
the superposition wave is double that of the constituent waves.

destructive interference The interference of two waves which have the same wavelength and
frequency and which are exactly out of phase. Peaks of one wave coincide with troughs of
the other wave so that the amplitude of the superposition wave is less than the amplitude
of either of the component waves. If the two interfering waves have the same amplitude
then the superposition wave has zero amplitude.

beats When two waves superpose, but have different frequencies, the superposition wave has
two distinct frequencies. The carrier frequency is the frequency with which the underlying
medium oscillates, the beat frequency is the frequency at which the maximum amplitude
of superposition wave oscillates.
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Equations

v = f λ

y = A cos

(
2π

(
x

λ
± t

T

))
= A cos(kx ±ωt )

k = 2π

λ

ω= 2π f

fB =
∣∣ f1 − f2

∣∣
PE = 1

2
k A2

I = P

A
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8.13 Problems

8.1 A transverse wave propagates in a system of mass-springs as
shown in Figure 8.2. The masses and springs are all identical: the
masses are all 50 g weights and the springs all have the same spring
constant. The separation of points P and Q (see Figure 8.2) is 0.5
m and the wave propagates through the mass-spring system with
a velocity of 30 m s−1.

(a) What is the frequency of the oscillator at point P?
(b) Suppose that the oscillator at point P has an amplitude of

25 cm. What is the spring constant of this oscillator?
(c) Suppose that we halve the amplitude with which each of

the masses is oscillating. How does the velocity of propagation of
the wave change?

(d) Suppose that we double the spring constant of each oscil-
lator in the system (without changing anything else). How would
this change the velocity of propagation of the wave?

(e) Given the number of oscillators shown in Figure 8.2, what
is the phase shift (in degrees) between two adjacent oscillators?

(f) If this phase shift is halved (and the oscillator positions and
frequency remain the same), what is the velocity of propagation of
the wave?

8.2 A piano tuner wishes to use the beat frequency generated when
two different notes are sounded together to tune one of the keys on
a piano keyboard. She uses a tuning fork to tune the note named ‘A’
to 440 Hz. The next note higher than this should have a frequency
of (approximately) 466 Hz.

(a) If the speed of sound in air is 340 m s−1, what is the wave-
length of the note named ‘A’?

(b) When these two notes are played together how many beats
per second will she hear when these two notes have the frequen-
cies indicated?

8.3 A transverse wave propagates in the positive x-direction with a
wavelength of 0.3 m and a period of 10−3 s.

(a) Use Eq.(8.2) to write down an expression for this wave.
(b) What are the frequency and angular frequency of this wave?

(c) What is the propagation velocity of this wave?

8.4 A transverse wave propagates in the negative x-direction with
a frequency of 20 Hz and a propagation velocity of 25 m s−1.

(a) What are the wavelength, period and angular frequency of
this wave?

(b) Use Eq.(8.2) to write down an expression for this wave.

8.5 A transverse wave is described by the expression

y = 0.05 cos(4.19x −1260t )

. You may assume all measurements are in the correct SI units.

(a) What is the amplitude of this wave?

(b) What is the wavelength of this wave?

(c) What is the frequency of this wave?

(d) How fast is this wave traveling?

(e) What is the maximum transverse velocity of this wave?

8.6 A boat is bobbing up and down on the water as waves pass un-
derneath it. The depth of the water under the boat oscillates be-
tween 3 m and 4 m. The boat is stationary with respect to the shore
and it is 2.9 s between the crests of successive waves. A person on
shore sees the crests of the wave passing by at 2 m s−1. What is the
distance between crests of this wave?

8.7 Two ducks are floating close together on the water near the
boat in Problem 8.6. When the first duck is on the peak of a passing
wave the second duck is 30 cm below it and moving upwards. How
far apart are the ducks?

8.8 A violin is playing a note at 1200 Hz when a second violin starts
playing. There is a distinct pulse in the resultant mix which re-
peats 16 times over the course of 5 seconds. What are the possible
frequencies of the second violin?
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9.1 Introduction

9.2 Sound Waves in Media

9.3 Pitch and Loudness

9.4 Resonance and Sound Generation

9.5 The Ear

9.6 The Doppler Effect

9.7 Summary

9.8 Problems

9.1 Introduction

If you dive into a swimming pool, one thing you will notice is a sudden decrease in how
loud everything sounds. This is because the sound waves originating in the air do not
get transmitted into the water all that well. The human body has a similar problem;
we live surrounded by air, through which sound travels to reach us, but our internal
biology is water-based, so the sound waves do not get efficiently transmitted into the
fluid-filled inner ear without a huge loss of intensity which must somehow be com-
pensated for. In this chapter we will investigate the properties of sound waves, how
the human ear detects sounds, and give an overview of the function of the human vo-
cal organs. Lastly, a brief overview of the Doppler effect is given. The uses of sound
waves and Doppler techniques in diagnostic medicine will be covered alongside other
medical imaging processes at the end of the book.

In discussing the transmission of sound waves we will use some concepts not yet
covered in this text, such as pressure, strain, density and bulk modulus. These are cov-
ered in the next two chapters in Bulk Materials.

Key Objectives

• To understand the production and transmission of sound waves.

• To understand how the frequency and amplitude of a sound wave influence the
pitch and loudness experienced by a listener.

• To get an overview of the anatomy and function of the human vocal organs and
ear.

• To see how the motion of a sound source or observer changes the observed fre-
quency.

9.2 Sound Waves in Media

In the previous chapter, we investigated waves and noted that a wave is a disturbance
propagated through some medium. The term sound waves is generally used to refer to
compression or strain waves transmitted through a medium that have sufficient inten-
sity and are of a frequency that can be detected as sound. The term is also used more
loosely to apply to similar waves outside this range, such as waves with a frequency too
high (ultrasonic) and too low (infrasonic) for the human ear to hear. Sounds inside the
range that the human ear can detect are known as sonic.

Pressure Waves in Gases

Imagine you have a tube full of air with a moveable piston at one end. If the piston is
moved in, air molecules are displaced forward, causing the molecules to get bunched
up. As the concentration of molecules is higher, the pressure is also higher, and this
region of higher pressure will tend to move away from the piston as the molecules
bump into one another. (Pressure will be covered in detail in a later chapter.) When
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Figure 9.1 A speaker produces an acoustic wave in which the air molecules are variously compressed and rarefied.
Also shown are two plots of the pressure, and displacement of the air molecules at each point.

the piston is moved back out, the molecules will get more spread out, leaving a re-
gion of lower pressure, which will also move outwards away from the piston. This is
what a sound wave is: a moving disturbance of the molecules of the air. The areas
where the molecules are closer together are called compressions and the area where
the molecules become more sparse are called rarefactions.

The direction in which the air molecules are displaced is the same direction as that
in which the wave pulse propagates, so the sound wave in air is longitudinal.

Sound waves in air can be described two ways: by looking at the displacement of
the molecules at each position in the medium, or by looking at the pressure at each
position in the medium. Figure 9.1 shows how these are related. The position of maxi-
mum compression is a position toward which gas molecules from either side have been
pushed, so this is a position with the least displacement. Because of the phase differ-
ence between the two graphs describing the same wave, it can get somewhat confusing,
so we will try to be quite clear about what is being plotted in our graphs.

Waves in Solids and Liquids

Sound waves can also be transmitted though liquids and solids by oscillation of the
molecules of the medium. In solids, the waves can be either longitudinal (as compres-
sive and tensile strain waves) or transverse (as shear strain waves).

Wave Speed

Notation

It is common to use c for wave speeds rather

than v, to distinguish the speed of moving ob-

jects emitting and receiving the sound waves

from the speed of the sound waves. Most of

the time, c stands for the speed of light in a

vacuum, which has a constant value, but in this

chapter it will be used to refer to the speed of

any wave.

The speed of sound is not fixed and depends on the material through which it is trav-
elling. In dry air at 20 °C, the speed is around 343 m s−1. This varies with local ambient
conditions such as temperature. When the temperature is higher, so is the speed of
sound. For gases, the speed also has some dependence on molecular weight and com-
position, though it is not very dependent on pressure.

In general, the speed of sound, csound, can be predicted from the elastic properties
of the medium, described by the bulk modulus, B , and the density, ρ:

csound =
√

B

ρ
(9.1)
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Substance ρ (kg m−3) csound (m s−1) Z (kg m−2 s−1)
Air 1.204 343 413
Water 1.00×103 1440 1 440 000
Fat 0.92×103 1450 1 330 000

Table 9.1 Typical material values for sound speed and acoustic impedance at around 20 °C.

The speed of sound increases with increasing stiffness of the medium, and de-
creases with increasing density. This equation agrees well with the measured speed
of sound in water (1482 m s−1 at 20 °C):

csound, water =
√

2.2×109 N m−2

1000 kgm−3
≈ 1480 m s−1 (9.2)

It is often the case in crystalline solids that the speed is dependent on direction through
the material, so this adds complexity.

Problem: To put the speed of sound in air in context, calculate how many times a sound wave will travel across a 5 m

by 5 m room during the average time it takes to utter one syllable.

Example 9.1 Speed of sound in air

Solution: In normal human speech, it is common to speak at a rate of 250 to 300 syllables per minute, so a single syllable
averages about 60 s/300 syllables = 0.2 s per syllable. In this time, sound can travel

d = ct = 343 m/s×0.2 s ≈ 70 m

So the sound will have crossed the room about 14 times. This contributes to the richness of the voice indoors, and
explains why we often have to speak louder outside.

Acoustic Impedance

A property of a medium which determines many of its acoustic properties is its acous-

tic impedance. This is given the symbol Z and is defined as

Z = ρcsound (9.3)

where ρ is the density and csound is the wave speed. Some typical values are shown in
Table 9.1.

The acoustic impedance is a crucial parameter in determining how waves will re-
flect and transmit at a boundary between media. If we call the acoustic impedances
for the two media Z1 and Z2, such that the incident wave propagates in medium 1 and
the transmitted wave in medium 2, then the proportions of the wave intensity reflected
and transmitted depends on the ratio, r = Z1/Z2:

proportion reflected = (1− r )2

(1+ r )2
= (Z1 −Z2)2

(Z1 +Z2)2
(9.4)

The total intensity of the incoming wave is divided between reflection and transmis-
sion. Thus the transmitted intensity is just

proportion transmitted = 1−proportion reflected (9.5)
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9.3 Pitch and Loudness

A pure tone is a sound wave which has an amplitude that varies sinusoidally. The two
main qualities that we associate with a pure tone on hearing it are its pitch and its
loudness. Here we will look at the wave properties that determine how we perceive the
pitch and loudness of pure tones. We will discuss more complex sound waves later.

Frequency and Pitch

The pitch, how ‘high’ or ‘low’ it sounds, or where the sound lies on a musical scale,
is determined by the wave frequency. The higher the frequency, the higher the pitch.
They are not the same thing: frequency refers to an objectively measurable wave prop-
erty, whereas pitch describes the subjective psychological impression. As for all waves,
the frequency has units of cycles per unit time, and so the pitch of any pure tone can be
specified in the usual SI units of Hz. For example, the musical note ‘middle C’, which is
in roughly the middle of a piano keyboard, is usually tuned to about 262–4 Hz.

Hearing Range

The range of frequencies to which the human

ear is most sensitive is similar to that of a

seven-octave piano keyboard, which ranges

from 27.5 Hz to 3 520 Hz.

The range of frequencies audible to the human ear ranges from about 20 Hz to
20 kHz. The upper end of the range typically decreases with age, and may be as high
as 40 kHz in children. The ear is most sensitive to frequencies between about 100 and
4000 Hz.

Some tones have a very distinct similarity. If you hit two keys on a piano that are
both labelled as note ‘C’, they clearly have a common feel even though they are different
in frequency. There is a simple mathematical relationship between the notes, though:
dividing one frequency by the other will give an integer result. Two such notes that are
separated by one octave have a 2:1 frequency ratio. A commonly-used system of tuning
instruments in Western society is the twelve-tone equal-tempered system, where each
octave is divided into 12 steps. Adjacent notes (those with a semitone step between
them) have a frequency ratio of 21/12. Other tuning systems are also in use and so that
a particular note may not have the same frequency in different systems.

Galileo on Frequency Ratios

‘Those Pairs of Sounds shall be Consonances,

and will be heard with Pleasure, which strike

the Tympanum in some Order; which Order re-

quires, in the first Place, that the percussions

made in the same Time be commensurable in

Number, that the Cartilage of the Tympanum

or Drum may not be subject to a perpetual

Torment of bending itself two different Ways,

in Submission to the ever disagreeing Percus-

sion.’ From Discorsi e dimostrazioni matem-

atiche interno à due nuove scienze attenenti

alla mecanica ed i movimenti locali, 1638.[?]

Some notes tend to sound pleasant when played together, and this property is called
consonance. The opposite property, where the combination of notes is unpleasant, is
called dissonance. Often, notes that have frequencies that form ratios with low num-
bers in the numerator and denominator ( 3

2 , 5
4 , . . . ) sound nice together. An often men-

tioned theory of consonance is based on this idea, but it does not seem to hold true
in every case. There are many other theories to explain which musical notes sound
pleasing together, some based on the properties of the sound signal, others on the psy-
chophysiological aspects of the human auditory system, and some on other factors
such as learning and culture.

Problem: Calculate the proportion of a sound wave’s energy transmitted at an air/water boundary.

Example 9.2 Reflection and transmission of sound waves at a water/air boundary

Solution: Z1 = 413 kg m−2s−1 and Z2 = 1.44×106 kg m−2s−1, so r = 2.87×10−4.

proportion transmitted = 1−proportion reflected = 1− (1− r )2

(1+ r )2
≈ 0.001

Only about one thousandth of the intensity of the sound wave in the air is transmitted into the water.

Amplitude and Intensity

The loudness of a sound is largely but not entirely determined by the amplitude of
the pressure fluctuations, which is directly related to the amplitude of the molecular
displacements. The amplitude of any wave is related to the wave’s intensity, a measure
of how much energy is transported through a unit area every second, measured in watts
per square metre. In terms of the amplitude of the displacement of the molecules, A,
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Sound source Sound level (dB)
Jet aeroplane 140
Jackhammer 130
Threshold of pain 120
Busy traffic 80
Vacuum cleaner 70
Normal conversation 50
Whisper 30

Table 9.2 Approximate sound levels of various noises from loud to quiet.

the intensity is

I = ρc A2(2π f )2/2 (9.6)

where ρ is the density, f is the frequency and c is the speed. An alternate expression
for the intensity in terms of the amplitude of the pressure fluctuations p rather than
displacement is

I = p2/(2Z ) (9.7)

where, as before, Z is the acoustic impedance.

Intensity, Loudness and the Decibel Scale

The human ear can detect sound waves that vary in intensity by a remarkable amount
– 12 orders of magnitude. In terms of the amplitude of the pressure changes that can
be detected, the smallest detectable amount is about 20 µPa, which corresponds to an
intensity of 10−12 W m−2. The sound of a nearby jet engine is over one million million
times higher in intensity. The apparent loudness does not scale linearly with intensity,
but instead a factor of 10 increase in intensity is perceived as an approximate doubling
in volume, so a non-linear scale is more useful to describe the intensity of sounds in-
stead of simply specifying the number of watts per square metre. Due to the logarith-
mic nature of the apparent loudness, the decibel is used to compare sound intensities.
The decibel is not so much a unit as a way of specifying a ratio, and is used in other
areas of physics, such as electronics and communications, for comparing voltages, in-
tensities, powers and other quantities. For two intensities, I1 and I2, the intensity ratio
in decibels (dB) is defined as:

intensity ratio in dB = 10 log10
I2

I1
(9.8)

To give the sound intensity level in dB, we need to specify a reference intensity,
which is taken to be 10−12 W m−2. The sound intensity level in dB is therefore

LI = 10 log10
I

10−12 W m−2
(9.9)

We can similarly define the sound pressure level in dB. The reference pressure is
2 × 10−5 Pa, which corresponds approximately to an sound intensity of 10−12 W m−2.
The sound pressure level in dB is

Lp = 20 log10
p

2×10−5 Pa
(9.10)

The 20 in the last equation is due to the relationship between pressure and intensity
described in Eq. (9.7), which introduces an extra factor of 2, as log a2 = 2log a.

dB and phons

Sound level is a measurable quantity, while the

loudness is something that is perceived. The

level in dB is a physically measurable quan-

tity. Scales relating this to perceived loudness

were created by asking volunteers to adjust

volumes until they thought they were equally

loud.

dBA

The human ear does not respond equally to all

frequencies, so some sound meters are fitted

with filters to mimic the response of the human

ear. If the ‘A weighting filter’ is used, then the

sound pressure level is given in units of dBA.

The human ear does not respond equally well to all sounds – the response is strongly
dependent on frequency. We can plot on a graph lines that represent the number of dB
a sound signal needs to be in order for a person to think they sound equally loud. The
phon is a unit that is related to the psychophysically measured response of a typical
human ear. At 1 kHz, the number of phons and the dB reading are by definition the
same. At other frequencies, the number of dB required to appear to be equally loud
will usually be larger. There is one place where the ear is more sensitive than at 1 kHz,
due to the effect of resonance in the ear canal, which we will cover in the next section.
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Figure 9.2 Equal loudness contours from the ISO 226:2003 revision.

9.4 Resonance and Sound Generation

To generate sound, the only requirement is that something moves sufficiently to create
an air pressure wave of enough intensity. If you drop a rock on a hard surface, you will
hear a sharp noise made up of many different frequencies at once, and this sound will
quickly cease as the vibrations in the rock and ground are quickly damped. If instead
you strike a metal rod, or a hollow plastic tube, the sound will tend to have distinct
frequencies in the mix that are determined by the length, from constructive interfer-
ence of reflected sound waves. Understanding how the dimensions of a rod or pipe
determine the standing-wave frequencies allows us to see how we can alter the pitch of
the sound produced by our vocal chords and nasopharyngeal cavity, and the increased
sensitivity of our ears to certain frequencies from resonance in the ear canal.

Modes of Vibration of a String

A wave which is repeatedly reflected between two parallel reflecting boundaries will
form a standing wave. We can achieve such a situation by sending waves along a string
that is fixed at both ends. However, because the string has fixed places that must have
zero vibrational amplitude, there are limits placed on the standing waves that can be
formed, and so only wavelengths that have nodes at the fixed ends will keep bouncing
back and forth. Figure 9.3 shows some of the standing-wave patterns that are possible
in a string.

The longest wavelength pattern has a wavelength twice the length of the string. This
is called the fundamental mode of vibration and the frequency is known as the fun-

damental frequency, or first harmonic. The next possibility has a wavelength equal
to the string length and so has a frequency that is twice that of the fundamental. This
is called either the first overtone or the second harmonic. The next possibility has a
wavelength that is 2/3 of the length, which is 1/3 of the wavelength of the fundamen-
tal, and so it is three times its frequency. The overtones all have frequencies which are
integer multiples of the fundamental.

fn = n
c

2L
= n f1, n = 1,2,3, . . . (9.11)

The speed at which a transverse oscillation travels along a wire will affect the fre-
quencies with which a taut string will vibrate. A useful estimate of the speed of a wave
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L

λ L= 2

λ L=

λ L= ⅔

Node at end
of string

Figure 9.3 The first three modes of vibration for a string or wire.

along a wire such as a guitar string is

v =
√

T

µ
(9.12)

Overtones and Harmonics

In addition to the numbering difference, har-

monic and overtone are customarily used in

slightly different ways: an overtone is reso-

nance of a system with any frequency that

is higher than the fundamental frequency,

whereas a harmonic is a frequency of vibra-

tion of a system which is an integer multiple of

the fundamental frequency.

where T is the tension in the wire and µ is the mass per unit length. This means that
the wave speed is lowered in thicker wires and increased as the wire is placed under
more tension. As v = f λ, a lower speed will correspond to a lowered frequency, and
a reduced pitch. The thicker guitar strings sound lower in pitch, and tightening the
tuning pegs raises the pitch.

Modes of Vibration of an Open Pipe

An open pipe acts in a very similar way to a string with both ends fixed. In this situa-
tion, the sound waves in the pipe reflect off the open ends and form a standing wave
pattern like that shown in Figure 9.4. The constraint this time is not that the wave has
a fixed zero displacement at each end, but that the pressure at each end must be that
of outside the pipe, so the ends are nodes in terms of pressure. Other than that, the
same maths applies, so tubes with two open ends have a fundamental frequency that
is determined by the length, which is half the fundamental wavelength. The overtones
all have frequencies which are integer multiples of the fundamental.

fn = n
c

2L
= n f1, n = 1,2,3, . . . (9.13)

The position of the effective pressure node is slightly outside the exact end of the
pipe, and a correction factor is needed to explain the small differences between the
frequencies observed in practice, and those predicted based purely on the tube length.

Modes of Vibration of a Half-Open Pipe

In the case of a pipe with one end open and one closed, the open end is a pressure
node and the closed end is a displacement node. The maximum displacement will
occur at a pressure node, so the displacement of the air will have a form like that shown
in Figure 9.4. The minimum displacement will occur at a pressure antinode, again as
shown in Figure 9.4.

The standing-wave pattern with the longest wavelength is has λ equal to four times
the pipe length. For the next, the tube length is 3/4 of a wavelength, so λ is 4/3 the
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Figure 9.4 The first three modes of vibration for an open (left) and a half-open (right) pipe. The waveforms shown
are for the displacement of the air molecules.

length. This will give us a factor of three change in frequency. The frequencies will be
f , 3 f , 5 f etc.

fn = n
c

4L
= n f1, n = 1,3,5, . . . (9.14)

Problem: The ear canal extending from the open outer ear to the closed surface of the eardrum is around 26 mm in

length for a particular person. What are the frequencies of the first three resonant modes in this person’s ear canal?

Do these modes fall within the 20 Hz to 20 kHz range that a normal human can hear?

Example 9.3 Ear canal

Solution: The ear canal is open at one end (the outer end) and closed at the eardrum and so the eardrum is a half-open
pipe. The resonant frequencies for a half-open pipe are given by

fn = n
c

4L
, n = 1,3,5, ...

and so for the first three modes we will use n = 1, n = 3 and n = 5. The speed of sound in air is c = 343 m s−1 and the
length used is L = 0.026 m

f1 =
c

4L
= 3300 Hz

f3 =
3c

4L
= 9900 Hz

f5 =
5c

4L
= 16 500 Hz

The frequencies of the first three resonant modes in this person’s ear canal are 3.3 kHz, 9.9 kHz and 16.5 kHz and all of
these are within the normal range of human hearing.

Complex Waveforms

In general, even for a simple case like a wave on the string fixed at both ends, the re-
sulting wave will be a combination of the fundamental frequency and various amounts
of the overtones: the wave will no longer be a pure sinusoid. One way of analysing
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such complex waves is Fourier analysis. This is a mathematical technique for taking
a time-dependent function like the pressure in a sound wave, and calculating the cor-
responding frequency-dependent function. It is like asking how much of frequency ‘x’
is in the wave signal, how much of frequency ‘y’ and so on. This is basically what the
graphic equaliser display on a stereo shows – how much of the energy of the sound is
in the low-frequency range, how much is in the middle, etc.

The Human Vocal Organs

Figure 9.5 shows some of the parts of the human mouth, nose and throat involved in
sound production. The cavities of the mouth, nasal cavity and pharynx are known as
the vocal tract, and changes in the shape of these areas will alter the resonant char-
acteristics of the cavities and produce different sounds. It is the huge flexibility of the
vocal tract that allows humans to generate such a range of sounds. Compared to other
primates, the human larynx is much lower and we have a much longer and more flexi-
ble pharynx.

To create sound, an energy source is needed, and most of human speech and com-
munication is carried out using air from the lungs while exhaling as the source. This air
needs to cause vibrations somehow, and the most important way of producing these is
in the larynx, where the vocal folds or cords are located. The vocal cords are two bands
of muscular tissue that have variable and controllable dimensions, tension and elas-
ticity, and the space between them is called the glottis. When making a voiced sound
such as a vowel sound, or some consonants like m or b, the vibration of these cords
can be felt by placing the fingers on the throat. In adult males, the average vibration
frequency is 120 Hz, while for females it is 220 Hz.

The vocal organs can also be used in other ways to generate sounds used in speech.
Clicking the tongue against the teeth, palate and cheeks is a key part of many languages
(mostly southern African in origin). The sound generated when the vocal cords are
opened and air moves through the glottis (much like the start of a cough) can be heard
in many dialects. We can even make a cartoon character-style noise by compressing air
in the cheeks.

Figure 9.5 The human vocal organs.

9.5 The Ear

Anatomy

The ear, the human version of which is shown in Figure 9.6, has three distinct parts: the
inner, middle and outer ear.

The outer ear consists of the pinna, that part of the ear that sits outside the skull,
the auditory canal, and the tympanic membrane, also known as the eardrum. The
sound waves are channelled and slightly modified by the pinna and canal, and these
waves cause the tympanic membrane to vibrate.

In the middle ear, shown in more detail in Figure 9.7, are a series of small bones,
suspended by ligaments, known collectively as the ossicles. These sit in a bony enclo-
sure that is connected to the oral cavity by the eustachian tube. One of the ossicles is
attached to the tympanic membrane: the malleus, more commonly called the ham-
mer. This connects to the incus (anvil), and this in turn connects to the stapes (pro-
nounced ‘stay-peez’ and often called the stirrup). The stapes is connected to the oval

window, through which movement of the ossicles causes movement in the fluid inside
the cochlea.

The inner ear contains the cochlea, a cavity encased in bone, and filled with a
sea-water-like fluid. The cochlea is coiled up rather like a snail shell, but would have
a length of 3.5 cm stretched out. In addition to the oval window, where the stapes
is anchored, there is another membrane-covered entry in to the cochlea nearby (the
round window), which moves in and out in response to the pressure fluctuations in the
cochlea. The cochlea is internally divided into two halves by a membrane, which has a
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small hole in the farthest end. It is on this basilar membrane that the sound waves are
turned into signals.

The speed of the pressure waves in the fluid-filled cochlea is much greater than
that of air, and a quick calculation will confirm that the pressure is basically the same
all over the basilar membrane at any time. However, the membrane acts like a series
of oscillators coupled together, each of which only reacts to certain input frequencies.
This will create a kind of travelling wave in the basilar membrane. Along the interior
side of the basilar membrane runs a structure called the organ of Corti, to which are
attached four rows of hair cells. From each of these, up to 100 cilia protrude, touching
a membrane above. Movement in the basilar membrane beneath a cell will cause the
hairs to bend and cause the release of a chemical neurotransmitter, resulting in elec-
trical discharge through the neurons. These signals reach the brain along the auditory

nerve.

Problem: Calculate the wavelength of a 4 kHz sound wave in water and compare this to the length of the cochlea.

Example 9.4 Pressure and wavelength in the cochlea

Solution: The speed of sound in water was given earlier as 1482 m s−1. For f = 4000 Hz,

λ= c

f
= 1482 m s−1

4000 Hz
= 0.37 m

The length of the cochlea is about 3.5 cm, so the wavelength is much greater than this, and the pressure is roughly the
same over the whole of the basilar membrane at each instance.

Figure 9.6 The anatomy of the human ear.

Effects of Resonance in the Ear Canal

The ear canal is shaped almost like a half-open pipe with a length of 2.5 cm. This gives
a fundamental resonant frequency which is easily calculated:

λ

4
= 25 mm

λ= 0.1 m

f = 344 m s−1

0.1 m
≈ 3.4 kHz (9.15)
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Figure 9.7 The (simplified) anatomy of the human ear. The cochlea is shown uncoiled (which is not possible in
reality).

This is the reason for the curves showing the dB sound levels that have the same loud-
ness to the ear have a dip around 3.4 kHz.

The Ear and the Problem of Impedance

As mentioned in the introduction, there is a problem getting the pressure waves in air,
which are really quite small, into the body’s liquid interior. There are several features of
the ear’s anatomy that help. Firstly, resonance in the ear canal and some focussing by
the pinna helps. Secondly, the ossicles act like a system of levers to slightly amplify the
vibrations (by a factor of around 1.3). However, the difference in size between the ear
drum and the oval window has a more dramatic effect. The force applied to the ossicles
is the product of the area of the ear drum and the pressure exerted on it. This force is
amplified by the bones and then applied to the much smaller oval window, producing
a larger force per unit area and hence a larger pressure. The ear drum is about 55 mm2,
whereas the area of the oval window is around 3.2 mm2.

Problem: In a previous example, the loss in intensity in sound waves being transmitted from air to water was found

to be a factor of 1000. Calculate the loss in dB and compare this to the amplification of pressure waves in the ear.

Example 9.5 Amplification and loss in the ear

Solution: An intensity drop to 1/1000 corresponds to

10log10
1

1000
=−30 dB

This is a loss of 30 dB.
The ratio of the area of the tympanic membrane to the oval window is 55/3.2 = 17. If the force on the ossicles from

the tympanic membrane was transmitted unclanged, this would give a factor of 17 increase in the force per unit area,
i.e., the pressure. The pressure is actually further increased by the lever action of the ossicles to 1.3 × 17=22.1. This is
an increase of

20log10 22.1 = 26.9 dB

This is close to the 30 dB loss we calculated.

The ear is able to reduce the transmission of the sound into the cochlea also, to
reduce the risk of damage. The ossicles are suspended by ligaments that can reduce
their movement. This produces a 0.6 dB decrease in apparent sound level for every
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Figure 9.8 When the source is moving, successive wave peaks from the source are emitted at different locations.
They all travel to the observer at the same speed, so because the wave peaks are squeezed closer together or
spread further apart, this is observed as a change in wavelength and frequency, and hence pitch.

1 dB increase over 80 dB. However, there is a time lag of a few milliseconds, so this
provides less protection against loud percussive noises. So, if you are exposed to loud,
abrupt noise, this is more likely to be painful and damaging.

9.6 The Doppler Effect

The Doppler effect is a well-known and frequently observed phenomenon in which the
apparent pitch of a sound is changed by the relative motion between the sound source
and the observer. This is most frequently noticed in the modern world in traffic, where
the pitch of an approaching car engine or siren appears to have a higher pitch when
approaching and a reduced pitch when moving away.

The Doppler effect has proven to be a useful tool in many areas of scientific explo-
ration. As the effect applies for electromagnetic waves as well as sound, the Doppler
shift in the frequency of radiation from distant galaxies was used to show that most of
them are moving away from us, indicating that the universe is expanding. The effect is
also used in diagnostic medical procedures to measure flow velocities of fluids, and in
meteorology to measure wind speeds and map air flows with Doppler radar, to name a
few applications.

Moving Source, Fixed Observer

We can show how a source moving relative to an observer results in a change in pitch
in Figure 9.8.

If the source, S, is moving at speed vS towards the observer, each wave peak is emit-
ted a distance d = vST closer, where T is the wave period. This leads to a wavelength
decrease of vST , from the original wavelength of λ= cT for a sound wave travelling at
speed c. The new frequency will be observed to be

f ′ = c

λ′ (9.16)

= c

cT − vST
= c

c
f − vS

f

= f
c

c − vS
(9.17)
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Figure 9.9 When the source is stationary, successive wave peaks from the source are all evenly spaced. The
observer, D, moving towards the source encounters the peaks more frequently, though, due to their motion relative
to the air.

The situation is similar for a sound source moving away from the observer, but the
wavelength is increased, so the minus sign becomes a plus sign. To summarize

f ′ = f
c

c ± vS
(9.18)

where a minus sign is used for an approaching sound source and a plus sign for a re-
treating source.

Fixed Source, Moving Observer

If a shift in frequency occurs when the source is moving relative to observer, it seems
reasonable to expect a shift in frequency when the observer is moving and the source
is not, and this is the case. However, the two cases are not completely symmetric, as
the sound waves travel at a fixed rate through the still air, and so we need to derive a
different formula. Figure 9.9 shows the effect of an observer moving towards a source
that is emitting sound waves.

The situation is rather like being in a moving car, observing a string of evenly spaced
cars moving at a fixed speed in the other lane. To the moving observer, the oncoming
cars appear to move at a higher speed than if the observer’s car was stopped. But the
spacing of the cars is the same, so a new car is passed more often. For a moving ob-
server, the time between successive peaks in the sound waves will be decreased when
moving towards the source at speed vD. The new period, T ′, will be shortened

T = λ

c

T ′ = λ

c + vD
(9.19)

f ′ = 1

T ′ =
c + vD

λ

= f
c + vD

c
(9.20)

Once again, if the observer is moving in the other direction (away from the source) the
sign is reversed, so we can write the more general formula

f ′ = f
c ± vD

c
(9.21)
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where a plus sign indicates an approaching observer and a minus sign indicates re-
treating.

General Case

The two cases can be combined to provide a general formula that applies to any situa-
tion where the observer and/or source are moving:

f ′ = f
c ± vD

c ± vS
(9.22)

Key concept:

To remember which sign to use in the general formula, remember that if the detec-
tor or source is moving towards the other, then the sign on its speed must give an
increase in f ′, and if they are moving away, the corresponding speed has whichever
sign would decrease f ′.

9.7 Summary

Key Concepts

sound Mechanical waves transmitted as compression or strain waves through a medium which
are the objective cause of hearing.

acoustic impedance A material property which is useful for describing acoustic properties.

pitch The apparent highness or lowness of a sound which is determined by its frequency.

loudness The magnitude of the auditory sensation produced by sound waves, which is deter-
mined in large part by the amplitude, but is also frequency dependent.

decibel (dB) The decibel is a logarithmic unit used to compare ratios, whether that be sound
pressure, power, intensity etc.

sound intensity level (LI) The sound intensity level is measured in decibels (dB) on a logarith-
mic scale against a reference intensity of 10−12 watts per square metre.

sound pressure level (Lp) The sound pressure level is measured in decibels (dB) on a logarith-
mic scale against a reference pressure of 20 µPa.

phon The phon is a unit of measurement that is related to the psychophysically measured re-
sponse of a typical human ear. At 1 kHz, the number of phons and the dB reading are by
definition the same. At other frequencies, a sound with the same loudness in phons will
vary in dB as the ear responds differently to differing frequencies.

fundamental mode of vibration The mode of vibration of a resonating system with the lowest
possible frequency.

overtone A resonance of a system with a frequency that is higher than the fundamental fre-
quency.

harmonic A frequency of vibration of a system which is an integer multiple of the fundamental
frequency.

Doppler effect The apparent shift in frequency (and hence pitch) of a sound when the source
and observer are in relative motion.
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9.7 SUMMARY

Equations

csound =
√

B

ρ
csound =

√
T

µ

Z = ρcsound I = ρc A2(2π f )2/2

intensity ratio in dB = 10 log10
I2

I1

LI = 10 log10
I

10−12 W m−2
Lp = 20 log10

p

2×10−5 Pa

fn = n
c

2L
= n f1, n = 1,2,3, . . . fn = n

c

4L
= n f1, n = 1,3,5, . . .

f ′ = f
c

c ± vS
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9.8 Problems

9.1 What is the speed of sound through ice? (Bice = 8.8× 109 Pa,
ρice = 920 kg m−3)

9.2 A 0.500 m guitar string is placed under a tension of 270 N and
the fundamental mode of vibration is at 150 Hz.

(a) What is the weight of the string per unit length (µ in
kg m−1)?

(b) What tension would need to applied to the string such that
its fundamental mode of vibration is a middle C (440 Hz)?

9.3 A wave travels from air (Zair = 413 kg m−2 s−1) into a liquid and
with a density of 950 kg m−3 and in which the speed of sound is
750 m s−1.

(a) What proportion of the wave is reflected from the boundary?

(b) What proportion of the wave is transmitted through the
boundary?

9.4 During an extremely loud sound the amplitude of the pressure
in the sound wave in air is 1.0 kPa (Z air = 413 kg m−2 s−1).

(a) What is the intensity of the sound (in W m−2)?

(b) What is the intensity level of the sound (in dB)?

(c) What is the sound pressure level (in dB)?

9.5 A quiet whisper is measured at 30 dB and a loud shout at
110 dB. (Aear canal = 1.54×10−4 m2, Zair = 413 kg m−2 s−1)

(a) What power, in watts, is delivered to the opening of the ear
canal during the whisper?

(b) How many times larger is the power (in watts) delivered to
the ear canal by the shout?

(c) What is the pressure variation during the whisper?

(d) How many times larger is the pressure variation during the
shout?

9.6 An oboe and a double bass are playing the same note, a ‘G’
at 392 Hz. The speed of sound in air is 343 m s−1 and the speed of
propagation of a wave on the string of the double bass is 500 m s−1.
The oboe can be modeled as a pipe, open at one end, and the bass
as a string fixed at both ends. What are the lengths of the bass
string and the oboe cavity if the note being produced is a result of
the fundamental mode in each case?

9.7 After giving an intense performance, a confused and disori-
ented flautist has wandered onto the motorway! They are playing
a constant 300 Hz tone on their flute and are essentially stationary.
If you are driving along the motorway at 100 km h−1 (27.8 m s−1),
what is the frequency you hear from the flautist’s instrument be-
fore you pass them, and after you pass them? (cair = 343 m s−1.)

9.8 Coincidentally the horn on your car, which you sound as you
narrowly miss the flautist in Problem 9.7, also gives a constant
300 Hz tone. What frequency does the flautist hear before and after
you pass them?
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II

Bulk Materials
In the Mechanics section, we saw how forces determine the motion of rigid objects.
We assumed that the forces acting on the objects moved or rotated them as a whole,
and did not deform them. In real-world cases, forces exerted on objects often cause
the molecules in the object to move relative to each other. In this section we will look
at how forces deform solids, and cause liquids and gases to flow. Unlike gases where
intermolecular forces do not play a significant role, intermolecular forces are important
in the behaviour of liquids and solids.

In solids, the molecules are tightly packed and bound in place by intermolecular
bonds that do not allow the molecules to change position, though the molecules are
not completely motionless – they are always jiggling about their fixed positions. How-
ever, the energy required to break one of the intermolecular bonds is greater than the
thermal energy associated with the jiggling atoms. Because the molecules in a solid
cannot readily move relative to each other, a solid has fixed volume, density and shape.
Solids do not expand to fill a container, as a gas does. Solids also do not conform to the
shape of the container as liquids do. We will look at what happens when forces deform
solids in Chapter 10.

Molecules are also tightly packed in a liquid giving it a fixed volume and density.
Unlike solids, there is significant movement possible between the molecules of a liq-
uid, meaning that liquids do not have a fixed shape. The thermal kinetic energy of the
molecules is enough to break intermolecular bonds, but not for a molecule to com-
pletely escape from its neighbouring molecules. This allows movement between mole-
cules whilst maintaining a fixed volume. When a liquid is transferred between contain-
ers it maintains the same volume but conforms to the shape of the container. Some of
the properties of liquids will be discussed in Chapters 11, 12 and 13.

When paired sideways forces (creating shear stress) are applied to a liquid, the
molecules slide over each other and the liquid is said to flow. Liquids are defined by
their continuous deformation under shear stress. Due to differences in intermolecular
bonding, liquids vary in how easily the molecules can slide over each other. Liquids
in which the molecules can slide over each other readily have low viscosity, and those
where the molecules can only move past each other with more difficulty have high vis-
cosity. A low-viscosity liquid will flow faster than a high-viscosity liquid when the same
shear stress is applied to it. We will look into the movement of liquids in Chapters 14
and 15.

We will examine the behaviour of materials and systems from an energy and tem-
perature perspective in the next topic on Thermodynamics.
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10ELASTICITY: STRESS AND STRAIN

10.1 Introduction

10.2 Tension and Compression

10.3 Shear Stress and Strain

10.4 Bulk Stress and Strain

10.5 Elasticity

10.6 Summary

10.7 Problems

10.1 Introduction

When studying mechanics, we were concerned with the overall motion of an object and
how this was related to the forces applied to it. Often we examined only the motion of
the object’s centre of mass. In this chapter we will examine the effects of applied forces
on the shape of an object.

In order to make meaningful statements about the strength of a material, we will
need clear definitions of the various ways that the shape of an object may change,
as materials may deform differently when pushed, pulled, twisted, flexed and struck
sharply. The behaviour of a material under stress depends on the types and strengths
of intermolecular bonds, and also depends a great deal on defects and impurities in the
material.

We will begin by looking at the effects of different kinds of stressing forces: com-
pressive, tensile and shear.

Key Objectives

• To be able to calculate tensile, compressive, shear and bulk stresses.

• To be able to relate stress and strain.

• To develop an understanding of elastic and plastic deformation, and how the
behaviour of materials under load depends on their stress–strain curves.

10.2 Tension and Compression

Stress and Strain

Key concept:

Stress is a measure of the force per unit area applied to an object, and the size of the
internal forces acting within the object as a reaction to the externally applied forces.
Strain measures the change of shape of an object subject to a stress.

The stress tells us the force on imaginary internal surfaces within an object; the
strain, how much it changes shape along some axis as a result. In this chapter we will
carefully define stress and strain for several cases: tension, compression, shear and
bulk.

Tensile Stress and Strain

Figure 10.1 Tensile stress and strain. A ‘stretch-
ing’ force is applied to an object that causes an
increase in the length of the object. This increase
in length is usually small for rigid or ‘solid’ ob-
jects.

When an object is being subjected to stretching forces so that its length will increase,
it is said to be under tensile stress. This is achieved by applying forces to the oppo-
site ends of an object, directed away from one another, as in Figure 10.1. A tensile
stress stretches intermolecular bonds, and if it is sufficiently high it will break these in-
termolecular bonds, causing the material to rupture. The force exerted on each inter-
molecular bond acting to stretch it depends on both the total force applied to stretching
the object, and what area (in other words how many intermolecular bonds) that force is

Introduction to Biological Physics for the Health and Life Sciences Franklin, Muir, Scott, Wilcocks and Yates
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10 · ELASTICITY: STRESS AND STRAIN

distributed over. This suggests that the force per unit area is important in determining
how much an object will stretch. We define the tensile stress, σ, as the stretching force
per unit area:

A Word About the Area

You may be thinking, ‘But when something is

pulled, it gets skinnier. Do I use the original

area or the new one?’ For the situations we will

consider here, we will stick to using the initial

cross-sectional area. Technically, it is called

the ‘nominal’ or ‘engineering’ stress when the

original area is used.

Tensile stress =σ= F

A
(10.1)

where F is the (equal) force applied to each end, and A is the cross-sectional area of the
object at right angles to the direction of the stretching force.

A tensile stress applied to an object increases its length. The amount by which its
length increases depends on several things:

• the tensile stress applied to it,

• the material it is made of (as, clearly, the strengths of the intermolecular bonds
matter),

• the length of the object (because each segment of the object stretches in propor-
tion to its length).

For a given material and a given tensile stress, the amount by which an object
stretches is determined by its length. If we double its length, we double the amount
by which it stretches. We define the tensile strain, ε, by the amount of stretch per unit
length:

Tensile strain = ε= ∆L

L0
(10.2)

where ∆L is the amount by which the object is stretched and L0 is the original length of
the object. (This is the original length in the direction of stretch.)

For small tensile stresses, Robert Hooke (1635–1703) found that the change in length
of an object was proportional to the applied force; we know this fact as Hooke’s law,
which states that the amount of stretch is proportional to the applied force:

F ∝∆L

where F is the applied force, and ∆L is the change in length. For a particular object, the
cross-sectional area and original length are fixed, so this is like saying strain is propor-
tional to stress – if we double the stress, we double the strain.

F

A
∝ ∆L

L0

The proportionality constant, which tells us how much stress is required to generate
a given strain in a material, is the Young’s modulus, which we will represent with the
Greek letter gamma, γ. As the strain is dimensionless, the Young’s modulus and the
stress both have units of force per unit area (N m−2 or Pa).

γtension = tensile stress

tensile strain
=

F
A
∆L
L0

(10.3)

which is the same as saying

stress = γ× strain (10.4)

Young’s modulus is a measure of a material’s resistance to stretching. It does not
depend on the size or shape of the object, but only on the material from which the
object is formed. A bar or rod with a large Young’s modulus will need a larger tensile
stress applied to it to stretch it the same amount as a bar of the same length with a
smaller Young’s modulus.

Isotropic materials have the same Young’s modulus in all directions so it does not
matter in which direction we are stretching the object. Other materials are anisotropic

and have different Young’s moduli in different directions. This is usually due to an
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10.2 TENSION AND COMPRESSION

asymmetry in the microstructure of the material. The Young’s modulus of an aniso-
tropic material depends on the direction of the stress relative to the crystal lattice. Bone
is an example of an anisotropic material. In long bones, the bone is more resistant to
stretching (and hence has a larger Young’s modulus) in the longitudinal direction than
in the transverse direction.

Compressive Stress and Strain

Figure 10.2 Compressive stress and strain. A
‘squeezing’ force is applied to an object, which
causes a decrease in the length of the object.
∆L is negative.

A compressive stress is one that tries to compress an object, that is, to reduce the length
of the object. A compressive force is produced by applying forces directed towards one
another on either end of an object. This pushes the molecules together, shortening
the intermolecular bonds. The deformation of the object will be proportional to the
amount by which these bonds are shortened, which in turn depends on the compress-
ing force per intermolecular bond and hence on the compressing force per unit area.
As with tension, it is the force per unit area, or compressive stress, that determines by
how much a given material will be shortened.

The compressive stress is F
A where F is the size of the force applied to each end of

the object, and A is the cross-sectional area of the object at right angles to the direction
of compression. A compressive force causes a compressive strain in the object, ∆L

L0
,

where ∆L is the amount by which the object has been shortened in the direction of
compression, and L0 is the original length of the object in the same direction. For small
compressive forces, the compressive stress is proportional to the compressive strain.

As for tensile stress, we define a Young’s modulus, γ, for a material under compres-
sion:

γcompression = compressive stress

compressive strain
=

F
A
∆L
L0

(10.5)

Substance γ (109 N m−2)
Aluminium 70
Copper 120
Bone, Tensile 16
Bone, Compressive 9
Iron, Wrought 190
Steel 200
Fused Quartz 70
Brick 20

Table 10.1 Some representative values for com-
mon materials. Individual samples may vary
widely. [Data reprinted from Physics For The Life
Sciences, A. H. Cromer, McGraw-Hill.]

Many materials resist compression and stretching equally, so the ratio of compres-
sive stress to compressive strain is the same as the ratio of tensile stress to tensile strain.
In other words, for most materials the Young’s modulus for tension and the Young’s
modulus for compression are the same. However, there are some notable exceptions,
one of which is human bone, which is more resistant to tension than compression. A
compressive stress will deform a bone more than the same size tensile stress.

Note that under compression the force is taken to be negative in value, and ∆L will
be negative, so the stress and strain have negative values.

Problem: A 45 kg child whose femur has a length of 0.3 m and a radius of 1.43 cm jumps off of a low wall and lands on

one leg. The child is travelling at a speed of 9.0 m s–1 as they hit the ground. It takes 0.10 s for the child to be brought

to a stop and during this period the femur is compressed by 0.18 mm. After the child has landed they continue to

stand on one leg. How much is their femur compressed under these circumstances? (Note: you can assume the

whole weight of the child acts on the femur.)

Example 10.1 Young’s modulus (compression)

Solution: We can use the impulse required to stop the child upon landing to find the force on the femur during landing:

Fnet =
∆p

∆t
= 45 kg×9 m s−1

0.1 s
= 4050 N

This is the net force on the child. To find the force acting on the femur we need to take into account the 450 N weight
force of the child as well. The force on the femur must be 4500 N. From this we can find the Young’s modulus of the
femur:

γ=
F
A
∆L
L0

=
4500 N

π×(0.0143 m)2

0.00018 m
0.3 m

= 11.7×109 N m−2
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Thus when the child is merely standing still (F = mg = 450 N), the compression of the femur will be:

∆L = L0

F
A

γ
= 0.3 m×

450 N
π×(0.0143 m)2

11.7×109 N m−2
= 0.018 mm

10.3 Shear Stress and Strain

A shear stress (often given the symbol τ, though we will tend to refer to it by name to
avoid confusion) is applied to an object when we apply a sideways force parallel to a
surface that is held fixed. Think of pushing sideways on the top surface of a thick book
(but not enough to make it slide along the table). There is a force on the top of the book
in one direction and an equal force on the bottom of the book in the opposite direction
(supplied by static friction between the book and table). The pages slide relative to

Figure 10.3 Shear stress and strain arise from
a force that acts ‘sideways’. Such a force would
spin the object if it were allowed to move freely.

each other deforming the book. The same thing happens between layers of molecules
in a solid. As the shear forces are equal and opposite there is no net acceleration of the
object as a whole but there is relative movement between layers of molecules in the
material, resulting in a macroscopic deformation. The greater the force we apply, the
greater the deformation.

The shear stress is again F /A, the force applied to the surface divided by the area
of the surface that the force is applied to. Unlike tensile and compressive stresses, the
area is parallel to the applied force.

We can quantify the degree of deformation by defining a shear strain:

A Note on Symbols

A number of different symbols are in common

use for the quantities we have covered in the

last few pages, and because of that, and to

avoid excessive use of confusing Greek let-

ters, we’ll try to write out the words most of the

time. It is now most common to see Young’s

modulus given the symbol E , a convention we

haven’t used here to avoid confusion with en-

ergy. However, the symbol we have chosen, γ,

is used in many places as the symbol for shear

strain, so be cautious when browsing through

other texts.

shear strain = ∆x

L0
(10.6)

where ∆x is the amount by which the top surface moves, and L0 is the distance from
the top surface, which moved a distance ∆x, to the bottom surface which didn’t move
at all.

Some materials deform more readily than others under shear stress, and we quan-
tify this with the shear modulus, G . For small stresses, the shear stress is proportional
to the shear strain and we define the shear modulus of the material by

shear modulus =G =
F
A
∆x
L0

(10.7)

Materials with small shear moduli are easily deformed, whereas materials with large
shear moduli are resistant to deformation. A common way of defining a fluid is ‘a ma-
terial that deforms continuously when subjected to a shear stress’.

Problem: A standard 40 cm plastic ruler is placed so that 30 cm of its 40 cm length protrudes from a desk. A 50 g

weight is hung from the end and results in a displacement of 1 cm (as in Figure 10.4). Treat the ruler as a simple

rectangular solid of dimensions 30 cm × 4 cm × 0.3 cm and assume that the portion of the ruler held against the

desk cannot bend. What is the shear modulus of this ruler?

Figure 10.4 Shear displacement in a long, thin ruler.

Example 10.2 Shear modulus
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10.4 BULK STRESS AND STRAIN

Solution:

We can use Equation 10.7 to solve this question where ∆x = 0.01 m, L0 = 0.3 m, F = 0.05 kg× 10 m s−2 = 0.5 N, and
A = 0.04 m×0.003 m = 1.2×10−4 m2.

G =
F
A
∆x
L0

=
0.5 N

1.2×10−4 m2

0.01 m
0.3 m

= 1.25×105 N m−2

10.4 Bulk Stress and Strain

If we apply a compressive force over all of an object’s surface, then it will decrease in
size in all directions simultaneously, causing a volume decrease. We use the term bulk

stress to describe this situation. As the force isn’t being applied in a single direction
here, it makes more sense to refer to the force per unit area as the pressure increase.
Pressure is force per unit area, and has units of newtons per square metre, also known
as pascals (Pa). (The next chapter will cover pressure in detail.) Similarly, the change
in length is not along a single axis, so instead of change in length and initial length, we
need to concern ourselves with the change in volume as a fraction of the initial volume.
Therefore the bulk stress depends on the pressure change, ∆P :

bulk stress =−∆P (10.8)

Figure 10.5 A compressive (or tensile) force act-
ing in three dimensions can cause a change in
volume of an object. In this example, a posi-
tive pressure change produces a negative bulk
stress, and a negative volume strain, hence the
decrease in volume (∆V is negative).

The minus sign indicates that an increase in pressure on the surface is compres-
sive, so must give a negative stress to be consistent with our earlier definitions. This
produces a volume strain:

volume strain = ∆V

V0
(10.9)

Substance B (109 N m−2)
Ethanol 0.9
Water 2.2
Aluminium 70
Copper 120
Steel 158

Table 10.2 Some representative values for the
bulk modulus of common materials. Individual
samples may vary widely.

The change in volume, ∆V , is the final volume minus the initial volume (V0), so this is
negative when the object gets smaller.

As with the other moduli, the bulk modulus, B , is defined as the ratio of the bulk
stress to the volume strain:

B =−∆P
∆V
V0

(10.10)

Some materials are easily compressed, and others change volume only a small amount
when large additional pressures are applied to them. These differences are quantified
by the bulk modulus. Materials with large bulk moduli are resistant to compression.
Most liquids fall into this category. Materials with low bulk moduli, e.g., gases, are eas-
ily compressed, with a small additional pressure resulting in a large change in volume.

Problem: At the start of an incredible journey you fill a water bottle with exactly 1.00 L of water. You start your

journey from Dunedin and the atmospheric pressure at the time you filled the bottle was 102.1 kPa. [B water = 2.20 ×
109 N m–2.]

(a) The first stop on your journey is the top of Mount Everest. The atmospheric pressure at the top of Mount

Everest is 35.1 kPa. By how much does the volume of water in your container change?

(b) The next leg of your amazing journey takes you down under the ocean in the Mariana Trench to a depth of

10.8 km. You notice that the volume of the water in your container is now 0.951 L. What is the pressure at this

depth?

Example 10.3 Bulk modulus
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Solution: (a) To solve these problems we will need to use Eq. (10.10). The difference in pressure between the top of
Mount Everest and Dunedin, where the bottle was filled, is ∆P = 35.1 kPa− 102.1 kPa = −67.0 kPa. i.e. the pressure
is lower at the top of mount Everest. This means that the volume of the water in the bottle should increase. Using
Eq. (10.10) we can find the change in volume of the water.

B = −∆P
∆V
V0

∆V =−∆PV0

B
=−−67.0×103 Pa×1.00 L

2.20×109 Pa
= 3.05×10−5 L

This is a very small amount, and you would likely not notice the change at all.
(b) When taking your bottle to the bottom of the Mariana Trench it reduces in volume. This makes sense as the pressure
at the bottom of the ocean is larger than that at the top, resulting in compression of the water (∆V = 0.951 L−1.00 L =
−0.049 L). Using Eqn. (10.10) again:

B = −∆P
∆V
V0

∆P =−B∆V

V0
=−2.20×109 Pa×−0.049 L

1.00 L
= 107.8×106 Pa

This is a very large increase in pressure indeed! The question asks what the pressure is at the bottom of the ocean and
so we still need to add our original pressure to this result (P = P0+∆P ) but because ∆P is so large, after the addition our
answer is only slightly revised. P = 102.1×103 Pa+107.8×106 Pa = 107.9×106 Pa.

10.5 Elasticity

Stress–Strain Curves

The ratio of stress to strain for real materials is constant only over a certain range, which
depends on the type of material. It is often of interest to show where the linear region
lies, and to convey other information (such as the stress that causes a material to break)
on a stress–strain plot.

For many materials, the length of a rod-shaped sample changes in proportion to
the stress. This region, where the stress/strain relationship is linear, is known as the
elastic region. For this range, the material will return to its original shape once the
stressing load is removed; any shape changes are reversible.

For brittle materials, such as ceramics, brittle metals, and materials that have been
chilled sufficiently, the stress is directly proportional to the strain until the point at
which the material fractures. Examples of brittle materials are glass and (non-rein-
forced) concrete under tension. The stress–strain curve for a brittle material is shown
in Figure 10.6. A slightly ductile solid shows a linear stress–strain relationship for most
of the range, but deforms more readily before fracturing.

A ductile metal is shown in Figure 10.7. This metal will not return to its original
shape once it is stressed past a certain point, known as the yield strength or elastic limit.
Some degree of deformation will remain after the stress is removed, and this is known
as plastic deformation.

Figure 10.6 The stress–strain curves of brittle
(top) and slightly ductile (bottom) materials.

The decrease in stress before the point of rupture that the curve shows is due to the
way we defined the stress – the plot shows engineering stress. In this region, the cross-
sectional area is decreasing, so the true stress is still increasing, though the engineering
stress is not. (A decrease in stress just after the yield point is also often a feature on
such a stress–strain plot, and is a complicated effect of dislocations in the material’s
molecular structure.)

Some materials can tolerate large strains reversibly. Materials (such as rubber) that
can be elastically stretched to twice their length or more are called elastomers. Over
the range of interest, many of the tissues that make up our bodies have stress–strain
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curves that show behaviour similar to rubber. Ligaments, which connect bones to
other bones, and tendons, which connect muscles to bones, have just such a J-shaped
curve (see Figure 10.7). Their resistance to stretching is low at low stress loads, but
increases with higher stress loads. This happens because initially the collagen fibres,
which are a major component of ligaments, are not stretched straight, so small stresses
easily straighten out the fibres giving significant elongation. Once the collagen fibres
are straight, further stretching is more difficult. Other areas of soft tissue in the body
that contain the protein elastin, such as the skin, arterial walls (particularly in the large
arteries like the aorta), the bladder and the skin behave similarly.

Hair (based on the protein keratin) is an example of a material that has a rather S-
shaped curve. For tensile strains of up to about 5%, hair behaves elastically. After this,
the keratin molecules can unwind, and the hair can elongate by 25% with relative ease,
and may stretch to as much as twice its length before breaking. Hair is very permeable
and absorbs water readily, changing its properties and making it more fragile when wet.

Figure 10.7 Stress–strain curves for a ductile
metal (top) and an elastic substance (bottom),
such as a ligament.

Rise

Run

Young’s modulus = rise/run = slope

Yield strengthStress

Strain

Ultimate strength

Fracture

Figure 10.8 A general stress–strain curve showing the initial elastic region, which ends when the material reaches
its yield strength, and the point of fracture.

The stiffness of a material, shown by the initial slope of the stress–strain curve, is
not always the most important property for a particular use. Often toughness, which
is basically the amount of energy that can be absorbed before the material fractures,
is more important. The toughness can be estimated by looking at the area under the
stress–strain curve. Another useful material property is the resilience, the ability to ab-
sorb energy during elastic deformation, which can be estimated from the area under
the elastic region of the curve.

Change in Cross-Sectional Area

The elastic properties of solids result from the properties of their intermolecular bond-
ing. Any form of deformation results from either the stretching or compressing of
bonds within the material. Consider isotropic materials, where the bond strengths and
the spatial organisation of bonds is not direction-dependent. In these materials, if you
stretch the material by applying a tensile stress to it, this will lengthen all bonds in the
same direction as the tensile stress, but it will also lengthen those bonds which have a
component in the direction of the tensile stress. The angles of these bonds will change,
resulting in compression of the material at right angles to the direction of tensile stress.
Just think of how when you stretch something, it also tends to get thinner. The amount
of compression at right angles to the tensile stress depends on the amount of tensile
strain and on the nature of the intermolecular bonding. The ratio of the compressive
strain to the tensile strain is known as Poisson’s ratio and is in the range 0.25 to 0.35 for
most materials.
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10.6 Summary

Key Concepts

stress The force per unit area applied to a material. It is the stress that causes deformation of
the material. It has units of N m−2 or Pa.

tensile stress A stress that causes molecular bonds to lengthen. The stretching force per unit
area.

compressive stress A stress that causes the shortening of intermolecular bonds. The compress-
ing force per unit area.

shear stress Stress that causes two parts of a material to slide across each other, caused by ap-
plication of a force parallel to the plane dividing the parts.

bulk stress The force per unit area applied perpendicular to the surface of an object in three
dimensions. It is equal in magnitude to the applied surface pressure, and is negative for a
compressive force.

strain A measure of the deformation of the material, normalised to the size of the sample. For
example, tensile strain is the fractional change in length ∆L

L0
of a stretched rod. Strain is

dimensionless.

deformation Alteration of shape or form.

elastic deformation Deformation which is reversible when the stress is removed.

plastic deformation Non-reversible deformation.

Young’s modulus (γ) A measure of a material’s resistance to stretching or compressing. It has
units of N m−2.

shear modulus (G) A measure of a material’s resistance to shearing stress. It has units of N m−2

or Pa.

bulk modulus (B) A measure of a material’s resistance to bulk stress. It has units of N m−2 or
Pa.

Equations

stress =σ= F

A
tensile or compressive strain = ∆L

L0

tensile or compressive stress = γ× tensile or compressive strain

shear strain = ∆x

L0
shear stress = shear modulus× shear strain

∆P =−B
∆V

V0
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10.7 Problems

10.1 The elasticity of a cylindrical sample of an unknown material
is to be tested. The sample is 40 cm long and has a cross sectional
area of 2.5 cm2. The sample is hung vertically and a 50 kg weight
is attached to its free end. It is found that the sample stretches to a
length of 40.1 cm.

(a) What is the tensile stress on the sample?
(b) What is the tensile strain?
(c) What is Young’s modulus for this material?

10.2 (a) Bone has a tensile Young’s modulus of γtensile = 16 ×
109 N m−2. If the sample of unknown material in Problem 10.1
was replaced with an identical sample of bone, what would the
length increase of the bone be?

(b) Bone has a compressive Young’s modulus of γcompressive =
9×109 N m−2. If the 50 kg weight was used to compress the sample
rather than stretch it, how much would the length of the sample
change?

10.3 Which of the following is most likely to be the Young’s mod-
ulus of a rubber band? (Hint: What effect will a force of 1 N might
have on a piece of rubber band 1 mm square. What is the strain
found for such an applied stress for each value of the Young’s mod-
ulus) (a) 5×1010 Pa, (b) 5×105 Pa, (c) 5×10−5 Pa.

10.4 A brand new type of rubber is discovered that can be manu-
factured from a combination of air and wishful thinking. A solid
cylindrical rod made of this new type of rubber is fixed to the ceil-
ing and a 1 kg weight is hung from the lower end. The rod was
originally 20 cm long, and when it is hung it is 35.9 cm long. The
radius of the rod is 0.37 cm. What is the Young’s modulus of the
rubber used to make the rod?

10.5 The type of rubber featured in Problem 10.4 is understand-
ably very cheap to produce and as a result the manufacturers of
all sorts of devices wish to incorporate it into their products. The
makers of a car suspension system wish to see if a 0.3 m solid cylin-
drical length of this new rubber can be used in a car’s suspension

system. The rubber cylinder must be compressed by just 2 cm un-
der a load of 5500 N. What radius must the cylinder be? (Is this
practical?)

10.6 The unknown material in Problem 10.1 is now tested for re-
sistance to shear. One end of the cylinder is clamped to a heavy
table and a horizontal force of 300 N is applied to the free end. The
top of the sample is found to deflect by 5 cm. What is the shear
modulus of the sample?

10.7 The bulk modulus of water is 2.2×109 N m−2. What increase
in pressure needs to be applied to the surfaces of a cube of water 1
m on a side to reduce its volume by 1%?

10.8 Refer to Figure 10.9 to answer the following questions:

(a) As shown in Figure 10.9 a cylinder is completely filled with
water and a force F applied to the airtight movable piston
which forms one end of the cylinder. What force will need
to be applied to the piston for the volume of the cylinder
to increase by 1 cubic millimetre (which equals 10−9 m3)?
(Bwater = 2.2×109 Pa)

(b) If the cylinder was filled with air instead (Bair = 1.42×105 Pa)
what force would be required to increase the volume of air by
1 cubic millimetre?

Figure 10.9 A force is applied to a piston attached to a cylinder filled with water.
This causes the volume of the water to change.
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11PRESSURE

11.1 Introduction

11.2 Pressure

11.3 Density

11.4 Pascal’s Principle

11.5 Measurement of Pressure

11.6 Pressure and the Human Body

11.7 Summary

11.8 Problems

11.1 Introduction

How a force is applied is as important as the magnitude of the force itself – just think of
how much more painful it would be to have your foot trodden on by a person wearing
stiletto heels as opposed to flat-soled shoes. The same force (from the person’s weight)
is distributed over a smaller area, so the force per unit area, which we call the pressure,
is greater.

The pressure exerted by fluids in biological systems is often of interest, with some
examples being the pressure exerted on us by the atmosphere, or the pressure of our
blood or of our cerebrospinal fluid. The pressure from the atmosphere varies with alti-
tude, which is responsible for the way our ears ‘pop’ when we go up or down a hill, and
has serious implications for the human body when at high altitude climbing mountains
or flying in planes. The pressure increases rapidly with depth in the ocean, placing lim-
its on how deep we can go without needing to encase ourselves inside the protective
shell of a submarine. The measurement of blood pressure is routinely used in medical
diagnosis, as it is both a symptom of, and a cause of, health problems.

In this chapter, we will investigate pressure, looking at how it is defined, how it is
measured, and how it varies.

Key Objectives

• To be familiar with the concept of density.

• To understand that pressure in a liquid of uniform density is the same at all points
at the same level.

• To understand that pressure at a point in a liquid is the same in all directions.

• To be able to determine the pressure at a given depth in a fluid of a given density.

• To be able to distinguish between, and convert between, absolute and gauge
pressure.

• To understand how pressure is measured.

11.2 Pressure

Figure 11.1 (Top) Applying the same force to
half the area doubles the pressure. (Middle) Ap-
plying half the force to half the area results in the
same pressure. (Bottom) Applying half the force
to the same area results in half the pressure.

Pressure is simply a measure of the force exerted per unit area (see Figure 11.1), that is

P = F

A
(11.1)

where P is the pressure, and F is the force applied normal to the area A. Pressure is
a scalar quantity. The SI unit of pressure is the pascal, which has the symbol Pa. One
pascal corresponds to a pressure of one newton of force per square metre. To put this
number in perspective, normal atmospheric pressure is around 100 kPa at sea level.

Note that throughout this textbook we have chosen to use a capital P to represent
pressure so that it is easier to distinguish between it and ρ, the symbol used for density.
Many other books choose to use a lowercase p instead, reserving the capital to indicate
power.

Introduction to Biological Physics for the Health and Life Sciences Franklin, Muir, Scott, Wilcocks and Yates
©2010 John Wiley & Sons, Ltd
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Solids

There are differences in how solids, liquids, and gases respond to and transmit pres-
sure. A solid exerts pressure on whatever it rests on. This pressure depends on its
weight and the surface area of contact. A solid doesn’t exert a sideways pressure on
something that it is sitting beside, but not leaning on or compressing. Consider a non-
accelerating solid sitting on a surface; there must be a support force acting upon the
solid object equal to its weight. The solid object exerts a force equal to its weight down-
wards on the surface it is sitting on, so for a non-accelerating solid, the downwards
pressure is equal to the weight divided by the surface area of contact.

Gases

Things get more interesting with gases and liquids. Gases consist of large numbers
of fast-moving molecules. These molecules collide with the walls of the container the
gas is confined to. These collisions exert forces and hence pressure on the container
walls. The pressure depends on the average magnitude of these collision forces and
on the number of collisions happening per second. The average force per collision
depends on how fast the molecules are moving on average (which is determined by the
temperature), and the density and speed will determine how often collisions occur. In
Chapter 18 we will see how the pressure of a gas depends on density and temperature.
The pressure exerted by a gas is the same in all directions, because the gas molecules
move randomly in all directions.

For a small volume of gas, the additional pressure at the bottom of the sample due
to the weight of the sample above is negligible (as it is very small compared to the pres-
sure due to random collisions), and we can often treat the pressure as being the same
throughout the container. For large samples, like a section through the atmosphere, the
change in pressure with elevation due to the additional weight of the gas is significant,
and it is necessary to take elevation into account in determining the pressure.

Liquids

In a liquid, the molecules are also moving randomly (though more slowly than in a
gas) and are able to slide past each other. The higher density of liquids means that the
additional pressure at the bottom of a liquid sample due to the weight of liquid above
that point is significant. The slow speed and high density of molecules in a liquid mean
that the average forces involved in collisions are much smaller than in a gas. These

Figure 11.2 Fluid in a beaker exerts both side-
ways force on the vertical sides of the beaker and
downwards force on the bottom of the beaker.
The deeper the level of fluid, the larger the
force exerted on adjacent small elements of the
beaker. The force exerted on each small element
is perpendicular to the surface of the beaker.

two facts mean the dominant term in determining the pressure set up by a liquid is
the weight of the liquid above a certain point rather than the random motion of the
molecules. The pressure in a non-flowing liquid varies with elevation in the liquid, but
is the same at all points at the same elevation.

A liquid exerts a downward force due to its weight in the same way a solid does, but
unlike a solid, a liquid in a container will exert pressure sideways on the sides of the
container, as shown in Figure 11.2. This happens because the weight of the liquid above
a certain point tends to compress the fluid below it. As the molecules get squashed
closer together, they resist being pushed closer and tend to move sideways unless there
is a horizontal force preventing this.

Imagine a glass full of water placed upside down in a larger empty container. The
weight of the water pushes down on the water molecules near the bottom. As the water
molecules can slide past each other they would flow out sideways if it were not for the
sideways force from the walls of the glass constraining them. If we now lift the glass
slightly, there is no sideways force constraining the bottom water molecules and they
flow out sideways until they come into contact with the walls of the larger container.
This is why liquids flow and conform to the shape of their container.

11.3 Density

When dealing with continuous media like liquids and gases, we don’t have an object
with a well-defined shape and composition, and hence mass. Of more use to us is the

112 www.wiley.com/go/biological_physics



11.4 PASCAL’S PRINCIPLE

fluid density. The density, ρ, is defined as

ρ = m

V
(11.2)

P and ρ

The symbol used for density,ρ, is the lower-

case form of the letter rho from the Greek al-

phabet. It is also commonly used in electricity

to denote resistivity. It is also often confused

with p, especially when written by hand, so we

have chosen to use uppercase P for pressure.

where m is the mass, and V is the volume that the mass occupies. The density depends
on the composition of a liquid or solid, but not on how much of it there is. For example,
the density of water at room temperature is about 1000 kg m−3, whether we have a
tiny droplet, or a full bathtub. Seawater has a different composition, and has a slightly
higher density than fresh water.

Solids and liquids have distinct densities which depend only on the average lengths
of the intermolecular bonds within the material, so for a specific solid or liquid at a
specific temperature, there is a well-defined density. As the intermolecular bonds in
gases are weak, gases expand to fill their container, so the density of a gas depends on
the size of the container.

11.4 Pascal’s Principle

Key concept:

Pascal’s principle states that pressure applied to an enclosed fluid is transmitted
undiminished to every part of the fluid as well as the walls of the container.

As a consequence, in a static (non-moving) liquid the pressure, Ph , at depth h depends
on the pressure applied to the surface and how much liquid there is above that point
exerting additional pressure:

Ph = Psurface +ρg h (11.3)

where Psurface is the pressure exerted on the surface of the liquid, ρ is the density of the
liquid, and g is the acceleration due to gravity.

Figure 11.3 The pressure at the bottom of a beaker full of water can be found by using Eq. (11.3). This pressure has
contributions from the weight of the water acting over the bottom surface of the beaker, and also from the weight of
air above that, acting over the surface of the water.

To see why the pressure varies with the height of the liquid above a particular point,
consider a horizontal plane of area A at depth h in the liquid, such as the bottom of the
beaker illustrated in Figure 11.3. The force pushing down on this surface is equal to the
force being exerted on the surface of the liquid (by the atmosphere, for example), plus
the weight of the liquid above the plane. In terms of pressure this gives us

Ph = weight

A
+Psurface

= mg

A
+Psurface
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We previously defined the density of a substance as the ratio of mass to volume, so the
density of the water is ρ = m

V . The volume of the cylinder of liquid above the plane
we are considering is the product of the area and the height of the liquid, V = Ah. So,
substituting ρV for m, and Ah for V

= ρV g

A
+Psurface

= ρAhg

A
+Psurface

= ρg h +Psurface

This also gives the relationship between the pressures at any two arbitrary points in
the liquid

∆P = ρg∆h (11.4)

where ∆P is the pressure difference and ∆h is the difference in elevation (see Fig-
ure 11.4). The pressure is greater at the lower point.

Figure 11.4 The pressure at any point in a stationary fluid is a function only of the height of the fluid above, and the
pressure at the surface (Eq. (11.3)). The pressure does not depend on the shape or size of the container, and so all
of those points at height hA are at the same pressure. Applying Eq. (11.4), we can also see that PB = PA + (hB−
hA)ρ g.

If we apply a force Fapplied to the surface of the liquid, then the pressure at the liquid

surface Psurface increases by ∆P = Fapplied

A , and the pressure at all other points in the
liquid increases by the same amount because of Pascal’s principle. This is the basis of
hydraulic systems, used for a myriad of applications such as car lifts, dentists’ chairs
and hydraulic brake systems.

In a hydraulic system, like that in Figure 11.5, the increase in pressure in the fluid
is a result of a force applied to piston X, ∆Pfluid = FX

AX
. This results in an increase in the

force applied to piston Y by the fluid:

FY =∆Pfluid AY = AY

AX
FX (11.5)

The ratio of the magnitude of the forces on pistons X and Y is the same as the ratio of
the areas. Note that the pistons will move through different distances, as for an incom-
pressible liquid the volume of liquid that is displaced by piston X is the same as the
volume of liquid that displaces piston Y.

V = AXdX = AYdY ⇒ dY = AX

AY
dX (11.6)

As work done equals force times distance, this is equivalent to saying that the work
done by piston X is the work done on piston Y.

The pressure at a point in a liquid is the same in all directions. This means that a
small, flat plate placed at a particular height within a liquid will experience the same
force per unit area regardless of its orientation. The force is always exerted perpendicu-
lar to the area. We can see that this must be the case by looking at a tiny wedge-shaped
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Figure 11.5 A very simple hydraulic system. A small force applied to piston X causes an increase in pressure in the
hydraulic fluid. This causes a large force to act on piston Y.

Figure 11.6 The net force on a small wedge-shaped segment of a fluid is zero. It is easy to see that the two forces
FD and FE acting on the ends of the shape cancel each other out. Figure (11.7) shows that the other three forces,
FA, FB and FC also cancel out.

section of the liquid. Choosing a wedge sufficiently small, we can make the assump-
tion that the pressure difference between the top and bottom of the wedge approaches
zero. Figure 11.6 illustrates our small wedge of fluid. The net force acting on our wedge
must be zero if the fluid is in equilibrium.

Consider the vertical components of the forces. The upward force on the bottom
surface is the pressure times the area

Fup = FC = PC AC

= PCwL cosθ

The force on the upper, tilted surface is

FA = PA AA

= PAwL

Figure 11.7 The horizontal component of the
large force, FA, acting on the largest surface of
the wedge is equal and opposite to the horizon-
tal force, FB, acting on the vertical surface of the
wedge. Similarly, the vertical component of FA
is equal and opposite to the vertical force, FC,
acting on the horizontal surface of the wedge.

The downward component of this force is

Fdown = FA cosθ

= PAwL cosθ

The vertical forces are balanced, so PC = PA. Clearly, by symmetry, the same argu-
ments work for the horizontal forces and so PB = PA, and this extends to all directions.
In order for the wedge of liquid to be in equilibrium (that is, with zero net force acting
on it), the pressure must be the same in all directions.
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Problem: Given that at sea level air is usually at a pressure of around 100 kPa, what force is the atmosphere exerting

on any given 1 cm2 of our body?

Example 11.1 Pressure and force

Solution: The relationship between force and pressure is given by Eq. (11.1):

P = F

A
F = PA

We can use this to find out what force is required to produce a given pressure over a given area. To produce a pressure
of 100×103 Pa over an area of 1 cm2 = 1×10−4 m2 a force of F = 100×103 Pa×1×10−4 m2 = 10 N is required. This is
equivalent to the weight force of a 1 kg object. This is quite a large a force for such a small area, if we were to look at
1 m2 we would find the force is equivalent to a 10000 kg weight force!

If these forces are so large why are we not crushed? The answer is because our internal pressure is much the same as
the external atmospheric pressure. Our insides push out with the same force as the atmosphere pushes in.

11.5 Measurement of Pressure

Figure 11.8 A simple mechanical diaphragm
pressure meter. A sealed container holds some
fixed amount of a gas. The container has at
least one flexible surface, the diaphragm, which
means that the pressure inside is always the
same as that outside the container. As the
pressure changes the volume of the gas inside
the sealed container also changes (see the
section on the Ideal Gas Law in Chapter 18 for
an explanation of this) and the diaphragm bends.
The degree and direction of the bending of the
diaphragm indicate changes in pressure.

Pressure has been defined as force per unit area. It follows that, conceptually at least,
the simplest way to measure a pressure in a fluid would be to measure the force that
the fluid applies to a known area, using Eq. (11.1) to calculate the pressure. In prac-
tice using such an appealingly straightforward method is somewhat complicated by
the difficulty of accurately measuring the force acting on any given surface. Any such
measurement usually has to be indirect, as any surface has two sides, each of which is
generally exposed to a fluid of some kind. (It is extremely hard to produce and maintain
a vacuum under most conditions.)

Any property which changes with pressure can, in principle, be used to measure it,
and there are a great many kinds of devices in use today that rely on a wide variety of
pressure-sensitive phenomena to do so. The cheapest, and hence most common, rely
on measuring the expansion/contraction of a fixed mass (not volume) of gas in a sealed
compartment (see Figure 11.8) and are called diaphragm pressure meters.

The Manometer

A manometer is a particular type of pressure measurement apparatus that historically
has seen wide use as a simple, reliable and potentially very accurate way to measure
pressure and pressure differences. This role has only recently been taken over by other
kinds of sensors as materials technology and fabrication techniques have improved. A
manometer is a hydrostatic device, which means that it relies on the physics of station-
ary fluids.

A manometer relies on Pascal’s principle (Eq. (11.3)) which states that, for a station-
ary fluid, the pressure at some depth below the surface can be found in terms of the
pressure at the surface, the density of the fluid and the depth. The manometer itself is
a U-shaped tube filled with a fluid, as in Figure 11.9.

The pressure at the surface of the fluid in each arm of the manometer is the same
as the pressure of the gas above it. Because any two points at the same level in a sta-
tionary fluid must be at the same pressure, we can use Pascal’s principle to express the
difference in pressure in one arm of the manometer relative to the pressure in the other.

Using Eq. (11.3), the pressure at point 1 is equal to PA plus a contribution due to the
height, h, of fluid above

P1 = PA +ρg h
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Because point 2 is on the surface of the fluid, the pressure at point 2 is the same as
PB

Figure 11.9 A very simple manometer. Two
bulbs, A and B, each contain a gas at different
pressures. They are connected by a U-shaped
tube, which is partially filled with a fluid of density
ρ. PB must be higher than PA, as the level of
fluid in the right arm of the manometer is lower.
The difference in pressure can be found from
Eq. (11.4).

P2 = PB

Point 1 and point 2 are at the same height in a continuous fluid, and so must be at the
same pressure.

P1 = P2

PA +ρg h = PB

This is essentially a restatement of Eq. (11.3). If the pressure in one arm of the
manometer is known, then the pressure in the other can be found. The difference in
pressure between the two arms of the manometer can be calculated:

∆P = PB −PA = ρg h (11.7)

Figure 11.10 A manometer used to measure an
unknown pressure with reference to atmospheric
pressure.

In most cases the two arms of the manometer are not connected to two closed bulbs
as in Figure 11.9, but instead one arm is connected to a system in which the pressure is
to be measured, and the other is connected to a system in which the pressure is known,
most commonly the open atmosphere (Figure 11.10).

The Barometer

We inhabit a world at the bottom of an ocean of air, and the combined weight of all
of this air acting upon surfaces at ground level creates the ubiquitous phenomenon
we call atmospheric pressure. An Italian scientist, Evangelista Torricelli (1608–1647),
is credited with making this discovery while helping silver miners who were trying to
keep water out of their mines. The suction pumps they were using were only capable
of raising the water about 10 m. This is because the weight of the atmosphere only pro-
duces sufficient pressure to support a column of water of this height.

Problem: A manometer connecting two closed chambers is filled with two different fluids (which are prevented

from mixing by a thin membrane), water and an unknown fluid, as shown in Figure 11.11. What is the density of the

unknown fluid? [ρwater = 1000 kg m-3.]

Example 11.2 Manometer

Solution:

Figure 11.11 A closed manometer.

The pressure at the interface of the unknown fluid and the water in the right of the
manometer is the same as the pressure at the same depth (10 cm) in the water at the
left of the manometer, the pressure in each arm is given by P = P0 +ρg h.

Pleft +ρwaterg h = Pright +ρunknowng h

ρunknown =
Pleft −Pright

g h
+ρwater

= 13 600 kg m−3

The unknown substance is most likely mercury.
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Problem: A mercury barometer ρHg = 13 600 kg m–3) shows a pressure of 767 mmHg at 5 pm and a pressure of

759 mmHg at 7:30 pm. What is the rate of change of the pressure in Pa min–1?

Example 11.3 Barometer

Solution: A pressure of 760 mmHg is equivalent to the standard atmospheric pressure of 101.3 kPa. Thus a change

of −8 mmHg (note the negative sign) is the same as
−8 mmHg
760 mmHg × 101.3× 103 Pa = −1066 Pa. This is a rate of change of

−1066 Pa
150 min =−7.11 Pa min−1.

An alternative way of converting to Pa is to use ρg h

ρg h =−8 mmHg =−13600 kg m−3 ×9.8 m s−2 ×8×10−3 m = 1066 Pa

The air pressure varies with altitude and weather patterns, so the value of atmo-
spheric pressure is not constant with time or location. When the exact value is not
known, or high accuracy is not needed, we use the mean atmospheric pressure at sea
level. In SI units, this is 1.013×105 Pa (101.3 kPa).

The atmospheric pressure at a particular geographic location varies with altitude.
Even driving up quite a small hill quickly enough can cause the ears to ‘pop’ as the
internal pressure in the auditory canal equalises with the lowered external atmospheric
pressure. Atmospheric pressure at any particular altitude also varies by a few percent
(several kPa) over time, as it is influenced by changing temperature, local wind-speed,
and the large-scale movement of air, among other things.

Figure 11.12 The right bulb of this manometer
is evacuated and so the pressure difference be-
tween the arms is the same as the current atmo-
spheric pressure. This pressure difference, and
hence the atmospheric pressure, can be found
using the difference in height of the fluid and its
density. See Eq. (11.8)

A barometer is a pressure-measuring device used to measure local atmospheric
pressure. A specialised manometer is one such device. In this kind of barometer, one
arm of the manometer is evacuated and used as a known pressure reference (i.e. 0 Pa,
see Figure 11.12). The difference in height between the level of the fluid in each arm of
this manometer is now directly related to the current atmospheric pressure.

Patm = P0 +ρg h = ρg h (11.8)

A barometer is not usually constructed with a U-tube, as shown in Figure 11.10, but
instead consists of a straight tube filled with some fluid that is inverted into a reservoir,
such that the closed top of the tube remains evacuated and the open bottom end lies
below the level of fluid in the reservoir (See Figure 11.13). The space that forms at the
top of tube has no air in it, and so is at nearly zero absolute pressure. The pressure at
the surface of the reservoir is equal to the local atmospheric pressure. As the pressure
in a liquid of uniform density is equal at all points at the same elevation, the pressure in
the column of fluid at the same height as the fluid surface is also equal to atmospheric
pressure.

Figure 11.13 A typical barometer. The two
points A and B are at the same height in a sta-
tionary continuous fluid and so must also be at
the same pressure. The pressure at the bottom
of the column of fluid inside the tube is entirely
due to the weight of the fluid and given by ρg h.

In principle, any fluid could be used inside the barometer, but in practice mercury
is most often used, because of its very high density. If we were to construct a barom-
eter using a tube filled with water (ρwater = 1000 kg m−3), then at normal atmospheric
pressures we would need a tube that could contain the resulting 10 m column of water.
In contrast, the height of the column of mercury in a mercury barometer is only 0.76 m
tall at 101 kPa, because mercury has a density of 13 600 kg m−3.

In addition to its greater density, mercury also has a very low vapour pressure,
which means that the pressure in the evacuated region above the mercury is closer
to zero than if another liquid were used. For example, if a vacuum pump is used to re-
move the air above a column of water, the water will actually boil at room temperature,
and the resulting pressure will be limited by the vapour pressure of water at the room’s
temperature (see Section 19.2).

Gauge Pressure

Most pressure gauges work by measuring a difference in pressure between two points
or two systems as in Figure 11.14. Commonly, the reference pressure is the local at-
mospheric pressure, and the pressure gauge measures the value of the pressure at the
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place of interest in terms of how much higher or lower it is than the atmosphere. The
reading on a gauge of this type, when the reference point is atmospheric pressure, is
known as the gauge pressure.

Figure 11.14 A manometer being used to measure the pressure in some system relative to atmospheric pressure.
The gauge pressure is Psystem− Patm = ρ g h.

A gauge pressure can be either positive or negative. A positive gauge pressure indi-
cates that the pressure being measured is higher than the reference pressure. A nega-
tive gauge pressure indicates that the pressure being measured is lower than the refer-
ence pressure.

Absolute Pressure

The absolute pressure is the pressure measured on a scale that has a perfect vacuum,
which will be zero absolute pressure, as its reference point. The relationship between
the two scales, gauge and absolute, is simple:

absolute pressure = gauge pressure + absolute atmospheric pressure (11.9)

(Remember that when you are using this for calculations, you’ll need to check that you
are using the same units for all the pressure values, as there are so many in use. It is only
possible to add numbers that are in the same units. See the section on units below.)

While a gauge pressure can be either positive or negative, an absolute pressure must
always be positive. Remember that pressure is a scalar quantity. An absolute pressure
of zero indicates that the magnitude of the force acting on a given area is also zero.
Since there can never be a force with a negative magnitude, there cannot be a negative
absolute pressure.

The relationship between absolute pressure and gauge pressure is similar to the
relationship between absolute temperature, in kelvin, and temperature measured in
degrees Celsius. A temperature of 25°C means that the temperature is 25 degrees above
the freezing point of water and corresponds to an absolute temperature of 298 kelvin.
Similarly, a gauge pressure of 1000 Pa corresponds to an absolute pressure atmospheric
pressure plus 1000 Pa (so something in the vicinity of 102 kPa at sea level).

Units

Pressure is the force per unit area, and as there are many non-SI units that are still in
use for length, area and force, many non-SI units are still widely used for pressure also.
The SI unit of pressure is the pascal, which has the symbol Pa. One pascal is equal to
one newton per square metre. In SI units, the sea-level atmospheric pressure on Earth
is close to 1×105 Pa, so writing the pressure in pascals can have ‘readability’ problems,
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and the prefix hecto, meaning 102, is sometimes used (particularly on weather maps).
A related unit is the bar. One bar is the same as 100 kPa, so a millibar (mbar) is the same
as a hectopascal.

1×105 Pa = 1000 hPa = 100 kPa = 0.1 MPa = 1 bar

100 Pa = 1 hPa = 0.1 kPa = 1 mbar

Problem: What is the gauge pressure at points A, B and C in Figure 11.15 if ρwater = 1000 kg m–3, ρoil = 1500 kg m–3,

and P atm = 101.3 kPa?

Example 11.4 Absolute pressure and gauge pressure

Solution:

Figure 11.15 Two chambers containing different amounts of water are con-
nected via a water-filled tube which acts as a manometer. Chamber A has
a mercury manometer attached to it. The pressure at the three points A, B
and C can be found from the information given.

PA is higher than atmospheric pressure as the level of oil in
the left manometer is lower on the chamber side. The abso-
lute pressure at A can be found using the equation

PA = Patm +ρoilg hoil

but we are asked for the gauge pressure, which is the differ-
ence between the absolute pressure and atmospheric pres-
sure, or simply ρoilg∆hoil. This gives a gauge pressure at A
of

PA,gauge = 1500 kg m−3 ×10 m s−2 ×0.21 m = 3150 Pa

The gauge pressure at point A is
3.15 kPa.

The difference in pressures at points A and B is given by ρwaterg∆hwater = 1000 kg m−3×10 m s−2×0.14 m = 1400 Pa.
This is true for both gauge and absolute pressures and further PB must be smaller than PA. The gauge pressure at point
B is thus PB,gauge = PA,gauge −ρwaterg∆hwater = 3.15 kPa−1.4 kPa = 1.75 kPa.

The pressure at point C is simply PC = PB+ρwaterg∆dwater where ρwaterg∆dwater = 1.6 kPa and so PC,gauge = 3.35 kPa.

Other units of pressure still commonly found in use include psi (pounds per square
inch), torr, mmHg (millimetres of mercury) and atmospheres (atm), so we will mention
these briefly.

• 1 atm is the standard atmospheric pressure, 101 325 Pa.

• 1 torr is 1/760 atm.

• 1 mmHg is the pressure exerted at the base of a column of fluid exactly 1 mm
high, when the density of the fluid is exactly 13.5951 g cm−3, and where the ac-
celeration of gravity is exactly 9.80665 m s−2. The density chosen in the definition
is the density of mercury (chemical symbol Hg) at 0 °C. One mmHg is very close
to one torr.

• 1 psi is the pressure exerted by gravitational force from one pound of mass over
an area of one square inch. 1 psi is equivalent to 6894.76 Pa.

Blood-pressure readings are still given in units of mmHg, and this is unlikely to
change as the old-fashioned mercury blood-pressure meters do not go out of calibra-
tion, and are used to check the calibration of other types. Mercury sphygmomanome-
ters (from the Greek sphygmós, meaning pulse, and manometer, meaning pressure me-
ter) are still required in some clinical situations where accuracy is particularly impor-
tant.
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11.6 Pressure and the Human Body

Blood Pressure

High or low blood pressure can result from a number of medical conditions and can
cause a number of health problems. As a result, blood pressure is routinely measured
in medical practice. One method of measurement would be to connect a manometer
directly to an artery, but this clearly far too invasive!

Figure 11.16 A sphygmomanometer being used
to measure blood pressure.

The standard method uses a sphygmomanometer (see Figure 11.16). An inflatable
cuff is used to apply a pressure to the outside of the artery. The blood pressure in the
artery varies with time throughout the cardiac cycle, and is maximum just after the left
ventricle of the heart contracts, sending a surge of blood into the arteries. To start with,
the external pressure applied to the artery is beyond the expected maximum blood
pressure. At this point, the artery collapses. The applied pressure is slowly reduced
as the physician listens. When sounds (known as Korotkoff sounds) are first heard, it
indicates that the applied pressure has dropped below the maximum pressure in the
artery. When the pressure in the artery is maximum, the artery opens briefly allowing
a spurt of blood through, and the sound results from the brief turbulent flow of blood
through the artery. The pressure at which sounds are first heard is known as the systolic
pressure. It is the maximum pressure in the artery at the location of measurement. This
ranges from 95 to 140 mmHg for a normal adult, with the average being 120 mmHg,
when the pressure is measured level with the heart, as is customary.

As the external pressure on the artery is reduced further, the artery remains open
for longer fractions of the cardiac cycle. When the pressure is reduced to a level where
no further sounds are heard, the artery remains open throughout the cardiac cycle.
This is known as the diastolic pressure, and is the lowest pressure in the artery at the
location of measurement. For a normal adult, this number is in the range from 60 to
85 mmHg. Blood pressures are normally reported as two numbers, both in mm of Hg;
the first number is the systolic pressure and the second number is the diastolic pres-
sure. These pressures are gauge pressures, so they are the pressure in the artery relative
to atmospheric pressure.

As we have seen, pressure varies with elevation in a liquid, so the height at which we
make the measurements is important. When using a sphygmomanometer, the blood
pressure is measured in the brachial artery (the main artery supplying blood to the
arm). Readings will be different depending on whether the patient is lying or sitting,
and how their arm is held relative to their heart. Measurements are conventionally
taken with the patient sitting with their arm by their side so the point of measurement
is level with their heart. If the upper arm was raised to head level, the pressure readings
would be about 35 mmHg lower than with the arm by the side.

11.7 Summary

Key Concepts

solid A state of matter that does not flow in response to a shearing force.

liquid A state of matter which flows in response to a shearing force.

gas A state of matter where intermolecular bonding is negligible and its properties are deter-
mined by molecular collisions.

pressure (P) The force per unit area. The SI unit of pressure is the pascal (Pa) which is equivalent
to 1 newton per square metre (1 N m−2), although many units are in common use such as
bar, torr, atm, mmHg and psi. Solids, liquids and gases all exert pressure.

gauge pressure The pressure relative to the local atmospheric pressure.

absolute pressure The pressure measured relative to a perfect vacuum.

atmospheric pressure The pressure at a given point in the Earth’s atmosphere. The atmospheric
pressure varies with geographic location, altitude and time. The pressure at sea level is on
the order of 1×105 Pa.

density (ρ) The mass per unit volume. The SI unit of density is the kilogram per cubic metre
(kg m−3).
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manometer A pressure-measuring device used to measure relative pressures. The name is usu-
ally applied to a liquid-column hydrostatic instrument.

barometer An instrument that measures atmospheric pressure.

Equations

Ph = Psurface +ρg h

∆P = ρg h

absolute pressure = gauge pressure + atmospheric pressure.

ρ = m

V
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11.8 Problems

11.1 Steve has a mass of 85 kg and wears size 11 shoes. The bot-
tom of each of Steve’s shoes has an area of 0.03 m2 (approximately
30 cm by 10 cm). What pressure do the soles of Steve’s shoes exert
on the ground when

(a) he is standing still?

(b) he is standing on one leg?

(c) he is in the process of jumping (with both feet on the
ground), and thus accelerating upwards at a rate of 5 m s−2?

11.2 Water has a density of 1×103 kg m−3. How many litres of wa-
ter would weigh as much as an 80 kg man?

11.3 Blood has a density of 1060 kg m−3 whereas the density of the
cerebrospinal fluid is 1007 kg m−3. What mass of cerebrospinal
fluid will have the same volume as 50.0 g of blood?

11.4 Given that the density of water is 1× 103 kg m−3, how deep
would you have to dive to experience an absolute pressure of
2 atm? How deep would you have to dive to experience an absolute
pressure of 5 atm? (Note that 1 atm = 101.3 kPa.)

11.5 What would you estimate that the difference in average blood
pressure between the top of 1.7 m tall person’s head and the bot-
tom of their feet is? (ρblood = 1060 kg m−3)

11.6 Blood pressure is generally quoted in mmHg and is a gauge
pressure. In this question we will convert this into SI units. Sup-
pose that the systolic pressure of a particular patient is 120 mmHg
and the diastolic pressure is 80 mmHg. Given that 760 mmHg is
equivalent to 101.3 kPa, what is the systolic and diastolic blood
pressure of this patient in SI units (Pa, or kPa)?

11.7 You wish to measure the blood pressure at the top of a pa-
tient’s head but the patient is unable to lie flat. You measure the
blood pressure at the bicep (i.e. level with the heart) and find that
it is 140 mmHg systolic and 80 mmHg diastolic. What would you
expect the blood pressure to be at the top of the head given that
this point is 45 cm above the measurement point? Remember this

is a gauge pressure and give your answers in both mmHg and kPa.
(The density of blood is about 1060 kg m−3.)

11.8 The aortic valve is located at the base of the aorta and con-
trols the flow of blood from the left ventricle of the heart into the
aorta. The valve has an area of about 3.5 cm2 when closed (there
are variations in this area from person to person). The aortic valve
closes just before the diastolic phase of the cardiac cycle at which
point the blood pressure is at about 90 mmHg. Using the figure
just quoted calculate the force exerted on the aortic valve by the
blood in the left ventricle (remember, the blood pressure shown
above is a gauge pressure, not an absolute pressure.).

11.9 The systolic pressure in a major artery is measured at
115 mmHg. What is the net force on a 1 cm2 section of the arte-
rial wall if the (absolute) pressure in the tissue outside the arterial
wall is 109 kPa? (Patm = 101.3 kPa)

11.10 What is the density of the unknown fluid in Figure 11.17?
(You many assume that the unknown liquid is prevented from
mixing with the water or displacing it in the event it is the more
dense. ρwater = 1000 kg m−3.)

Figure 11.17 Water and an unknown fluid are placed in an open u-tube.
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12BUOYANCY

12.1 Introduction

12.2 The Buoyant Force

12.3 Summary

12.4 Problems

12.1 Introduction

When an object is submerged in a fluid, there is an upward force; we call this the buoy-
ant force. This force is responsible for the apparent change in weight of submerged
objects. This is of vital importance to animals which live in aquatic environments, and
many are able to change their apparent weight by adjusting their volume by use of a
swim bladder, an organ evolved for this purpose.

In this chapter, we will introduce the buoyant force and show its dependence on
the volume of displaced fluid.

Key Objectives

• To be able to calculate the buoyant force acting on an object.

• To be able to calculate the fraction of an object submerged when it is floating in
a known fluid.

12.2 The Buoyant Force

Archimedes’ Principle

Figure 12.1 An object in a fluid experiences an upwards buoyant force. The magnitude of this force is equal to the
weight force on the volume of fluid displaced. If the buoyant force is larger than the weight force, the object will rise;
if less, it will sink. In this case, where the object displaces a volume of fluid equal to its own volume, the net force will
depend on the object’s density relative to the fluid.

Archimedes’ principle, named after Archimedes of Syracuse, states that the buoyant
force on an object is equal to the weight of the fluid it displaces.

Key concept:

Buoyancy is the upward force exerted on an object that is fully or partially sub-
merged in a fluid, resulting from the increase in pressure with depth.

This force allows some objects to float on a liquid, while others sink. Mathemati-
cally, we can express this as

Fbuoyant = mfg = ρfVfg (12.1)

where m is the mass of the fluid displaced, V is the volume of the fluid displaced, ρ is
the fluid density and g is the acceleration due to gravity on Earth’s surface. To avoid
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confusion, it is a good idea to use subscripts liberally to indicate which densities and
volumes are being referred to. Here we have used ‘f’ to indicate that the density is the
fluid density and the volume is the volume of fluid that has been displaced, not the
volume of the object. These will not be the same unless the object is fully submerged.
The net downwards force on the object in the case of only the buoyant force and gravity
acting is

Fnet = mg −ρfVfg = ρobjVobjg −ρfVfg (12.2)

Examining Eq. (12.2) and referring to Figure 12.1, it can be seen that for an object
fully submerged in a liquid, where Vobj = Vf, there will be a net upwards force only if
ρf is larger than ρobj. The object will rise until it reaches the surface of the liquid. As it
rises out of the liquid, the volume displaced, and hence the buoyant force, decreases.
The object will likely bob up and down a few times, but will eventually come to rest at a
position where the buoyant force is equal and opposite to the weight force, and the net
force is zero.

If the object is more dense than the liquid, there will be a net force downwards act-
ing upon the object, which will cause it to sink towards the bottom of the container.
The object will end up sitting on the bottom of the container such that the combina-
tion of the upwards contact (normal) force and the upwards buoyant force is equal and
opposite to the weight force of the object. See Figure 12.2.

Figure 12.2 (Top) Objects with lower densities than the fluid in which they are placed will float on the surface of the
fluid. When doing so they displace a volume of fluid that is less than the volume of the object, but the weight of the
fluid displaced is equal to the weight of the object. (Bottom) Objects more dense than the fluid in which they are
placed will sink to the bottom where a combination of the upwards buoyant force and an upwards contact (normal)
force is equal and opposite to the object’s weight force.

An object less dense than the fluid in which it is placed floats only partially sub-
merged, so does not displace a volume of fluid equal to its own volume (Figure 12.3).
Because the floating object is stationary, the net force acting upon it must be zero, and
we can rewrite Eq. (12.2) to find the ratio of the submerged volume and the object’s
volume:

Fnet = 0 = ρobjVobjg −ρfVdispg

ρfVdispg = ρobjVobjg

Vdisp

Vobj
=

ρobj

ρf
(12.3)

If the object in question has an irregular shape or composition, determining whether
or not it will float is slightly more complex that than a mere comparison of densities. A
boat can be made out of materials that are much denser than water, and it is capable
of both floating and sinking. If the boat is oriented so that as the weight of the boat and
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Vdisp = ×⅞ Vobj

ρobj

ρf

Vobj

Vdisp = ½ × Vobjρ ρobj f= ½

ρobj

ρf

Vobj

ρ ρobj f= ⅞

Figure 12.3 For a floating object, the fraction of the volume submerged is the same as the ratio of the densities of
the object and the fluid (Eq. (12.3)).

its cargo is increased, more liquid is displaced also, then it may float. The same boat
may sink if it fills with water and is not able to displace a sufficient volume of water to
achieve a buoyant force equal to its weight.

Figure 12.4 A 1 kg lead weight (ρlead =11 300 kg m−3) is suspended on a set of hanging scales. When the lead
weight is submerged in water (ρwater = 1000 kg m−3) the buoyant force applied to the lead weight by the water
partially supports it and so the reading on the scales is reduced.

In the preceding paragraphs it was noted that there is an upwards buoyant force on
a submerged object. This means that any submerged object has an apparent weight
that is not the same as its actual weight, so it requires less additional force to support
it than usual. Figure 12.4 shows this effect. A measurement of the apparent weight of a
submerged object can be used to determine its density relative to the liquid:

apparent weight = actual weight−buoyant force

actual weight−apparent weight = ρfV g

⇒ actual weight−apparent weight
actual weight = ρfV g

mg = ρfV g
ρobjV g = ρf

ρobj
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Problem: A salvage diver is attaching a cable to a box of treasure she has found on the bottom of the sea. Once her

job is done she will be lifted at constant speed back onto the salvage ship by a rope. If the combined weight of her

body and all her equipment is 125 kg and her diving suit has a volume of 0.09 m3, what will the tension in the rope

be as she is lifted up to the surface?

Example 12.1 Salvage diver

Solution: As she is lifted, at a constant speed, the net force on the diver must be zero. The weight force of the diver is
acting downwards and must be balanced by the upwards buoyant force and tension force. The weight force acting on
the diver (and her equipment) is 1250 N. The buoyant force acting on the diver is

FB = ρwatergV = 1000 kg m−3 ×10 m s−2 ×0.09 m3 = 900 N

The tension force in the rope must be the difference between the two, T = 1250 N−900 N = 350 N.

Problem: A sphere of lead is hung on a rope and submerged in water. The tension force in the rope is 160 N less when

the sphere is submerged than when it is not. What is the radius of the sphere? (ρlead = 11 300 kg m–3)

Example 12.2 Lead sphere

Solution: The buoyant force acting on the sphere must be 160 N. We can find the volume of the sphere directly by using
Eq. (12.1).

FB = ρfluidgVdisplaced

Vdisplaced = FB

ρfluidg
= 160 N

103 kg m−3 ×10 N kg−1
= 0.016 m3

which gives a radius of

V = 4

3
πr 3

r =3

√
3V

4π
= 0.156 m

Problem: A person will typically float with just 4% of their volume above the surface of the water. If a 55 kg syn-

chronized swimmer is performing a manoeuver in which they raise 30% of their volume out of the water and hold

themselves there, what ‘thrust’ force must they generate by kicking their legs?

Example 12.3 Synchronised swimmer

Solution: If a person floats with just 4% of their volume above the surface of the water then the density of a person

must be 0.96ρwater = 960 kg m−3. Thus a 55 kg person will have a volume of
55 kg

960 kg m−3 = 0.057 m3.

When performing the manoeuver specified in the question 30% of the swimmer’s volume is out of the water
leaving just 0.040 m3 submerged. This means that the buoyant force on the swimmer is FB = ρwatergVdisplaced =
1000 kg m−3 ×10 m s−2 ×0.040 m3 = 400 N.

While performing the manoeuver the net vertical force on the swimmer must be zero (they are not rising or sinking) and
therefore the total upwards force on the swimmer (400 N buoyant force + X N thrust force) must be equal in magnitude
to the downwards weight force (550 N). This means that the swimmer is required to produce a thrust force of 150 N to
maintain the manoeuver.
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Problem: A person is paid for a job with a 0.100 kg ‘gold’ coin. Suspicious, the person decides to check to see if the

coin is really gold (ρgold = 19 300 kg m–3). They hang the coin on a piece of string and submerge it in water. The

apparent mass while the coin is submerged is 0.0912 kg. Is the coin gold?

Example 12.4 Is it gold?

Solution: The buoyant force acting on the coin is 1 kg−0.0912 kg g = 0.0088 kg g . From this we can find the volume of

the coin using FB = ρfluidgV which gives V = 0.0088 kg

1000 kg m−3 = 8.8×10−6 m3. This indicates that the density of the coin is

0.100 kg
8.8×10−6 m3 = 11 400 kg m−3. The density of the coin is too low to be gold, it is however quite close to the density of lead

(ρlead = 11 300 kg m−3).

12.3 Summary

Key Concepts

buoyant force The upward force from the fluid acting on an object wholly or partially sub-
merged in the fluid.

Archimedes’ principle A floating object displaces a volume of liquid with the same weight as
the object.

Equations

ρ = m

V
Fbuoyant = weight of displaced fluid = ρfVdispg
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12.4 Problems

12.1 A swimmer finds that she just floats in water. If she weighs 70
kg what is her volume (ρwater = 1×103 kg m−3)?

12.2 Law 2 of the game of soccer specifies that the ball is an air-
filled sphere with a circumference of 68–70 cm, and a mass of 410–
450 g. A particular ball has a circumference of 69 cm, and a mass
of 430 g. Calculate the fraction of the volume of this ball that floats
above the surface of water.

12.3 A product designer for a range of nautical safety devices con-
ceives of a floating container in which emergency supplies can be
stored, which would automatically become detached from a boat
if it sunk. The container is to be a cylinder with a radius of 20 cm
and a height of 1 m. When in the water 20% of the volume of the
container must be above the surface. The container is attached to
the deck of the boat by a cord which should break as the boat sinks
and the container is submerged and pushed upwards by it’s own
buoyancy.

(a) What is the maximum mass of the container and it’s con-
tents?

(b) At what tension should the cord attaching the container to
the boat break?

12.4 A small 0.5 m radius weather balloon is filled with helium
(ρHe = 0.164 kg m−3). What is the maximum payload (including
the balloon mass) of this weather balloon? (ρair = 1.18 kg m−3)

12.5 A helium shortage forces some under-funded meteorologists
to investigate alternative gases to use in their weather balloons.
They settle on methane (ρCH4 = 0.657 kg m−3). What is the min-
imum radius of a methane filled weather balloon that will allow

the same minimum payload as the helium filled balloon in Prob-
lem 12.4?

12.6 A piece of polystyrene packaging material (density =
25 kg m−3) that has a mass of 0.2 kg is tethered to the bottom of a
container of water (density = 1×103 kg m−3) with a piece of string.
What is the tension in the string?

12.7 In an experiment to determine the density of an unknown
material, its apparent weight when fully submerged in water is
measured. The apparent weight in water is 17.5 N and the weight
in air is 27.5 N. What is the density of the material?

12.8 Some salvage divers are raising a rectangular box of treasure
measuring 1 m× 1.3 m× 1.9 m from the bottom of the sea. They
are using a cable which can handle a maximum force of 10 000 N
without breaking. They raise the treasure from the bottom of the
ocean at a constant speed. All goes well while the treasure is ris-
ing through the water but much to the despair of the salvors as
soon as the treasure is clear of the water the cable breaks, dropping
the treasure back into the briny deep. What are the maximum and
minimum possible weights of the lost treasure?

12.9 A large air-filled rubber ball is tethered to the bottom of a
swimming pool. The tension in the tether is 100 N. The mass of
the rubber in the ball itself is 2 kg while ρwater = 1000 kg m−3 and
ρair = 1.2 kg m−3. What is the volume of the ball?

12.10 A wooden cube 3 cm on a side floats level on water with just
1.5 mm of the cube showing above the surface. What is the density
of the wood? (ρwater = 1000 kg m−3)
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13SURFACE TENSION AND

CAPILLARITY
13.1 Introduction

13.2 Surface Tension

13.3 Capillarity

13.4 Surfactants and the Lung

13.5 Summary

13.6 Problems13.1 Introduction

The attractive force between substances that are alike is known as cohesion, while the
attraction between unlike substances is called adhesion. Cohesive forces are responsi-
ble for surface tension; adhesive forces between the surfaces of a liquid and solid can
cause the edges of the liquid surface to be distorted, pulling the liquid up or down, an
effect known as capillary action or capillarity.

Key Objectives

• To understand the nature of surface tension.

• To understand capillarity.

• To be able to calculate the height to which capillary action is able to raise a fluid
in a pipette.

13.2 Surface Tension

Surface tension is a property of liquid surfaces resulting from intermolecular bonding
which causes the liquid to minimise its surface area and resist deformation of its sur-
face. It causes liquids to act rather like they have a thin, elastic skin. This is not true,
but is a useful analogy to visualise the behaviour of liquids.

Figure 13.1 Surface tension acts to reduce the
surface area of a body of liquid. In gen-
eral, the intermolecular forces on a molecule
of liquid from its neighbours in the liquid are
stronger than those from any neighbouring gas
molecules. This means that the net force on sur-
face molecules is directed into the liquid, and is
stronger for more curved surfaces.

Molecules in a liquid are attracted to their neighbours by cohesive forces. Inside the
bulk liquid, a molecule is attracted equally in all directions by its neighbours. A gas has
a lower density, and hence fewer molecules in a volume, so at the liquid–gas surface
the molecules have fewer neighbours on one side. Consequently, they experience a
stronger attraction to the molecules in the liquid than to the molecules of the other
medium in contact (such as air). This results in an inwards force due to cohesive forces,
which causes a liquid to reduce its surface area (see Figure 13.1). The inward force is
eventually balanced by the liquid’s resistance to compression.

The size of the surface tension can be measured by determining the force required
to hold in place a wire that is being used to stretch a film of liquid as in Figure 13.2. The
surface tension is defined as the force per unit length along a line where the force is
parallel to the surface and perpendicular to the line:

γ= F

L
(13.1)

Alternate Description

An alternative description of surface tension

is often used in thermodynamics. It can also

be thought of as an energy per unit area

(N m−1 is equivalent to J m−2) and the shape

is formed which minimises the energy.

The length over which the force is being applied in the diagram shown is twice the
length of the wire, as the liquid film has two surfaces. The surface tension γ has the
units of N m−1.
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Figure 13.2 A thin film of fluid is held in a metal loop, one side of which is movable. Surface tension on both the
fluid surfaces acts to reduce its surface area, so L, the length along which the surface tension is pulling, is twice the
wire length. In this situation pictured, this will pull the movable wire to the left, unless some external force to the right
is applied. Measurement of the force required to keep the movable wire stationary can give the surface tension, γ.
Note: It is necessary to ensure that frictional forces are very low in such an experiment.

Problem: A thin film of a mystery fluid is formed on a device like that shown in Figure 13.2. If the width of the

apparatus is 3 cm and the force required to hold the movable wire steady is 4.8 mN, what is the surface tension of

the fluid?

Example 13.1 Surface tension

Solution: The surface tension can be found using Eq. (13.1):

γ= F

L

where F = 4.8×10−3 N and L = 0.06 m. It is important to remember that L is twice the width of the apparatus as there
are two surfaces to the fluid.

This gives a surface tension of:

γ= 4.8×10−3

0.06 m
= 0.08 N m−1

Pressure in Bubbles

Surface tension is important in the functioning of the lung. To see why, we will start by
looking at the pressure in a spherical bubble. The pressure inside the bubble must be
higher than the outside pressure to stop the surface tension from collapsing the bubble.

∆P = Pint −Pext =
4γ

r
(13.2)

To see why this should be the case, consider a cross section through the bubble,
as in Figure 13.3. The force applied along this circular edge from the surface tension
is the circumference doubled (because there are two surfaces) times the surface ten-
sion γ, so it is 4πrγ. The force that balances this is the pressure difference times the
cross-sectional area, ∆Pπr 2. This gives us the pressure difference of 4γ/r in Eq. (13.2).
A consequence of this is that the (gauge) pressure inside grows larger as the bubble de-
creases in size. More pressure difference is needed to inflate a bubble than to keep it
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inflated.

Figure 13.3 The pressure inside a hollow bubble. The total force pulling on the surfaces is twice the circumference
times the surface tension. The net force over the hemispherical surface is the pressure times the cross-sectional
area.

Surfactants Figure 13.4 When two bubbles collide, air
always flows from the smaller to the larger. This
is because the pressure in the small bubble
Psmall, is larger than that in the bigger bubble,
Pbig. Eq. (13.2) shows that the pressure inside
a bubble is inversely dependent on the radius
of the bubble: the larger the bubble, the smaller
the pressure. It should also be noted that the
pressure Pfinal inside the new, even larger
bubble is lower still.

A substance that, when added to a liquid, reduces the liquid’s surface tension is called a
surfactant. This is a shortened form of ‘surface-active agent’. The surfactant molecules
tend to concentrate near the surface. An example of a surfactant is soap in water. A
needle that can be supported by the surface tension of water will break through the
surface and sink when soap or detergent is added to the water. Detergents and soap
are surfactants because they have one hydrophilic (‘water-loving’) and one hydropho-
bic (‘water-hating’) side, so the lowest-energy position for them is at the surface, with
the hydrophobic end farther from the water molecules. Surfactants are of major im-
portance to lung function. We will examine some aspects of the respiratory system in
more detail in Section 13.4.

Problem: A bubble of water (γ = 0.068 N m–1) forms such that it has an internal gauge pressure of 13.6 Pa.

(a) How large is this bubble?

A surfactant is added to the water reducing the surface tension to 0.021 N m–1.

(b) If the gauge pressure inside a new bubble is the same, what would the radius be in this case?

Example 13.2 Bubbles

Solution: (a) The difference in pressure (i.e. the gauge pressure) between the inside of a bubble and the outside is given
by

∆P = 4γ

r

r = 4γ

∆P
= 4×0.068 N m−1

13.6 Pa
= 0.020 m

So the bubble has a radius of 2 cm. After the surfactant has been added the bubble will decrease in size!

r = 4γ

∆P
= 4×0.021 N m−1

13.6 Pa
= 0.0062 m
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13.3 Capillarity

Interfacial Tension

In examining surface tension, the adhesive forces between the liquid and any mole-
cules of gas near the surface could be largely ignored. In the case of liquid in contact
with other immiscible (non-mixing) liquids, or solids, such as the walls of the container
that the liquid is held in, these forces are no longer negligible. The size of the adhesive
forces between the materials will determine the interfacial tension (i.e. the tension at
the interface). The interfacial tension of a water droplet in contact with glass is different
to that of water in contact with wax. This difference results in ‘beading’ or ‘wetting’ of
surfaces, as shown in Figure 13.5.

Figure 13.5 (A) Water beading on a waxy/oily surface. On such a surface the cohesive intermolecular forces between
water molecules are larger than the adhesive forces between water molecules and molecules on the surface. This
results in a compact droplet with a large contact angle, θ. (B) Water wetting a hydrophilic (’water-loving’) surface,
like glass. If the adhesive forces between the water and the surface are stronger than the cohesive forces between
the water molecules, the droplet spreads out, and the contact angle is low. Adding a surfactant to the liquid has the
same effect.

The relative strengths of the cohesive and adhesive forces will determine how the
liquid behaves. If the cohesive forces in a liquid are stronger than the adhesive forces
between it and an adjacent substance, the liquid will tend to ‘bead’, minimizing the
contact area between the two substances. An example of this is the beading of water
on a waxed car. The liquid molecules are attracted to each other more than to the
neighbouring substance, so the liquid arranges itself to keep the distances between
liquid molecules as small as possible.

If the cohesive forces in a liquid are weaker than the adhesive forces between the
two substances, the result is ‘wetting’ – the liquid will spread out across the surface, as
water does on a glass surface.

A quantitative measure of the tendency to bead is the contact angle. This is the
angle that the edge of the liquid–air surface makes with the liquid–solid surface (see
Figure 13.5). Contact angles more than 90° are indicative of beading, and angles less
than 90° show wetting.

Figure 13.6 Strong adhesive forces result in a
small contact angle, θ, and a negative meniscus.
Stronger cohesive forces result in a large contact
angle and a positive meniscus. Note: In all but
the smallest diameter tubes the meniscus will
not be as prominent as that shown here and will
be noticeable only at the fluid/tube boundary,
with the bulk of the fluid surface being near flat.

The angle of contact at the surface between a liquid and its container will depend
on the relative strengths of cohesive and adhesive forces also. For a fluid in a vertical
tube, if the cohesive forces are weak in comparison to the adhesive forces, the contact
angle will be small and the liquid will be pulled slightly up at the edges of the tube,
giving a negative meniscus. This is the case with water in a glass. If the cohesive forces
are strong in comparison to the adhesive forces, the contact angle will be large and a
positive meniscus is formed, as with mercury in a glass tube. Figure 13.6 shows both a
positive and a negative meniscus.

Capillary Action

Figure 13.7 The distance the liquid travels up
or down the tube is inversely proportional to the
radius. In the case where the contact angle is
greater than 90°, the liquid surface is depressed.

When a thin glass tube is placed in a liquid such as water, the liquid often rises up the
tube. This is known as capillary action, or capillarity. Capillary action is important in

134 www.wiley.com/go/biological_physics



13.3 CAPILLARITY

many biological systems – it contributes to the rising of sap in trees and to the blood
flow into our capillaries.

The thinner the tube, the more the liquid rises (Figure 13.7). A smaller radius means
more contact with the surface for a particular volume of liquid, and hence a greater
mass of liquid that can be supported by the contact force. In fact, the height depends
on the inverse of the radius of the tube:

Figure 13.8 Surface tension pulls the fluid up
until the weight force of the fluid supported is the
same as the net force due to surface tension.

h = 2γcosθ

ρg r
(13.3)

where h is the height the liquid travels up the tube above the level of the surrounding
liquid, γ is the surface tension, θ is the angle the liquid surface makes with the tube
surface, ρ is the liquid density, r is the tube radius and g is the acceleration due to
gravity.

Figure 13.8 illustrates the forces involved. At the contact points between the liquid
and the surface of the tube, the liquid is being pulled in the directions shown by the
surface tension. The horizontal components of these forces will cancel out, but the
upward component of the force will be Fst cosθ. To find the upwards force, we note that
surface tension is the force per unit length, so the upwards component of the force will
be γ×length×cosθ = γ2πr cosθ. This will pull the liquid upwards until the downwards
force on the mass due to gravity is equal. The downward force is Fweight = mg = ρV g =
ρ(πr 2h)g , and this rearranges to give Eq. (13.3)

ρπr 2hg = γ2πr cosθ

⇒ h = γ2πr cosθ

ρπr 2g

= 2γcosθ

ρg r

In the cases where the angle θ is larger than 90°, the force is actually downwards,
and the surface of the liquid in the tube is lower than the surrounding liquid, as seen in
Figure 13.7. This is the case with mercury and glass.

Problem: An engineer is designing an experimental dialysis machine. A vital component of this machine is a small

hollow tube made from the element unknownium with a 100 µm inner radius which will dip down into a chamber

filled with blood. The surface tension of blood is 0.058 N m–1 and the density of blood is 1050 kg m–3.

(a) The engineer does not know what the adhesive forces, and hence contact angle, between blood and unknown-

ium is. What is the maximum possible range of heights to which blood will be raised/lowered in the tube?

(b) If the contact angle between unknownium and blood is measured at 78°, to what height is blood drawn up the

tube of unknownium?

(c) Blood needs to be drawn up the small tube at least 3 cm. What is the simplest change that can be made to the

tube of unknownium to enable this to happen?

Example 13.3 Capillary Action

Solution:

(a) The height to which a liquid will be drawn up a capillary tube is given by Eq. (13.3).

h = 2γcosθ

ρg r

The cosine term could have any value from +1 for θ = 0° (fully wetting the surface) to −1 for θ = 180° (fully beaded
upon the surface). Given this the possible range of heights to which blood will be drawn up a tube of unknownium
are
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h =± 2γ

ρg r
=± 2×0.058 N m−1

1050 kg m−3 ×10 m s−2 ×100×10−6 m

=±0.110 m

(b) With a specific contact angle, θ = 78°, we can calculate a specific height to which the blood will be drawn into the
capillary. Given that the angle is less than 90° we can say with certainty that the blood will be drawn up into the
capillary (h > 0) Given that cos(78°) = 0.208

h78° =± 2γ

ρg r
cos(78°) = 0.110 m×0.208 = 0.0229 m

(c) If the blood needs to be drawn up the tube 3 cm then the capillary as it stands is inadequate. In order increase
the height to which the blood is drawn into the capillary we can: increase the viscosity of blood; use a different
material that has a higher contact angle (lower adhesive forces between the material and blood); or decrease the
radius of the tube.

Of these three options decreasing the radius of the tube is likely the easiest. Changing the viscosity of blood
will require adding some sort of surfactant to it which is quite the opposite of the general purpose of a dialysis
machine and using a different material may require other aspects of the machine to be redesigned.

We can rearrange Eq. (13.3) to calculate what radius tube will give us the required height of 0.03 m

h = 2γcosθ

ρg r

r = 2γcosθ

ρg h
= 2×0.058 N m−1 ×0.208

1050 kg m−3 ×10 m s−2 ×0.03 m
= 76.6×10−6 m

13.4 Surfactants and the Lung

The alveoli in our lungs are similar in many respects to a collection of air bubbles sur-
rounded by water, with the air being free to move about between them. This is an un-
stable situation for bubbles – the small bubbles have the highest internal air pressure
(see Eq. (13.2)), which would tend to force the air to move to lower pressure regions in
the larger bubbles, causing large bubbles to get larger and small bubbles to get smaller.
This would be undesirable behaviour for our lungs – we need to have a large surface
area to allow the most diffusion of oxygen into the bloodstream. Surfactants can sta-
bilise bubbles by making their surface tension size dependent.

Adding surfactant has the desired effect because the concentration of the surfactant
decreases as the surface expands and increases as the surface contracts. An increase
in concentration of surfactant from a decreasing surface area will reduce the surface
tension, and will reduce the pressure at which the bubble becomes stable.

Pulmonary (lung) surfactant has the same effect. It allows alveoli with slightly dif-
ferent sizes to have the same internal pressure, giving a stable arrangement. Also, in the
absence of surfactant, the pressure required to change the size of an alveolus would be
greatest when the alveolus was smallest. This would make the initial inflation diffi-
cult, rather like the first part of blowing up a balloon being the hardest. Without pul-
monary surfactant, the pressure difference required to inflate the alveolus would be
greater than that generated by chest expansion during inhalation.

Premature infants often lack sufficient pulmonary surfactants, causing breathing
difficulties. Understanding this has led to improved treatment of premature infants
and a great increase in survival rates. The role of surfactants is also important in the
case of drowning. In instances of ‘secondary drowning’, a person initially appears fine,
but later deteriorates. This is caused by the interaction of small quantities of water with
the surfactant in the lungs. Fresh water denatures the surfactant and salt water dilutes
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it, with both cases possibly resulting in late-developing breathing difficulties.

13.5 Summary

Key Concepts

cohesion The intermolecular attraction between like molecules.

adhesion The intermolecular attraction between unlike molecules.

surface tension The property of a liquid surface that causes it to behave like an elastic sheet, as
the result of cohesive forces.

capillarity The distortion of a liquid surface due to adhesive forces between the surface of the
liquid and an adjacent solid surface. This can result in the liquid being pulled up or down
a narrow tube.

surfactant A substance that, when added to a liquid, reduces the liquid’s surface tension.

Equations

γ= F

L

∆P = Pint −Pext =
4γ

r

h = 2γcosθ

ρg r
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13.6 Problems

13.1 A device such as that shown in Figure 13.2 is used to mea-
sure the surface tension, γ, of glycerol. The length of the moveable
wire is 0.5 cm and a force of 0.63 N must be applied to this wire to
maintain a constant area fluid film. what is the surface tension of
glycerol?

13.2 A soap bubble is formed using a mixture of detergent and wa-
ter. The surface tension of the mixture is 0.030 N m−1. If the bub-
ble has a radius of 2 cm and atmospheric pressure is 101.2 kPa,
what is the gauge pressure inside the bubble?

13.3 A water bubble has radius 1 mm in air. Atmospheric pressure
is 101.3 kPa and the surface tension of water at room temperature
is 0.073 N m−1.

(a) What is the gauge pressure inside the bubble?

(b) If atmospheric pressure had been 101.2 kPa and the absolute
internal pressure of the bubble was the same as in part (a),
what would the radius of the bubble have been?

(c) If the surface tension of the water was lowered to
0.037 N m−1 (due to the addition of a surfactant for exam-
ple), what would the radius of the bubble in part (b) be?

13.4 An entertainer, when performing a bubble trick, forms one
bubble inside another. The surface tension coefficient of the bub-
ble liquid used was γ = 0.04 N m−1. If the outer bubble has a ra-

dius of 4.5 cm and the inner bubble has a radius of 2 cm, what is
the gauge pressure in the inner bubble?

13.5 The interface between blood and stainless steel makes a angle
of 110°. Would you expect that capillary action would draw blood
into a stainless steel needle, or expel it?

13.6 Fluid A is found to have a surface tension of 0.080 N m−1,
a density of 1.2× 103 kg m−3 and a contact angle of 70° with dry
glass.

Fluid B is found to have a surface tension of 0.100 N m−1, a
density of 3.1 × 103 kg m−3 and a contact angle of 110° with dry
glass.

A glass capillary tube with inner radius 1 mm is lowered into a
container of fluid A and an identical capillary tube is lowered into
a flask of fluid B. To what height above (or below) the fluid surface
will fluids A and B rise in their respective capillary tubes?

13.7 Drops of two liquids are placed onto a glass slide. Liquid A re-
mains a small rounded drop, sitting on the glass. Liquid B spreads
out to form a thin film on the glass. If a narrow glass capillary tube
is placed in a container of each liquid, would you expect the level
of liquid in the capillary to be higher or lower than that in the con-
tainer for each liquid?

13.8 What is the minimum surface tension of a fluid that can sus-
tain a gauge pressure of 0.1 kPa in a 0.5 cm radius bubble?
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14FLUID DYNAMICS OF

NON-VISCOUS FLUIDS
14.1 Introduction

14.2 Definitions of Some Key Terms

14.3 The Equation of Continuity

14.4 Bernoulli’s Equation

14.5 Summary

14.6 Problems14.1 Introduction

An understanding of the physics of fluid flow is vital to an understanding of biological
systems as diverse as the human circulatory system and the distribution of nutrients
in plants. In this chapter we will introduce the physical foundations of fluid flow in the
absence of viscosity. We will discuss viscosity in Chapter 15.

Key Objectives

• To be able to relate volume flow rate to fluid velocity and cross-sectional area.

• To understand how mass conservation leads to the continuity equation.

• To understand how energy conservation leads to Bernoulli’s equation.

• To be able to use the continuity equation and Bernoulli’s equation to calculate
fluid velocity and pressure at various points in a flowing fluid.

14.2 Definitions of Some Key Terms

There are a number of potentially unfamiliar terms that we will use throughout this
chapter and the next, so we will start off with a few definitions:

incompressible fluid The fluid has a constant density throughout.

viscosity The resistance of a fluid to flow.

laminar flow A situation in which layers of fluid slide smoothly past each other. Lam-
inar flow is characteristic of lower fluid velocities.

turbulent flow Non-laminar flow. The flow is irregular and complex, with mixing and
eddies. This occurs at higher velocities or where there are objects in the flow
producing large changes in velocity.

streamlines A family of curved lines that are tangential to the velocity vector of the
flow (i.e. always in the same direction as the flow). They provide a kind of snap-
shot of flow throughout the fluid at an instant of time.

14.3 The Equation of Continuity

Volume Flow Rate

The volume flow rate, F , tells us how much fluid is flowing across some surface, such
as a pipe’s cross section, in a given time. It is usually measured in cubic metres per
second. Imagine that all the fluid that flowed though some cross section of a pipe was
collected in a bucket – the volume flow rate would tell you the how many cubic metres
of fluid would be collected in one second.

Introduction to Biological Physics for the Health and Life Sciences Franklin, Muir, Scott, Wilcocks and Yates
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For an incompressible fluid, the volume flow rate is equal to the product of the
cross-sectional area and the velocity; if the cross-sectional area of the pipe or the ve-
locity of the fluid in it were increased, then more fluid would collect in the bucket and
the volume flow rate would be higher. This can be seen by considering a cross-sectional
surface, area A, in a pipe such as the right-hand end of the shaded cylinder shown in
Figure 14.1. If the fluid velocity is v , then in time ∆t , all the fluid from distance ∆x to
the left of this surface will cross through it, where ∆x = v∆t . The volume of liquid that
crosses the surface must be A∆x, and so the volume flow rate is

Figure 14.1 Fluid flowing through a pipe at a ve-
locity v past a point P will travel a distance ∆ x in
some small time ∆ t. The volume of fluid passing
P in this time is ∆ V = A ∆ x.

F = ∆V

∆t
= A∆x

∆t
= Av (14.1)

Continuity of Flow

Under certain conditions, when the fluid is incompressible and there is no fluid gained
or lost, the volume flow rate is constant along a pipe or channel. This is due to the con-
servation of mass – the amount of material entering one end of the pipe must be the
same as the amount coming out the other end. There must also be the same amount
per unit time, and as we are talking about an incompressible fluid, a fixed mass implies
a fixed volume, hence a constant volume flow rate. We’ve established the relationship
between volume flow rate, area and velocity, so this brings us to the continuity equa-

tion:

A1v1 = A2v2 (14.2)

Figure 14.2 The continuity equation states that
the flow rate F in a single pipe must be constant.
This can be generalised to pipes that branch mul-
tiple times. In the case of multiple inflows or out-
flows, the sum of all incoming flow rates must
equal the sum of all outgoing flow rates. Figure 14.3 The volume flow rate of an incompressible fluid flowing through a pipe is constant. The pipe is wide at

point 1, but narrow at point 2. Eq. (14.2) shows that in such a case the velocity of the fluid must be higher at point 2.

The continuity equation implies that when a fluid enters a more constricted sec-
tion, as in Figure 14.3, it will speed up. We can apply the continuity equation even
when we have multiple pipes joining; the volume of liquid flowing into a given loca-
tion per second is equal to the volume flowing out. If there are multiple pipes, as in
Figure 14.2, then the sum of the volume flow rates into the junction is equal to the sum
out.

Problem: A water pipe carries 1000 L of water past a certain point every minute.

(a) If the speed of the water in this pipe is 2 m s–1, what is the radius of the pipe?

(b) The radius of the pipe narrows by 10% as it passes from one suburb to another. What is the velocity of the

water in the pipe now?

(c) The pipe then splits up into two pipes, each of which of has an area equal to the area of the pipe just before it

splits. What is the speed of the water in each pipe now?

Example 14.1 Continuity of flow
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Solution: (a) Given that 1 L = 1
1000 m3, the volume flow rate through the pipe is F = 1 m3

60 s = 0.0167 m3s−1. The area of
the pipe must be

F = Av

A = F

v
= 0.0167 m3s−1

2 m s−1
= 8.33×10−3 m2

Which corresponds to a radius of 5.15 cm.
(b) Because the volume flow rate must be conserved, if the radius of the pipe decreases the speed of the water in the
pipe must increase, A1v1 = A2v2. If r2 = 0.9r1 then by A = πr 2, A2 = 0.92 A1 = 0.81A1. So it follows that v2 = A1

A2
v1 =

A1
0.81A1

v1 = v1
0.81 = 1.23v1 or 2.47 m s−1.

(c) The total volume flow rate must be the same as before the pipe split. Thus each pipe will have half the volume flow
rate of the pipe before it splits. If each pipe also has the same area as the pipe before it splits it follows that the speed of

the water in the pipe must half, F = Av , v ′ = F
′

A′ =
1
2 F

A = 1
2

F

A = 1
2 v .

14.4 Bernoulli’s Equation

Bernoulli’s Principle and Incompressible Fluid Flow

Bernoulli’s principle is named after Daniel Bernoulli (1700–1782), one of several fa-
mous men from his family, and is in essence a statement of the law of energy conserva-
tion for fluids. When viscosity can be neglected, an increase in fluid velocity is accom-
panied by a decrease in pressure and/or a decrease in gravitational potential energy
(see Figure 14.4).

Figure 14.4 Bernoulli’s principle allows the combination of pressure, speed, and height of a fluid at one point to be
compared to the same three properties at a different point in the fluid.

We can use this to write an equation relating together pressure, speed and elevation
for the case of an incompressible fluid. This will be valid for most liquids, and for gases
when no expansion or compression is happening. In addition, if the fluid flow is lam-
inar, steady (i.e., independent of time), and we can ignore the effects of friction, then
we have Bernoulli’s equation:

P + 1

2
ρv2 +ρg h = constant (14.3)

In the above equation, P is the pressure at a chosen point, g is the acceleration due
to gravity, v is the fluid velocity along a streamline at the point, h is the height of the
point above a selected reference level, and ρ is the density of the fluid. By constant, we
mean that the sum is constant along a streamline.
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Energy Density

Previously, pressure has been defined as the force per unit area. The SI unit of pressure,
the pascal, corresponds to 1 newton per meter squared (N m−2). As work must have
units of force times distance, we see that from W = F d , which can be expressed as
F = W

d 1 N =1 J m−1, and so

1 Pa = 1 N m−2 = 1 J m−1

m2
= 1 J m−3 (14.4)

so pressure can also be thought of as energy per unit volume.

Perhaps a better way to understand this is if we consider a gas under pressure in a
cylinder with a movable piston. Suppose the gas exerts a force F on the piston. If the
piston is allowed to move a very small distance, ∆x, then some work, W = F∆x, has
been done on the piston by the gas. Thus a fluid under pressure can do work on some
other system, and in order to increase the pressure of a fluid, work must be done on it.

Each of the contributing terms in Eq. (14.3) has units of J m−3 or energy per unit vol-
ume. As we have seen previously, density is defined as the mass per unit volume, ρ = m

V ,

and so it is easy to see how the second two terms, 1
2ρv2 and ρg h, are the kinetic energy

per unit volume and gravitational potential energy per unit volume, respectively.

Pressure and Velocity

Another way of writing Bernoulli’s Equation relates the parameter values at two points
on a streamline, labelled 1 and 2

P1 +
1

2
ρv2

1 +ρg h1 = P2 +
1

2
ρv2

2 +ρg h2 (14.5)

Consider a case where there is no change in height, as in Figure 14.3 where h is fixed,
so the gravitational potential energy is not changing. Rearranging Bernoulli’s equation

1

2
ρv2

2 −
1

2
ρv2

1 = P1 −P2 (14.6)

So, the change in pressure gives us the change in kinetic energy per unit volume. If, as
in Figure 14.3, the velocity at 2 is higher, then the pressure at 2 is lower.

The signs in the equations above can seem a bit counterintuitive at first sight. Why
would higher velocity mean lower pressure? We know from the continuity equation
that the fluid speeds up as it moves from point 1 to 2, so it gains kinetic energy. As the
pipe is horizontal, there is no change in the fluid’s gravitational potential energy. Pos-
itive work must have been done on the mass of fluid in order to speed it up. The only
force available to do this work is the pressure difference between points 1 and 2. To do
positive work on a mass of fluid moving from point 1 to 2, the pressure must be higher
at point 1 than at point 2, so the pressure is indeed lower in the more constricted region
where the velocity is higher.

Problem: A pipe in an industrial plant is designed to carry a fluid of density 1500 kg m–3 at a speed of 3 m s–1. Any

faster than this and the flow could become turbulent, with undesirable results. Any slower than this and the fluid

could start to congeal on the sides of the pipe. The fluid is to be carried from a holding tank which is at a pressure of

P t to a manufacturing line at atmospheric pressure (P atm = 100 kPa) which is 2.5 m below the holding tank. At what

pressure must the tank be maintained?

Example 14.2 Bernoulli’s equation
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Solution: This pipe is designed to keep the fluid velocity constant despite lowering the height of the fluid. We can easily
see that as the fluid gets lower the height term in Bernoulli’s equation will reduce, and we already know that the velocity
of the fluid remains constant. We can write down Bernoulli’s equation and solve for the pressure in the tank:

Pt +
1

2
ρv2

t +ρg ht = Pl +
1

2
ρv2

l +ρg hl

Pt +ρg ht = Pl +ρg hl

Pt = Pl +ρg (hl −ht)

This indicates that the pressure in the tank must be lower than the pressure at the manufacturing line at the other end
of the pipe. This make sense; as the fluid gets lower it loses gravitational potential energy (hl −ht =−2.5 m) and as it is
travelling at a constant velocity it must gain energy in the form of increased pressure.

Pt = Pl +ρg (hl −ht)

= 100×103 Pa+1500 kg m−3 ×10 m s−1 × (−2.5 m) = 62.5×103 Pa

The pressure in the holding tank must be 62.5 kPa.

Applications of Bernoulli’s Equation

Fluid Flow Out of a Tank

How fast will water flow from the outlet pipe of a tank and what does it depend on? We
can apply Bernoulli’s equation to show that it depends on the height of water above
the outlet, provided the surface area of the tank, As, is significantly greater than the
cross-sectional area of the outlet, Ao. Figure 14.6 shows such a case.

Figure 14.5 Two holes in a beaker full of fluid.
The difference in pressure between surface and
outlet creates a force that accelerates the fluid
out of the hole. The greater the pressure dif-
ference, the higher the resultant velocity of the
stream of fluid.

Figure 14.6 Speed of water flowing out a hole in a tank depends only upon the height of liquid in the tank and that
liquid’s density

Applying Bernoulli’s equation to water at the surface (subscript ‘s’) of the tank and
at the outlet (‘o’) of the tank we have

Ps +
1

2
ρv2

s +ρg hs = Po +
1

2
ρv2

o +ρg ho

Now we assume that both the surface of the tank and the tank outlet are at atmo-
spheric pressure, so

1

2
ρv2

s +ρg hs =
1

2
ρv2

o +ρg ho

If the surface area of the tank is much larger than the cross-sectional area of the
outlet, then the continuity equation suggests

vs << vo
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In other words, the speed at which the surface of water in the tank drops is much less
than the speed at which water leaves the tank outlet pipe. In this case, we have that

ρg hs ≈
1

2
ρv2

o +ρg ho

and we can neglect vs. Solving for vo gives

vo =
√

2g (hs −ho). (14.7)

This relationship between the speed of outflow (sometimes referred to as the speed
of efflux) and the distance from the liquid surface (called the head height) is known as
Torricelli’s theorem.

Plaque Deposits and Aneurysms

We have already looked at the change in pressure in a liquid when the height is un-
changed and the liquid speeds up or slows down. This has consequences for blood
vessels that are narrowed by plaque deposits, or widened at the site of an aneurysm.

In the case of narrowing (called stenosis) by plaque deposits, the blood velocity
must be increased, which decreases the pressure, and may result in further narrow-
ing, leading the artery to close entirely. When the artery is narrowed, the flow will also
become more turbulent, possibly damaging the arterial wall. To make matters worse,
the decrease in elasticity changes the wall’s vibrational characteristics, which can lead
to resonant vibrations which can dislodge the deposits.

An aneurysm is a localised, balloon-like bulge in an artery. As the radius increases
and velocity decreases, the pressure increases. As the wall is already likely to be weak-
ened, this further increases the chances of a rupture.

Problem: An aneurysm forms in a small blood vessel through which blood travels at 3 m s–1. The diameter of the

blood vessel increases by 20%. What is the increase in pressure inside this aneurysm? (ρblood= 1060 kg m–3.)

Example 14.3 Aneurysm

Solution: We will assume that the blood vessel is nearly horizontal and so we can drop the height terms in Bernoulli’s
equation. This leaves us with

P1 +
1

2
ρv2

1 = P2 +
1

2
ρv2

2

∆P = P2 −P1 =
1

2
ρ

(
v2

1 − v2
2

)
We will need to use the continuity equation to find how v1 and v2 are related.

A1v1 = A2v2

v2 =
A1

A2
v1 =

1

1.22
v1 = 0.69v1

this gives us

∆P = 1

2
ρ

(
v2

1 − v2
2

)
= 1

2
ρ

(
0.692v2

1 − v2
1

)= 0.52
1

2
ρv2

1

= 0.52× 1

2
×1060 kg m−3 × (

3 m s−1)2 = 2.48×103 Pa
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14.5 Summary

Key Concepts

continuity equation A statement of the conservation of some quantity, which in the this case is
mass. The rate at which mass enters a system is equal to the rate at which mass leaves the
system, which, for an incompressible fluid in the absence of any sources or sinks, results
in a constant volume flow rate along a closed pipe or set of pipes.

Bernoulli’s law A statement of conservation of energy for fluids. The sum of the pressure, the
gravitational potential energy per unit volume, and the kinetic energy per unit volume is
conserved along a streamline.

Torricelli’s theorem The speed of efflux through an outlet pipe is proportional to the square
root of the head height: v =

√
2g h.

Equations

F = ∆V

∆t
= Av

A1v1 = A2v2

P + 1

2
ρv2 +ρg h = constant
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14.6 Problems

14.1 A large artery has a diameter of 7 mm. This artery divides
into two identical smaller arteries, the velocity of the blood in the
smaller arteries is the same as the velocity of the blood in the larger
artery. What is the diameter of the smaller arteries?

14.2 The diameter of a blood vessel narrows by 70% due to the
presence of a plaque on the blood vessel walls.

(a) By what factor does the blood velocity increase?

(b) If the blood velocity in a normal blood vessel is 0.15 m s−1

and the systolic blood pressure is 130 mmHg, what is the sys-
tolic blood pressure in the narrowed vein (in mmHg)?

14.3 A small plastic pipe carries water horizontally at a speed of
10 m s−1. A section of the pipe bulges out so that the radius is twice
that of the rest of the pipe. If the gauge pressure in the pipe is ordi-
narily +90 kPa what is the gauge pressure in the bulge (in kPa) (the
density of water is 1000 kg m−3)?

14.4 In this example we will construct a simple model of the cir-
culatory system to investigate the rate at which cuts bleed. In
this model we will assume that blood is a Newtonian fluid at all
length scales so that the equations of fluid flow which we have
been studying will apply. We will also assume that the effects of vis-
cosity may be ignored. These will NOT be a good approximations
for real blood in capillaries as the diameter of capillaries is about
the same as the size of the red corpuscles and this has a major ef-
fect on blood flow in capillaries. However, our model will serve as
an indication of the effects of Newtonian fluid flow in circulatory
systems.

A large artery has a diameter of 7 mm and carries blood which
flows with a peak velocity of 0.15 m s−1. This vessel eventually
feeds a network of capillaries which together have an area approx-
imately 400 times that of the large artery which feeds into them.
In this model, the capillaries are identical to each other and have a
diameter of 7.5 µm.

(a) Suppose that the diastolic blood pressure is 130 mmHg at
the level of the heart and the blood velocity in the large artery
at the heart is 0.15 m s−1. What is the blood velocity in the
artery at a point 1 m below the heart? (The density of blood
is 1050 kg m−3)

(b) If the artery is severed at a at a point 1 m blow the heart, what
is the maximum velocity of blood flow from the artery?

(c) What is the blood velocity in a capillary in the capillary net
at this point (1 m below the heart)?

(d) What is the blood pressure in the capillary net at this point
(in mmHg and with the assumptions discussed above)?

(e) If a capillary is severed, what is the blood velocity leaving the
wound? (again on the basis of this model)

14.5 At what rate (Pa m−1) does the pressure need to change in
a vertical pipe filled with water to keep the velocity of the water
flowing through it constant?

14.6 A hole is punched in the side of a tank below the surface of
the fluid in it. The fluid is coming out at a speed of 7 m s−1.

(a) How far below the surface of the fluid was the hole punched?

(b) If the volume flow rate of the fluid coming out of the tank is
0.5 L min−1, what is the radius of the hole?

14.7 A hydroelectric power plant draws water from a lake whose
surface is 55 m above the turbines. It draws the water through a
pipe with radius 1.2 m. (Patm = 100 kPa, ρwater = 1000 kg m−3)

(a) If, at point A, 55 m below the surface of the lake, the pipe
is horizontal and the water is flowing through it at a rate of
9 m s−1, at what pressure is the water? (Hint: compare this
point to the surface of the lake using Bernoulli’s Law. )

(b) In order for the turbines to work most efficiently the water
should enter them at a speed of 20 m s−1. In order to achieve
this the pipe narrows to what radius just before it enters the
turbines?

(c) What is the pressure just before the water enters the tur-
bines?

(d) After passing through the turbines the water is now open to
the atmosphere again. At what speed is it traveling (assum-
ing that only a negligible fraction of the energy contained in
the flow is removed by the turbines).



15FLUID DYNAMICS OF VISCOUS

FLUIDS
15.1 Introduction

15.2 Viscosity

15.3 Turbulence

15.4 Summary

15.5 Problems
15.1 Introduction

In the last chapters we ignored friction within the fluid, and between the fluid and the
material it was flowing past. Ignoring this friction is not a valid assumption in many
cases. When blood or other fluids are injected into a person’s vein, they need to go
through a narrow-diameter needle, providing a large amount of friction and resistance
to fluid flow. Work needs to be done against this friction, and there needs to be a force
creating a pressure difference between the two ends of the needle to keep the fluid
moving. The fluid viscosity also influences how readily the flow ceases to be smooth
and laminar.

Figure 15.1 A viscous fluid experiences shear
forces between layers of flow. This results in non-
uniform flow speeds throughout the cross section
of a flow.

In this chapter we will see how friction affects fluids by investigating fluid viscosity
and turbulence.

Key Objectives

• To understand what viscosity is.

• To understand the relationship between the viscosity, pressure and flow rate.

• To develop a qualitative understanding of turbulent fluid flow.

15.2 Viscosity

When a shear stress is applied to a solid it causes it to deform. We saw in Chapter 10
that a given shear stress will result in a certain amount of deformation or shear strain
within a solid. If we apply a constant shear stress to a solid, we will have a constant
shear strain. To increase the amount of deformation of a solid we need to increase the
amount of shear stress. When the shear stress is removed, the solid returns to its initial
shape.

Shear stresses have a different effect on fluids; in fact, this is a useful definition of
a fluid. When a shear stress is applied to a fluid, it causes it to flow, that is, to deform
continuously.

Imagine a layer of fluid between two plates. If we apply a force F over an area A to
give a shear stress of F

A , the fluid deforms at a constant rate as long as this shear stress
is applied. The longer this shear stress is applied, the greater the deformation.

Viscosity is the resistance of the fluid to flow. We define it by finding the shear
stress required to generate a shear-strain rate of one per second. (If you’re thinking
‘one what?’, remember that strain is dimensionless – it is a ratio of distances.)

Figure 15.2 A viscous fluid experiences shear
forces between layers of flow. These result in dif-
ferent flow rates in different parts of the fluid.

Imagine a fluid with depth L between two plates of surface area A. To cause the
top plate to move at the constant speed v , which will give us a constant shear-strain
rate, we need to apply a steady force F to the top plate which just balances the kinetic
friction force of the fluid on the plate. To keep the lower plate stationary, an equal and
opposite force needs to be applied to it, so a shear stress of F

A to the fluid causes the top
layer of fluid to move at a velocity v , whilst the bottom layer of fluid is stationary. The
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shear strain in the fluid is constantly increasing, and the rate of increase of shear strain
is equal to the change in strain, divided by the time interval ∆t :

Rate of change of strain = ∆x/L

∆t
= v

L
(15.1)

It is found experimentally that for some fluids the shear stress is proportional to
the shear strain rate, and the proportionality constant is the fluid viscosity, η. (η is the
Greek letter eta.)

F

A
= η

v

L
(15.2)

Viscosity is a property of the fluid. Fluids with high viscosity do not flow readily; a
large shear stress is required to produce a given shear strain rate or flow rate. Fluids
with a low viscosity, e.g. water, flow readily. Viscosity has units of N s m−2, which is
equivalent to Pa s. The poise, a non-SI unit, is sometimes used instead, where 1 N s m−2

= 10 poise.

Poiseuille’s Law

Flow of a viscous fluid along a pipe, whether that is a water pipe, an artery or a hypoder-
mic needle, requires a pressure difference to overcome the fluid’s viscosity. Anyone who
has ever had a thickshake knows that it is much harder to suck through a straw than a
glass of cola is, and they often come served with a larger diameter straw. The narrower
the pipe, the larger the required pressure difference, and the longer the pipe the larger
the required pressure difference. The higher the viscosity of the fluid the larger the re-
quired pressure difference. All of these are related quantitatively by Poiseuille’s law.
This states that the volume flow rate, F , for a fluid of viscosity η through a cylindrical
pipe of length l and radius r , when the pressure difference between the ends is ∆P is

F = ∆Pπr 4

8ηl
(15.3)

Problem: A drug is being delivered into a patient’s arm at a rate of 10 mL min–1. The drug is being delivered from

a syringe through a 5 cm long needle with an internal diameter of 1 mm. If patient’s blood pressure is 110 mmHg

(+15.0 kPa gauge pressure, and ignoring the variation from systolic to diastolic), what must the pressure in the sy-

ringe be? (ηdrug = 8.90×10–4 Pa s)

Example 15.1 Drug delivery

Solution: The volume flow rate is given in non-standard units so we will need to convert into SI units.

F = 10×10−3 L min−1 × 1×10−3 m3L−1

60 s min−1
= 1.67×10−7 m3s−1

To solve this problem we use Poiseuille’s law:

F = ∆Pπr 4

8νl

∆P = 8Fνl

πr 4
= 8×1.67×10−7 m3s−1 ×8.90×10−4 Pa s×0.05 m

π× (
0.5×10−3

)4
= 300 Pa

Which means the pressure in the syringe must be 300 Pa larger than that in the vein, or at 15.3 kPa gauge pressure.

Blood Viscosity

Blood is a heterogeneous mixture, not a simple liquid, as the blood cells are physically
separate from the plasma. As a result of this, its behaviour is more complicated than
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a simple proportional relationship between shear stress and strain rate. Its viscosity is
not constant, but depends on a number of factors.

The hematocrit is the volume fraction of the blood composed of red blood cells. A
higher hematocrit leads to a higher viscosity. In general this will lead to higher blood
pressures, as a greater blood pressure is required to push the blood through the circu-
latory system. Males in general have a higher hematocrit (47% versus 42% for women)
and hence have higher blood viscosity. This is a possible factor in their higher rates of
hypertension (high blood pressure) and consequently greater risk of heart disease and
strokes.

At high altitude, the number of red blood cells is increased – this is one of the body’s
responses to hypoxia, an inadequate supply of oxygen. This leads to higher blood vis-
cosity, higher blood pressure and a greater risk of complications arising from raised
pressure and reduced flow velocity.

The heterogenous nature of blood means that, unlike a simple liquid, its viscosity
also depends on the velocity of flow. There is a positive-feedback loop between blood
velocity and viscosity at low blood speeds. At high blood speeds, the blood cells do not
group together, and the blood behaves like a low-viscosity mixture of two liquids. At
low blood speeds, there is a greater risk of red blood cells stacking, causing the blood to
behave like solid particles suspended in a liquid, giving a higher viscosity. The higher
viscosity leads to slower flow speeds and more stacking in a positive feedback loop. This
can happen in anaphylactic shock, when release of histamine into the blood vessels
causes the vessels to dilate; the increased cross-sectional area causes a reduction in
flow speed, stacking of red blood cells, and an increase in viscosity. The increase in
viscosity further slows the blood flow, resulting in more red-blood-cell stacking and a
further increase of viscosity.

15.3 Turbulence

Figure 15.3 Laminar flow is characterised by
straight or smoothly curved flow lines. Given
the right conditions flow can become turbulent,
in which flow is complex and mixing occurs

So far, we have been concerned only with laminar flow, where the fluid flows in smooth
layers without mixing. When the velocity of a fluid is increased, the flow becomes more
complex, with mixing between layers and eddies, where the flow is in a different di-
rection to the net fluid flow (see Figure 15.3). The speed at which the flow becomes
turbulent depends on the viscosity of the fluid, the density of the fluid and the dimen-
sions and shape of the pipe it is flowing through. We can define a single, dimensionless
number which takes account of all of these properties and determines whether the
fluid flow is laminar or turbulent. This number is known as the Reynolds number, Re,
and is defined as

Re = ρvL

η
(15.4)

where ρ is the fluid density, η is the fluid viscosity and L is a characteristic length, which
is chosen by convention and depends on the shape. For flow through a pipe with a
circular cross section, this may be the diameter or the radius, so frequently a subscript
is used to indicate the dimension that was chosen. Any examples in this book will use
diameter of the pipe the fluid is flowing through for L.

For fluid flow in a closed pipe, if Re is less than 2000, the flow is laminar, and if Re is
more than about 3000, the flow is turbulent.

Problem: A drug is being delivered into a patient’s arm at a rate of 319 mL min–1. The drug is being delivered from

a syringe through a needle with an internal diameter of 1 mm. This drug has a density of 1050 kg m–3. Is the flow

laminar or turbulent? (ηdrug = 8.90×10–4 Pa s)

Example 15.2 Reynolds number
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Solution: The velocity of the fluid must be found from the flow rate and needle size before the Reynolds number can
be calculated

F = 319×10−3 L min−1 × 1×10−3 m3L−1

60 s min−1
= 5.32×10−6 m3s−1

and so the velocity of the fluid through the needle is

v = F

A
= F

πr 2
= 5.32×10−6 m3s−1

π× (
0.5×10−3 m

)2
= 6.77 m s−1

The Reynolds number for this fluid flow is

Re = ρvL

η

= 1050 kg m−3 ×6.77 m s−1 ×1×10−3 m

8.90×10−4 Pa s
= 8000

This is above the cutoff point for turbulent flow.

15.4 Summary

Key Concepts

viscous fluid A viscous fluid is one where we cannot ignore the effects of friction within the fluid
and between the fluid and neighbouring interfaces.

viscosity (η) A measure of the internal friction of a fluid. It is a property of a particular fluid, and
is a measure of the fluid’s resistance to flow. The viscosity has units of N s m−2, which are
the same as Pa s.

Poiseuille’s law The volume flow rate of a viscous fluid along a pipe is proportional to the pres-
sure difference and pipe radius to the power of four, and is inversely proportional to the
viscosity and pipe length.

turbulent flow Non-laminar flow. The flow is irregular and complex, with mixing and eddies.
This occurs at higher velocities or where there are objects in the flow producing large
changes in velocity.

Reynolds number (Re) A dimensionless quantity that allows us to distinguish between laminar
and turbulent flow.

Equations

F

A
= η

v

L

F = ∆Pπr 4

8ηl

Re = ρvL

η
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15.5 Problems

15.1 Blood in large arteries and veins may be treated as a Newto-
nian fluid, which means we are able to ignore the effects of the cel-
lular material in blood on blood flow. The viscosity of blood with a
normal red blood cell count is 2.7×10−3 N s m−2. Suppose we are
considering blood flowing at a speed of 0.3 m s−1 in a large blood
vessel with a radius of 2 mm.

(a) What is the pressure drop along a 2 cm length of this blood
vessel?

(b) At approximately what velocity will the blood flow defi-
nitely be turbulent (take the density of blood to be 1050 kg m−3)?

15.2 Saline solution is delivered into a patient’s vein through a nee-
dle. The saline solution has a viscosity of 0.37× 10−3 N s m−2, a
density of 1060 kg m−3, and is delivered through a 7 cm long nee-
dle with an internal diameter of 0.24 mm directly into the patient’s
vein in which the blood pressure is 130 mmHg. The saline solu-
tion must be delivered at a flow rate of 0.04× 10−6 m3s−1. How
high must the saline solution be suspended in order to achieve this
flow rate? (Ignore variations between systolic and diastolic blood
pressure when doing this question. Also assume that the viscosity
of the saline solution is low enough that it does not affect the flow
of the solution through the IV tube, only the needle itself.)

15.3 The viscosity of cerebrospinal fluid is 0.8 × 10−3 N s m−2.
What pressure difference is required to produce a cerebrospinal

fluid flow rate of 0.1 m s−1 in 1 cm long tubes of the following di-
ameters: 1 mm, 5 mm, 1 cm?

15.4 A small blood vessel near the skin surface has a radius of
10 µm, a length of 1 mm and the pressure drop along the blood
vessel is 2.5 Pa (about 19 mmHg). The viscosity of blood is 2.7×
10−3 N s m−2.

(a) What is the volume flow rate of blood through this blood
vessel? What is the velocity of blood flow?

(b) Vasodilation causes the radius of this blood vessel to in-
crease to 12 µm, while leaving the pressure drop along the vessel
unchanged. What is the volume flow rate through this blood vessel
now? What is the velocity of blood flow?

15.5 Water flows via gravity from a high water tank to a point on the
ground some distance away through a hose of diameter 1 cm and
length 100 m. How high must the tank be for the flow rate to equal
1 L min−1? (ηwater = 8.90 × 10−4 Pa s, ρwater = 1000 kg m−3)

15.6 With what minimum speed would blood need to travel
through a small blood vessel with a radius of 1 mm before the flow
was turbulent? (ηblood = 2.7×10−3 Pa s, ρblood = 1050 kg m−3)

15.7 If the blood vessel from Problem 15.6 had water flowing
through it instead of blood, approximately what minimum speed
would the flow become turbulent?
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16MOLECULAR TRANSPORT

PHENOMENA
16.1 Introduction

16.2 Diffusion

16.3 Osmosis

16.4 Applications to Biological Systems

16.5 Summary

16.6 Problems16.1 Introduction

Things begin to move only when they experience an unbalanced force of some kind.
The transport of mass, energy, momentum or electricity requires a driving force. Through-
out this book we have looked at, and will continue to look at, transport phenomena,
even though we don’t often call them that specifically. In this chapter, we wish to intro-
duce one kind of transport – transport of mass in the form of individual molecules.

This process has more in common with viscous fluid flow than is apparent at first
glance; the viscosity of a fluid is related the rate at which momentum ‘diffuses’ in re-
sponse to a velocity gradient, and the diffusion constant is related to the rate at which
mass is transferred in response to a concentration gradient.

Our goal here is the brief introduction of diffusion and osmosis, which are both
important in biological systems, but on the way we will point out how diffusion is anal-
ogous to other processes that we cover in this book.

Key Objectives

• To understand diffusion.

• To understand osmosis and osmotic pressure.

• To be able to use Fick’s Law to understand the rate of diffusion of a gas through a
membrane.

16.2 Diffusion

Figure 16.1 Diffusion results in a net movement
of molecules from regions of high concentrations
to regions of low concentrations. At time tA a dis-
solved solute is confined to one half of a volume
of fluid. When the barrier is removed at tB the
random movement of molecules of solute results
in a net movement of these molecules across the
imaginary line where the barrier used to be. As
time progresses and the concentration of solute
on the right increases the net rate of movement
of solute across our imaginary line gets lower.
At time tD the concentrations of solute are equal
in both halves of the volume and the net rate of
movement across the imaginary line is zero.

If you were to take all the oxygen molecules in a room and crowd them into one cor-
ner, leaving the nitrogen molecules uniformly spread throughout the room and then
release them, then eventually these oxygen molecules would be evenly spread out too.
The process by which these oxygen molecules spread out uniformly throughout the
nitrogen-filled room is known as diffusion – the net migration of molecules from a re-
gion of high concentration to a region of low concentration (see Figure 16.1).

Diffusion is a transport process which often occurs in conjunction with convection.
Particles of liquids, solids and gases undergo spontaneous movement due to thermal
motion and tend to intermingle, which results in the movement of molecules from re-
gions of higher concentration to those with lower concentrations. Diffusion is respon-
sible for the transport of oxygen from the air in the lungs into the bloodstream. The
process of dialysis to cleanse the blood and eliminate waste products that is performed
by the kidneys, or by machines for patients with impaired kidney function, is a diffu-
sion one.

We will simply state without proof that the average distance xrms travelled by a
molecule of type A in a space filled with type B molecules in a time t is given by

xrms =
√

2DABt (16.1)
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where DAB is the diffusion constant for type A molecules diffusing through a substance
B. The diffusion constant has units of m2 s−1.

The rms subscript

The subscript ‘rms’ used on the average dis-

tance xrms stands for ‘root mean square’. This

is a kind of statistical measure that is of-

ten more relevant than the straight average.

Consider the sine function – it has a posi-

tive value and a negative value equally of-

ten, so over an interval with a whole num-

ber of cycles, the average is zero. The

rms value isn’t zero. sin(x) has an rms

value of 1/
�

2 over a cycle. The mathemat-

ical definition for a collection of N values is

xrms =
√

(x2
1 + x2

2 + x2
3 + . . .+ x2

N )/N , that is,

the square root of the mean of the squared

quantity.

Fick’s Law

Flux

The flux is the amount of something trans-

ported per unit area per unit time. This can

be used to describe the amount of anything

– mass, energy, number of charges – that

passes through some area each second. The

diffusive flux is measured in kilograms (or

moles) per square metre per second.

Key concept:

Fick’s Law states that the rate of diffusion of one material through another is propor-
tional to the gradient of its concentration.

This is typically stated mathematically as

JA =−DAB
∆cA

∆x
(16.2)

where JA is the diffusive flux (see the margin note), DAB is the diffusion constant for A
travelling through B, and the last term is the concentration gradient, that is, how rapidly
the concentration changes with distance. The negative sign indicates that the direction
is from high concentration to low.

This can be used to produce a form of Fick’s Law useful in biological situations. For
transport of gas across a membrane:

rate of diffusion = AD

d
(P1 −P2) (16.3)

where P is the partial pressure of the gas in question on a given side of the membrane,
d is the membrane thickness, A is the surface area of the membrane and D is the diffu-
sion constant, which will depend on the molecule and membrane. We will cover partial
pressure of gases in the Thermodynamics topic.

Relationship to Other Transport Processes

The way mass in the form of molecules diffuses from high to low concentration is anal-
ogous to some other transport processes that we will cover later in the book, namely
thermal conduction and electrical conduction.

The flux of thermal energy, how much energy is transported per unit area per unit
time, depends on the temperature gradient and the thermal conductivity, k (see Equa-
tion (21.1)).

The movement of electrical charges is also similar in nature. Charges move in re-
sponse to a gradient of electrical potential, and the proportionality constant in this case
is the electrical conductivity. Ohm’s Law, which we most often use in the form V = I R
(and we will encounter in Electricity and DC Circuits as Eq. (27.6)) can be written in
form like Eq. (16.2).

16.3 Osmosis

Osmosis is the diffusion of water through a semipermeable membrane, from high to
low concentration (as in Figure 16.2. A semipermeable membrane is a one through
which only some smaller molecules, such as water, can pass.

Osmosis regulates the movement of water across cell membranes. If a cell is placed
in a hypotonic solution (one with lower solute concentrations and hence higher water
concentration than the cell), water will move by osmosis into the cell causing the cell
to swell and eventually rupture. If a cell is placed in a hypertonic solution (one with
higher solute concentration and hence lower water concentration than the cell), then
water will move by osmosis out of the cell, resulting in dehydration of the cell.

Figure 16.2 Osmosis across a semipermeable
membrane causes the level of water in the region
containing a dissolved solute to rise Osmotic Pressure

If we have a semipermeable membrane with water in higher concentration on the right,
so it has less solute dissolved in it, the concentration gradient will cause water to move
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from right to left (Figure 16.2 (top)). As water moves to the left side of the membrane,
the pressure in the left-hand compartment will rise above that in the right. This pres-
sure difference will tend to cause water to move from left to right. Water molecules
will continue to move in this way until the pressure difference becomes high enough
that water movement to the right due to the pressure difference matches the water
movement to the left due to the concentration difference. This is shown in Figure 16.2
(bottom).

The pressure difference at which there is no net movement of water across the
membrane is known as the relative osmotic pressure. If one solution is pure water,
the back pressure that stops osmosis is called the osmotic pressure. Also, the applica-
tion of a pressure difference by some external agent can alter the diffusion rate across
the membrane. Applying sufficient pressure will result in reverse osmosis. This is one
technique used for the desalination of sea water. The fresh water at the Scott Base, New
Zealand’s Antarctic station, is supplied by a reverse osmosis system.

Problem: The diffusion constant of oxygen through water is an important limiting factor in the size of biological

organisms that do not have active transport mechanisms to circulate oxygen through their systems. The diffusion

constant of oxygen through water is 8×10–10 m s–1. On average, how long will it take an oxygen molecule to diffuse

1 mm through water?

Example 16.1 Diffusion

Solution: The rms distance that a given molecule will diffuse in a given time is given by

xrms =
√

2DABt

In this case DAB = DO2H2O = 8×10−10 m s−1 and xrms = 1×10−3 m. We can rearrange the equation to give

t = x2
rms

2DO2H2O
=

(
1×10−3 m

)2

2×8×10−10 m s−1
= 625 s

16.4 Applications to Biological Systems

Diffusion and the Lung

One example of how Eq. (16.3) is applicable to the human body is in the lung. Oxy-
gen diffuses into the bloodstream through the alveoli walls. Any medical condition
that acts to thicken the barrier and increase d (such as inflammation, or a buildup of
mucus caused by cystic fibrosis) will reduce the lung’s ability to oxygenate the blood.
Emphysema, a condition that destroys the alveolar walls, reduces the surface area (A)
available for diffusion, and causes breathing problems.

Contact Lenses and Diffusion

Unlike other cells in the human body, the cornea has no blood supply, and receives
its oxygen via diffusion from the air. Contact lenses block this to a degree. Conven-
tional contact lenses only allow oxygen to be delivered to the cornea by allowing some
oxygen-rich tear fluid under the lens when it moves during blinking. At night, they
need to be removed. All-day lenses are made of a material through which oxygen can
diffuse, and so they can be worn at night without depriving the cornea of oxygen.
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16.5 Summary

Key Concepts

diffusion The net transport of molecules from a region of higher concentration to one of lower
concentration.

osmosis The diffusion of a solvent (usually water) from solution with low solute concentration
to one with higher solute concentration through a semipermeable membrane.

Equations

xrms =
√

2DABt

rate of diffusion = AD

d
(P1 −P2)
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16.6 Problems

16.1 An experiment is performed to determine the diffusion con-
stant of ants on a smooth tabletop. A handful of ants is placed in
the centre of a large flat tabletop and a photograph of the tabletop
is taken 1 minute after the ants are released. The number of ants
within 5 cm concentric bands are counted and the numbers are
recorded below. (Hint: use the inner radius of each zone to solve
this problem and lookat the text box on page 146 entitled ’The rms
subscript’)

(a) What is the average displacement of the ants?

(b) What is the rms displacement of the ants?

(c) What is the diffusion constant for ants on a tabletop?

Number of Ants Inner radius of circular band (in cm)

3 0
5 5

15 10
19 15
37 20
23 25
11 30
1 35
0 40
0 45
2 50

16.2 The size of spherical aerobic bacteria is limited by the rate
at which oxygen diffuses through water. A bacterium with a ra-
dius greater than about 10 µm is not able to obtain enough oxygen
from the surrounding water to sustain itself. Given that the diffu-
sion constant of oxygen in water is 8×10−10 m2 s−1, how long does
it take oxygen in water to diffuse an rms distance of 10 µm?

16.3 The diffusion constant of ATP is 3×10−10 m2 s−1. How long
would it take for ATP to diffuse across an average cell (about 20 µm
across)?

16.4 A cylinder of water contains oxygen in solution. The cross-
sectional area of the cylinder is 2 cm2 and the length of the cylin-
der is 5 cm. At one end of the cylinder the concentration of oxygen
is maintained at 0.2 mol m−3, this concentration falls linearly to
0.05 mol m−3 at the other end of the cylinder. The diffusion con-
stant of oxygen in water is 8×10−10 m2 s−1. How many moles of
oxygen pass down this cylinder every second? What mass of oxy-
gen passes down the cylinder each second?

www.wiley.com/go/biological_physics 157



16 · MOLECULAR TRANSPORT PHENOMENA

158 www.wiley.com/go/biological_physics



III

Thermodynamics
Thermodynamics is the study of thermal energy, its movement, and its transformation.
In the following chapters we will develop a quantitative understanding of thermal en-
ergy, heat and temperature, and how thermal energy is exchanged between different
systems, especially the body. We will also focus on how these concepts are important
for understanding human metabolism and how we interact with our environment. The
human body operates within only a narrow temperature range because the rates of the
biochemical reactions that sustain our lives, and the conformation of the many pro-
teins in our bodies, rely on this. In this topic we will look at the regulatory processes
that keep our core body temperature constant despite the changes in our external en-
vironment.

The following chapters will cover a wide range of topics: the fundamental concepts
of temperature, thermal energy and thermal equilibrium; the properties of gases; the
relationship between thermal energy and the states of matter; the properties of water-
vapour/air mixtures; the transfer of heat between systems and the factors that affect it;
and how these things are relevant to the human body.
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17TEMPERATURE AND THE ZEROTH

LAW
17.1 Introduction

17.2 Thermal Equilibrium

17.3 Measuring Temperature

17.4 Thermal Expansion of Materials

17.5 Summary

17.6 Problems17.1 Introduction

Temperature is an important property for the body because it is a sensitive indicator
of health status. In this chapter we will introduce the concept of temperature by look-
ing at temperature scales, temperature measurement, and how materials expand and
contract in response to temperature changes.

Key Objectives

• To develop an understanding of temperature and how we measure it.

• To understand the concept of thermal equilibrium.

• To be able to calculate amounts of thermal expansion.

17.2 Thermal Equilibrium

Defining Temperature

Temperature is a measure of how hot or cold something is. There are several ways to
describe what it is. A good starting point for understanding temperature is from the
laws of thermodynamics. The law that defines temperature was not identified as such
until after the other laws of thermodynamics, but was considered in many ways to be
more fundamental, so it has become known as the zeroth law.

First, we need to take a look at the concept of thermal equilibrium. When two
systems are in equilibrium, they are balanced in some way; they share a property.
When systems are in thermal contact, they exchange energy until an equilibrium state
is reached, and no more net energy transfer occurs. The zeroth law of thermodynam-

ics states it in this way: if two systems, A and B, are in thermal equilibrium and a third
system, C, is in thermal equilibrium with A, then it is also in thermal equilibrium with B.
The property that the systems share is called temperature. When we use a thermome-
ter we place it in contact with an object and allow it reach thermal equilibrium so it has
the same temperature as the object. We can therefore say, for all practical purposes,
temperature is what a thermometer reads.

Thermal Energy, Equilibrium and Heat

On a microscopic level, the atoms and molecules of matter are in constant motion.
Any gas, liquid or solid has an amount of kinetic energy associated with this random
motion. There is also energy associated with the rotational and vibrational motion of
atoms within molecules. All together this energy is the thermal energy. The thermal
energy of an object depends on the number of molecules in the object and molecular
composition, as well as the object’s temperature. At higher temperatures, the randomly
moving atoms and molecules of an object move faster and the thermal energy is higher.

Introduction to Biological Physics for the Health and Life Sciences Franklin, Muir, Scott, Wilcocks and Yates
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In Chapter 18 we will see that the thermal energy of the atoms of an ideal gas depends
entirely on its temperature.

When two objects at different temperatures are placed in contact, collisions occur
between the molecules in the two objects. In these collisions, some thermal energy is
transferred. The result of many collisions is that thermal energy is transferred from the
hotter object to the colder object. The thermal energy that is transferred in this way
from a hot object to a cold object is known as heat. The movement of thermal energy
due to a temperature difference is known as heat transfer. Heat transfer between the
objects continues until the objects are at the same temperature. When the objects are
at the same temperature they are said to be in thermal equilibrium.

The triple point

The triple-point temperature of a pure sub-

stance is the unique temperature at which the

three phases – solid, liquid and vapour – are in

equilibrium. We will look at this in Chapter 19.

Thermal equilibrium is a dynamic equilibrium as collisions between molecules con-
tinue to transfer thermal energy. At thermal equilibrium, equal amounts of thermal
energy are being transferred in each direction.

Temperature Scales

The SI unit of temperature is the kelvin, symbol K, and it is one of the seven base units
of the SI system, i.e., it is one of the fundamental units in terms of which other units are
defined. The Kelvin scale is defined by two points: absolute zero (the temperature at
which all thermal motion theoretically ceases) is defined to be 0 K, and the triple point
of water (see margin note) is defined to be at 273.16 K. A 1 K temperature change is thus
1 part in 273.16 of the difference between these two points.

The Celsius scale (once known as the centigrade scale) is a temperature scale on
which the freezing point of water is at zero degrees Celsius and the boiling point is at
one hundred degrees Celsius when the environmental pressure is one atmosphere. It
uses the symbol °C and was devised by Anders Celsius (1701–1744). A change of 1 °C
is the same as a change of 1 K. As the triple point of water is at 0.01 °C,

0 K =−273.15 °C (17.1)

273.16 K = 0.01 °C (17.2)

Figure 17.1 Comparison of the common tem-
perature scales.

The Fahrenheit scale is a temperature scale on which the freezing point of water is
32 degrees Fahrenheit and the boiling point is 212 degrees Fahrenheit, putting them 180
degrees apart. The symbol is °F. The original scale, devised by Daniel Gabriel Fahrenheit
in 1724, used a mixture of ice, water and ammonium chloride to define the 0 °F temper-
ature point. The reason for choosing this mixture, which has a temperature lower than
the freezing point of water, is that it is an example of a frigorific mixture. A frigorific
mixture is one which maintains a constant temperature as long as all components of
the mixture are present. This temperature is independent of the starting temperature
of the component of the mixture.

Temperature Conversion

T in kelvin = T in ° C + 273.15 K

T in °C = T in kelvin – 273.15 °C

T in °F = 9
5 T in °C + 32 °F

T in °C = 5
9 (T in °F –32 °C)

The human body is 70% water, and water is an important substance in the human
environment. The Celsius scale, which has the freezing and boiling points of water at
such easy-to-remember positions, is typically the most convenient scale for everyday
purposes – measuring the temperatures of rooms, people, refrigerators, ovens and so
on. (The Fahrenheit scale is rarely used outside the US.) It is also frequently the case
that even when we are performing scientific calculations, we are still able to work with
temperatures in Celsius, provided we are dealing with situations where only the tem-
perature change matters, as the change has the same numeric value whether the units
are °C or K. All the key formulae throughout this section of the book use SI units, so
putting temperature in kelvin will always work (with the obvious exception of formu-
lae that are for converting from one temperature scale to another).

Units in calculations

To save some time and effort, though, you can

remember that you might not need to convert

numbers from °C to K if the formula you are

working with has a ∆T for change in temper-

ature. If the formula uses only a T , you must

use kelvin, as it almost certainly refers to ab-

solute temperature.
17.3 Measuring Temperature

The Thermometer

Now that we have defined what temperature is, we will look at how we can measure it.
The scales that were defined in the previous sections were created by defining the tem-
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perature at two (or more) reference points and interpolating a linear scale (i.e., equally
spaced degrees). To measure temperatures in between, we use a thermometer, which
is something that has a property that varies with temperature. By measuring this prop-
erty, and interpolating between the fixed points, we can measure other temperatures.

In theory, any property of a material, system or device that has a unique value at
each temperature in the range of interest can serve as a thermometer. Some examples
of useful properties are the volume of a liquid, the pressure of a fixed volume of gas, the
intensity of emitted radiation, the equilibrium vapour pressure of a liquid–gas mixture
and electrical resistance.

Thermometers that are based on a fundamental physical law, and so do not need to
be calibrated before use, are called primary thermometers. Most common thermome-
ters are secondary thermometers – each one needs to be individually calibrated against
another thermometer before it can be used to measure the true temperature.

The Constant-Volume Gas Thermometer

Figure 17.2 In a constant-volume gas thermometer, the volume of the air sample is held fixed by adjusting the
pressure. The change in pressure gives an accurate measure of the change in temperature.

One type of primary thermometer is the constant-volume gas thermometer, illustrated
in Figure 17.2. The gas-filled bulb of the thermometer is encased in the material whose
temperature is to be measured, thus bringing the gas inside to thermal equilibrium
with the material. The volume of the chamber is adjusted to ensure that it is equal
to a particular reference volume. The pressure inside the chamber then indicates the
temperature of the gas. This will be covered in more detail in the next chapter.

The constant-volume gas thermometer is special, because all gases (at low density)
behave the same way, and so it is used to define the linear Kelvin scale. Another ther-
mometer could have been chosen, but the fact that all gases provide the same scale sug-
gests that there is something universal and fundamental about the constant-volume
gas thermometer.

However this type of thermometer is not practical to use in many circumstances,
and achieving highly accurate readings is hampered by a number of systematic errors,
such as absorption and desorption of the gas by the walls of the chamber and thermal
expansion.

Secondary Temperature Measurements

Liquid-Filled Thermometers

Liquid-filled thermometers are still the most common, and work on the thermal expan-
sion of a liquid, usually mercury or ethanol. These thermometers contain a fixed mass
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of liquid whose volume is dependent on temperature. As the temperature increases,
the liquid’s volume increases and it moves further up the thin column inside the glass,
as shown in Figure 17.3. A linear scale on the side is marked with temperatures. Clin-
ical mercury thermometers used for taking oral temperatures have a kink in the tube
just above the mercury reservoir which prevents the mercury returning to the reservoir
until the thermometer is shaken sharply. This allows a person’s temperature to be read
after the thermometer is removed from the mouth.

Figure 17.3 A liquid-filled thermometer works on
the basis of the thermal expansion of the liquid.
Commonly used liquids are alcohol and mercury.

Resistance as a Measure of Temperature

The electrical resistance of most substances changes with temperature in a reproducible
fashion. A thermistor thermometer is a thermometer based on the temperature-dependent
resistance of a special compound within a probe (the thermistor). The temperature
probes used in many physics teaching laboratories are based on changes in resistance
(see Figure 17.4). Modern digital thermometers used for measuring oral (mouth) tem-
perature are also based on the temperature-dependent resistance of the probe. These
are sometimes preferred over mercury thermometers today due to health concerns re-
garding mercury exposure from breakages.

Figure 17.4 The electrical resistance of a resistor is temperature dependent. This dependence on temperature is
the basis for the thermistor. Thermistors can be designed to have resistance that either increases or decreases with
increasing temperature. The resistance of the thermistor illustrated here decreases with increasing temperature. In
contrast, the resistance of metals generally increases with increasing temperature.

Infrared Sensors

Tympanic thermometers are designed to measure the temperature of the ear drum.
This is a good place to measure body temperature because of the proximity of the ear
drum to the hypothalamus, the part of the brain involved in temperature control, and
their shared blood supply. Tympanic thermometers measure the infrared radiation
emitted by the ear drum. The relationship between emitted radiation and tempera-
ture will be covered in Section 21.4.

Thermal Expansion of a Bimetallic Strip

A bimetallic strip consists of a ‘sandwich’ of two different metals which expand at dif-
ferent rates as their temperatures increase. This results in the bimetallic strip bending,
with the degree of curvature of the strip being related to the temperature. Bimetallic
strips were once commonly used as switches for devices such as heaters or air condi-
tioners. In most modern devices, they have been replaced with thermistors and elec-
tronic control circuits, which are more accurate and adjustable. We will cover the ther-
mal expansion of materials in Section 17.4.

Temperature and the Human Body

Many early temperature scales used human body temperature as a standard reference
point – a practice that was abandoned long ago. Because our brains and internal organs
function well only within a narrow range of temperatures, our bodies have highly devel-
oped systems to monitor and control our temperature. Nevertheless, the temperature
of the body still varies slightly with location and time, as shown in Table 17.1. To keep
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Temperature Circumstance
Less than 33 °C Hypothermia. Metabolic processes may be affected.
35–36 °C Core temperature in early morning.
36–37.5 °C Normal range for day to day activities.
38 °C Moderate exercise.
39–40 °C Hard exercise. Unwell with fever.
More than 42 °C Hyperthermia. May cause irreversible damage to vital organs.

Table 17.1 Core temperature variation in the human body.

the internal organs within the required temperature range, the body uses thermoreg-
ulation processes to stabilise our core temperature, despite varying external tempera-
ture and activity levels. The surface temperature is normally lower than the core tem-
perature, which reduces the rate of heat loss to a surrounding cooler environment.
Both surface temperature and core temperature vary throughout the day. Core temper-
ature tends to decrease at night, whereas skin surface temperature usually increases at
night.

17.4 Thermal Expansion of Materials

Linear Expansion

Figure 17.5 A rod heated uniformly will expand
due to the increase in thermal energy of its con-
stituent atoms/molecules. This results in an in-
crease in length of the rod.

As an object is heated, its atoms or molecules move faster, tending to move further
apart, so most objects expand as they are heated (see Figure 17.5). For a solid rod of
some material, the change in length, ∆L, due to heating is

∆L = L0α∆T (17.3)

where L0 is the original length (at temperature T0), ∆T is the change in temperature,
and α is a constant associated with the particular material, known as the linear coeffi-

cient for thermal expansion. The expansion coefficient is a measure of the fractional
change in length per degree of temperature change, and so has the units °C−1or K−1.
Table 17.2 gives some coefficients for various materials. The equation above gives the
change in length, so the final length at temperature T0 +∆T is L0 +∆L.

Problem: The Waitaki bridge (North Otago, New Zealand) is a concrete structure, 0.9 km long. The summer-winter

temperature extremes are 0 °C and 30 °C. α = 12 × 10–6 °C–1 (the same as steel). What is the seasonal change in

length?

Example 17.1 Linear thermal expansion

Solution:

∆L = L0α∆T

∆L = 900 m×12×10−6 °C−1 ×30 °C = 0.324 m

To accommodate this length change, many expansion joints are needed.

Expansion in Two and Three Dimensions

When a flat plate of some material is heated, it expands in both directions at once (see
Figure 17.6). At the initial temperature T0, a square plate with sides of length L0 has an
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Thermal Expansion Coefficients, at 20 °C
Material Linear (α), ×10−6 °C−1 Volume (β), ×10−6 °C−1

Aluminium 23 69
Brass 19 57
Concrete 12
Copper 17 51
Ethanol 750
Gasoline 950
Water 207
Fused quartz 0.59
Glass 9
Ice (at 0 °C) 51
Lead 29 87
Mercury 182
Pyrex glass 3.2
Steel 11–13 (varies with composition) 33–39
Gold 14.2
Amalgam filling 15–35 (depends on alloy)
Composite filling 19–57 (varies with composition)
Tooth Enamel 17
Invar 1.2

Table 17.2 Expansion coefficients of some materials. As α is determined from β(= 3α) for liquids, it is more common
to quote the volume coefficient than the linear coefficient. [Values from Wikipedia.]

area L2
0. When the plate is heated to temperature T0 +∆T , the new area will be

Anew = (L0 +∆L)2

= L2
0 +2L0∆L+ (∆L)2

= A0 +2L0∆L+ (∆L)2

so the change in area is

Figure 17.6 When a plate is heated uniformly,
each side expands, and the total area of the plate
increases.

∆A = 2L0∆L+ (∆L)2 = 2L0(L0α∆T )+ (∆L)2

As ∆L2 is often small enough to ignore,

∆A ≈ A0(2α)∆T (17.4)

This indicates that the coefficient of surface thermal expansion is 2α. Similarly, for
isotropic materials, the coefficient of volume thermal expansion, given the symbol β,
is 3α

∆V =V0β∆T (17.5)

Imagine a plate with a hole cut out of it. As the plate is heated, the hole in the
plate will actually expand in exactly the same way as the piece of the material that was
removed to make the gap; the removed segment would expand, so the hole expands
also, provided the plate is heated uniformly, as in Figure 17.7.

Examples of Thermal Expansion

From ice cream to hot coffee, our teeth are exposed to temperatures ranging from be-
low 0 °C to over 70 °C. If dental fillings had a different coefficient of thermal expansion
to tooth enamel, the join between the tooth and the filling would tend to fail, with a
high risk of pain and filling loss. Materials for dental fillings are chosen to have coeffi-
cients of thermal expansion similar to tooth enamel.
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Figure 17.7 When a plate is heated uniformly, each section expands by the same percentage, so any holes expand
in the same fashion.

Problem: Suppose the temperature of the sea increases by 2 °C throughout. The mean depth of the ocean is 3.8 km.

By how much will sea-level rise? Assume the surface area stays the same, so that all the increase in volume appears

as raised surface level.

Example 17.2 Volume thermal expansion

Solution: If all the increase in volume appears as raised surface level, then the fractional change in depth will be given
by the volume expansion coefficient.

∆V =V0β∆T

V0 = Ah0 and ∆V = A∆h

so ∆h = h0β∆T

The volume expansion coefficient, β, is 207×10−6 °C−1 at 20 °C, so

∆h = 3800 m×207×10−6 °C−1 ×2 °C = 1.6 m

Something to think about: When would we use one-third of the volume expansion coefficient?

The coefficients of linear thermal expansion of concrete and steel are similar. Steel-
reinforced concrete is a common construction material, and the similarity of the rates
of thermal expansion is one of the factors that makes it so useful.

One of the major factors that will contribute to the rise in sea level if the global av-
erage temperature continues to rise is the volume expansion of the oceans.

Problem: What happens to the gap when this C-shaped piece of metal is heated uniformly all over?

Example 17.3 Surface expansion

Solution:

The gap will get bigger provided the C-shape is heated uniformly all over. You can envis-
age this by considering what would happen if you heated a single sheet of metal with the
C-shape drawn on it. All the metal inside the C would expand as it is heated. So if we now
cut the C-shape out of this sheet, the same results would be obtained. The gap would
expand, just as if it had the original metal in it. If, on the other hand, just the arms of the
‘C’ were heated selectively, then the gap would tend to close.
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Problem: A long, hollow cylinder, closed at one end, is held vertically and contains some ethyl alcohol. The height of

the ethyl alcohol in the cylinder is 50 cm. How much will the height of the ethyl alcohol increase if the temperature

of the ethyl alcohol increases by 10 °C? (Assume that the change in the diameter of the cylinder is negligible and that

the average value for the volume coefficient of expansion of ethyl alcohol is 750×10–6 K–1)

Example 17.4 Expansion of a fluid-filled cylinder

Solution: We can use the following equation to find the change in volume of the ethyl alcohol in terms of its initial
volume, the volume expansion coefficient and the change in temperature

∆V =V0β∆T

This is not, however what the question asks for. We are required to find the change in height of the ethyl alcohol in
the cylinder. We can find the height of by using the fact that the volume of a cylinder is Vcylinder = Ah, where A is the
cross-sectional area of the cylinder, and h is the height of the cylinder. Of course we don’t know the crosssectional area
of the cylinder, or the initial volume of the ethyl alcohol. But we can combine the two equations to generate a useful
expression

∆V = A∆h and V0β∆T = Ah0β∆T

so A∆h = Ah0β∆T

and ∆h = h0β∆T

Now that we have an expression in which only one quantity is unknown we can solve for the change in height

∆h = h0β∆T = 0.5 m×750×10−6 ×10 K = 0.0038 m = 0.38 cm

Figure 17.8 Water is most dense at about 4 °C. [Data source: ASHRAE Fundamentals Handbook, 2001.]

Anomalous Thermal Expansion of Water

The volume of water increases with increasing temperature above about 4 °C, but below
this, the volume increases with decreasing temperature, leading to the odd situation of
water being most dense at 4 °C. This can be seen in the graph in Figure 17.8 and means
that the temperature of a body of water may in fact be warmer at the bottom than at
the surface. It is also one of the few substances, and the only non-metallic one, that
is generally less dense in its solid form than its liquid, so ice floats on water and lakes,
and rivers don’t freeze from the bottom up. (There are 15 different forms of solid ice
known, although most occur only at very high pressure. Two of these are more dense
than water; the common form, hexagonal crystalline, is less dense.)
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Problem: A fresh-water lake 10 m deep is covered with ice 10 cm thick. The temperatures of the top and the bottom

of the water (respectively) could be: (a) 0 °C, –1 °C; (b) 0 °C, 4 °C; (c) 4 °C, 0 °C; (d) 0 °C, 10 °C; (e) none of these.

Example 17.5 Thermal expansion of water

Solution:

(a) Wrong because the water at the bottom would be frozen if the temperature were –1 °C.

(b) Correct. We can have ice at 0 °C, and water at 4 °C would be more dense than water between 0 °C and 4 °C, so it
would tend to sink to the bottom.

(c) Wrong because the ice would melt at 4 °C.

(d) Wrong because at 10 °C the density of the bottom water would be less than at 0 °C, so it would tend to rise.

17.5 Summary

Key Concepts

temperature (T ) A quantitative measure of how hot or cold an object is. In the SI system tem-
perature is measured in kelvin, though degrees Celsius and degrees Fahrenheit are in com-
mon use.

Celsius temperature scale The Celsius scale (once known as the centigrade scale) is a tempera-
ture scale on which the freezing point of water is at 0 degrees Celsius and the boiling point
is at 100 degrees Celsius at a pressure of one atmosphere. It uses the symbol °C.

Fahrenheit temperature scale The Fahrenheit scale is a temperature scale on which the freez-
ing point of water is at 32 degrees Fahrenheit and the boiling point is at 212 degrees
Fahrenheit. It uses the symbol °F.

kelvin temperature scale The kelvin is the SI unit of temperature and is one of the seven base
units of the SI system. It has the symbol K. The temperature scale is defined by absolute
zero, which is 0 K, and the triple point of water, which is at 273.16 K. A 1 K temperature
change is thus one part in 273.16 of the difference between these two points, and is iden-
tical to a change of 1 °C.

heat The energy transferred from a hot object to a cold object due to the temperature difference.

thermal equilibrium A state in which objects in thermal contact reach a common temperature
and the net transfer of heat between them is zero.

zeroth law of thermodynamics The zeroth law states that two systems that are at the same time
in thermal equilibrium with a third system are in thermal equilibrium with each other.

coefficient of linear thermal expansion (α) The fractional change in length per kelvin. i.e., the
length by which a 1 m unconstrained rod will increase when its temperature is raised by
1 K.

coefficient of volume thermal expansion (β) The fractional change in volume per kelvin, i.e.,
the increase in volume of 1 m−3 of material when its temperature is increased by 1 K.

Equations

∆L = L0α∆T

∆V =V0β∆T

β= 3α
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17.6 Problems

17.1 The core temperature of the human body is about 37.0 ◦C and
a temperature of 40.0 ◦C is regarded as a high fever. What are 37 ◦C
and 40 ◦C in kelvin and degrees Fahrenheit?

17.2 Which of the following statements are correct? (Note: more
than one of the statements may be correct)

(a) The volume coefficient of thermal expansion of water is neg-
ative for temperatures in the range 0 to 4 °C.

(b) The triple point of water, 0.01 °C, and 611.73 Pa, is one of
the primary fixed points on the Kelvin absolute temperature
scale.

(c) The volume coefficient for the thermal expansion of a solid
is twice the linear coefficient for thermal expansion.

(d) A temperature of 26.85 °C is the same as 300 K.

(e) The surface temperature of the sun (3142 °C) is the highest
temperature found in nature.

17.3 The Rankine temperature scale has the same temperature
unit intervals, °R, as the Fahrenheit scale, °F, but it is an absolute
scale, so 0 °R is the same as 0 K. At what temperature does water
boil on the Rankine scale (at standard atmospheric pressure)?

17.4 A titanium metal rod has been inserted into the tibia of an
injured soccer player. The rod, which runs the length of the tibia,
is 0.55 m long and is normally at a constant temperature of 37 °C.
Suppose that the soccer player develops a severe fever and his core
temperature rises to 40 °C. The linear coefficient for thermal ex-
pansion of titanium is 8.6×10−6 K−1. By how much will the length
of the titanium rod increase?

17.5 You are scheduled to implant a metal brace into a fractured
femur to secure the broken ends. You are concerned that the tem-
perature variations in the body will cause the length of the brace
to change, creating a risk that the break will not heal satisfactorily.
A 2 m length of the metal from which the brace is made is avail-
able. You heat this rod by 10 ◦C and find that the length of the rod
has increased by 0.2 mm. How much (in µm) would the length of

a 10 cm brace change if the body temperature of your patient were
to increase by 3 ◦C? (during a high fever for example)

17.6 The temperature coefficient of linear expansion of steel is
12×10−6 K−1. When the temperature increases from 5 °C to 25 °C,
what is the increase in the length of a straight 25 m length of un-
clamped railway track?

17.7 At 20 °C a steel ring has an inside diameter that is 0.5 mm
smaller than the diameter of a steel rod, which is 0.2 m. The ring is
heated until it fits over the rod, which remains at 20 °C. The tem-
perature coefficient of linear expansion of steel is 12× 10−6 K−1.
What is the temperature of the ring when it is just large enough to
fit over the rod?

17.8 If you drink 0.5 L of extremely cold water at 4 ◦C, how much
will its volume increase (in mL) once the water has reached your
core body temperature of 37 ◦C in your stomach? (Assume the
average value for the volume coefficient of expansion of water is
207×10−6 K−1.)

17.9 A cube of aluminium measures 1 m along each side. In the
centre of the cube there is a small spherical cavity with a diameter
of 1 cm. When the cube is heated from 10 ◦C to 30 ◦C, what is the
percentage increase in the volume of the central cavity? (The lin-
ear thermal expansion coefficient of aluminium is 23×10−6 K−1.)

17.10 A long hollow cylinder of aluminium, closed at one end, is
held vertically and contains some water. The cylinder has an inter-
nal diameter of 1.5 cm and the height of the water in the cylinder is
initially 20 cm. The linear coefficient of expansion for aluminium
is αAl = 23×10−6 K−1 while the volume coefficient of expansion of
water is βwater = 207×10−6 K−1.

(a) How much will the height of the water increase if the temper-
ature of both the cylinder and the water increase by 10 °C?

(b) What result do you get for part (a) if you ignore the expan-
sion of the cylinder?
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18.1 Introduction

18.2 The Gas Laws

18.3 Biological Applications

18.4 Kinetic Theory of Gases

18.5 Summary

18.6 Problems

18.1 Introduction

Gases are important for biological physics, mainly because our environment is domi-
nated by the atmosphere, which is a mixture of gases. Gases are also important because
they allow us to understand the link between thermal energy and temperature.

Key Objectives

• To understand Charles’ law, Boyle’s law, the ideal gas law and Dalton’s law.

• To understand the concept of the mole.

• To understand the principle of the constant-volume gas thermometer.

• To understand how the thermal energy of an ideal gas relates to the absolute tem-
perature.

18.2 The Gas Laws

Charles’ Law

When a fixed quantity of gas is held at constant pressure, it is found experimentally that
the volume of the gas increases linearly with temperature, as shown in Figures 18.1 and
18.2:

Figure 18.1 Charles’ law. The volume and tem-
perature of a sample of ideal gas are linearly re-
lated at constant pressure.V = aT (18.1)

where V is the volume of the gas sample, T is the absolute temperature (in kelvin),
and a is the proportionality constant, which depends on the number of gas molecules
and the pressure. However, a is not dependent on the chemical structure of the gas.
This equation is equally valid for any gas, but it fails if the temperature is too low, or the
density is too high. In these situations, the interactions between the molecules become
significant and Eq. (18.1) no longer holds true.

Boyle’s Law

When a fixed quantity of gas is held at a fixed temperature, it is found experimentally
that the pressure is inversely proportional to volume (see Figure 18.3). For example,
doubling the pressure will halve the volume of the sample. We can express this rela-
tionship as

Figure 18.3 Boyle’s Law. The pressure and vol-
ume of a sample of ideal gas are inversely related
at constant temperature.

P = b

V
(18.2)

where P is the absolute pressure and V is the volume. The proportionality constant, b,
depends on the absolute temperature of the gas sample and the number of molecules
of gas present, but again it does not depend of the type of gas, provided the density is
not too large.

Introduction to Biological Physics for the Health and Life Sciences Franklin, Muir, Scott, Wilcocks and Yates
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Figure 18.2 The relationship between volume and temperature for four different gas samples. When the temperature
is low, the straight-line relationship fails, but, by extrapolation, the temperature at which the volume would reach zero
is the same for all gases. This temperature, which is known as absolute zero, is −273.15 °C.

The Ideal Gas Law

We can combine Charles’ and Boyle’s laws together into one equation:

PV = cT (18.3)

where P is the pressure, V is the volume, T is the absolute temperature and c is a pro-
portionality constant. Experimentally, it is found that c depends only on the number
of gas molecules present, provided the temperature is not too low, or the density too
high. It does not depend on the mass of the individual atoms or molecules, or on their
structure (whether the gas is monatomic, diatomic or more complex). This happens
because the molecules tend not to stick together when they collide under the condi-
tions stated. Also, the volume occupied by the molecules is very small compared with
the volume available.

Because c is proportional to the number of molecules, then we can write c = N k,
where N is the number of gas molecules, and k is a proportionality constant. k is uni-
versal constant called Boltzmann’s constant. In SI units, k = 1.381×10−23 J K−1. Sub-
stituting this into Eq. (18.3), we obtain the ideal gas law

PV = N kT (18.4)

The word ideal is used here because the equation holds strictly only in the ideal
limit of a gas of very low density and high temperature.

There is a useful alternate way of writing the ideal gas relationship. The SI unit for
the amount of a substance is called the mole, for which the symbol is the abbrevia-
tion mol. One mole of a substance contains the same number of ‘elementary entities’
as 12 g of carbon-12. The number of carbon-12 atoms in one mole is a fixed num-
ber, known as Avogadro’s number, which is usually given the symbol NA. It is equal to
6.022×1023 mol−1 (to four significant figures). The number of molecules and the num-
ber of moles in a sample of gas are directly proportional, and are related to one another
by Avogadro’s number.

Key concept:

n = N

NA
(18.5)

where n is the number of moles of gas, N is the number of molecules and NA is
Avogadro’s number.
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This gives us another form of the ideal gas law:

PV = nRT (18.6)

where P is the pressure, V is the volume, n is the number of moles of gas and T is the
absolute temperature. R is called the universal gas constant or the ideal gas constant,
and has the value 8.314 J K−1mol−1. The relationship between the constants R and k is

R = NAk (18.7)

Moles

One mole of any substance contains Avo-

gadro’s number of elementary units. One mole

of lead contains the same number of atoms

as one mole of sodium. One mole of water

(H2O) contains the same number of molecules

as one mole of hydrogen gas (H2), but in this

case, the numbers of atoms are not the same.

At times, it is important to be clear which enti-

ties are being referred to, molecules or atoms.

Dalton’s Law of Partial Pressures

All the gas laws mentioned so far apply equally well (under the appropriate conditions)
to all gases, regardless of their type or structure, or the mass of the individual atoms
or molecules. This means they can also be applied to mixtures of gases, such as air.
In this situation, it is useful to use the concept of partial pressure, which refers to the
pressure exerted by one individual component of the gas. The partial pressure of that
gas is the pressure it would have if only that component of the gas were present in the
same volume (see Figure 18.4).

The sum of the partial pressures of all the component gases is the same as the total
pressure of the gas mixture; this is Dalton’s law of partial pressures.

Ptotal = P1 +P2 +P3 + . . . (18.8)

Caution needed with gas mixtures

When we talk about percentages of gases we

need to know whether it is a percentage of

the number of molecules (which is the same

as the percentage of the number of moles), or

a percentage of the weight (which is different,

as the different gases have different molecular

weights). Unless otherwise stated, when we

refer to percentages of a gas mixture we mean

the percentage of molecules.

Figure 18.4 Dalton’s law of partial pressures. The total pressure is the sum of the partial pressures of the individual
gases.

For example, at sea level we have a total pressure of (on average) 1.013×105 Pa for
dry air, which consists of 78% N2, 21% O2 and 1% other gases (mostly argon), expressed
as mole percentages. In this case, the partial pressure of oxygen, O2, is 0.21 × the total,
or 2.1 × 104 Pa. The partial pressure of nitrogen is 0.78×1.013×105 Pa = 7.9×104 Pa.
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If we use the total number of molecules of all gases, then the pressure in the ideal
gas law will be the total pressure exerted by all the gases. For a mixture of m gas samples

Ptotal = P1 +P2 + ...+Pm = (N1 +N2 + ...+Nm)kT

V
(18.9)

If we are interested in only one component of the mixture, molecules of gas of
type j , then the pressure in the ideal gas law is the partial pressure of gas j

P j =
N j kT

V
(18.10)

where N j is the number of molecules of gas j .

Problem:

(a) In 1.000 m3 of ideal gas at atmospheric pressure (101.3 kPa), how many moles of gas are there at 20 °C?

(a) What is the mass of gas if it is all O2?

(b) What is the mass of gas if it is all N2?

(c) What is the mass if the gas is composed of 21% oxygen and 79% nitrogen?

(d) Suppose the gas mixture also contains some water vapour along with the O2 and N2, at the same total pressure

(101.3 kPa). Would the density increase or decrease?

Example 18.1 Ideal gas law

Solution: (a) To get the number of moles, use the ideal gas equation

PV = nRT

with the following values: P = 101.3×103 Pa, V = 1.000 m3, R= 8.314 J K−1mol−1 and T = 293.1 K.
So

n = 101 300 Pa×1.000 m3

293.15 K×8.314 J K−1 mol−1
= 41.56 moles

(b) The mass of 1 mol of molecular oxygen is 32.00×10−3 kg. So if the gas is oxygen only then the mass will be

41.56 mol×32.00×10−3 kg mol−1 = 1.330 kg

(c) For molecular nitrogen, N2, the molar mass is 28.01×10−3 kg, so the mass of the 1 m3 volume will be

41.56 mol×28.01×10−3 kg mol−1 = 1.164 kg

(d) For the 21%-79% mixture, the number of moles of O2 will be

0.21×41.56 moles = 8.728 moles

Similarly, the number of moles of N2 will be

0.79×41.56 = 32.83 moles

Hence the mass of 1 m3 of air will be

8.728 mol×32.00×10−3 kg mol−1 +32.83 mol×28.01×10−3 kg mol−1 = 1.199 kg

(e) Water (H2O) has a molar mass of 18 g mol−1, which is significantly lower than either oxygen or nitrogen, so since the
other gases are displaced by water, the density will be lower. This has consequences for the aviation industry – when
the atmospheric humidity is higher, planes need to travel faster to get enough lift for take-off, as the lift is dependent
on the air density.
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Problem: A helium-filled balloon is initially at a pressure of 101.3 kPa when the temperature is 10 °C. What is the

pressure when the volume has increased by a factor of 10 and the temperature is –50 °C?

Example 18.2 Ideal gas law

Solution: Starting with the ideal gas equation
PV = nRT

we can rearrange to get
PV

T
= nR

As nR is constant here, then PV
T is constant also. If we label the initial parameters with a 1 and the final parameters

with a 2, then we have

P1V1

T1
= P2V2

T2

⇒ P2 =
P1V1T2

V2T1

Now we know V2 = 10V1, T1 = 283.15 K, T2 = 223.15 K and P1 = 101 300 Pa

P2 =
P1T2

10T1
= 101 300 Pa×223.15 K

10×283.15 K
= 7983 Pa

Problem: A gas sample with a fixed number of moles of gas is compressed at constant temperature. If it initially has

a volume of 0.5 m3 at sea level atmospheric pressure (1.013 × 105 Pa), what is its volume if the pressure is doubled

to 2.026 × 105 Pa?

Example 18.3 Ideal gas law/Boyle’s law

Solution: In this case, P1 = 1.013×105 Pa, V1 = 0.5 m3, P2 = 2.026×105 Pa=2P1, T2 = T1 and n2 = n1. The quantity we
want to find is the final volume V2. We can apply the ideal gas law to both situations, so

P1V1 = n1RT1

and
P2V2 = n2RT2

Because n1 = n2 and T1 = T2 then the right-hand sides of the above two equations are equal, and therefore we can
equate the left-hand sides

P1V1 = P2V2

⇒V2 =
P1V1

P2
= 1

2
0.5 m3 = 0.25 m3

An alternate way of finding the final volume is to use Boyle’s law. If a gas sample is held at constant temperature, then
the volume and pressure have an inverse relationship, so doubling one will halve the other. If the pressure is doubled,
the volume is halved from 0.5 m3 to 0.25 m3.

Problem: A gas sample is held at constant volume, and contains a fixed number of moles of gas. Its temperature is

initially 16 °C at atmospheric pressure 1.013×105 Pa. If the gas is warmed up to 20 °C, what will the gas pressure be?

Example 18.4 Ideal gas law
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Solution: Here the fixed quantities are n and V . Rearranging the ideal gas equation so that all the constant quantities
are on one side

PV = nRT

⇒ P

T
= nR

V

Because the right-hand side is constant throughout in this example, then

P1

T1
= P2

T2

The unknown quantity we are trying to determine is P2. The temperatures were given in Celsius, so these need to
be converted into kelvin. T1 = 16 °C = 289.15 K, T2 = 20 °C = 293.15 K and P1 = 1.013×105 Pa

P2 =
P1T2

T1
= 1.013×105 Pa ×293 K

289 K
= 1.027×105 Pa

We should check that this makes sense. We have increased the temperature, without altering the volume or number of
moles, so we would expect the pressure to increase as the molecules move faster.

18.3 Biological Applications

Breathing

We breathe (Figure 18.5) by altering the volume of our chest cavity. To inhale, we con-
tract the intercostal muscles and diaphragm, enlarging the chest cavity. This increase
in volume (which occurs at constant temperature) results in a reduction in the pres-
sure in our lungs to below atmospheric pressure (Boyle’s law). Since a gas moves from
a high-pressure region to a low-pressure region, this results in air flow into our lungs.
To exhale, we relax the intercostal muscles and diaphragm, reducing the lung volume,
hence increasing the pressure in the lungs above atmospheric pressure and forcing air
out. The amount by which the volume of our lungs changes determines the volume of
air exchanged per breath.

Figure 18.5 During inflation, expanding the lungs drops the internal lung pressure below atmospheric pressure, and
results in the movement of air into the lungs.
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Tension Pneumothorax

A tension pneumothorax is a collapse of the lung caused by air building up within the
pleural space, the space between the lung and the chest wall. Normally, pressure dif-
ferences prevent our lungs from collapsing.

Figure 18.6 The lungs are held against the
chest wall by a pressure difference, because the
pleural space (highlighted in red) is a sealed vol-
ume. If the lung begins to collapse, Pcavity falls.
As Pcavity falls below P lungs, the higher pressure
in the lung as compared to the cavity will tend to
re-inflate the lung.

Figure 18.7 Air build-up in the pleural space be-
tween the lung and the chest wall can cause it to
collapse.

Our lungs are not affixed to the walls of the chest cavity. When we inhale, the pres-
sure between the lungs and chest wall is lower than the pressure within the lungs ,and
this results in the lungs being held against the chest wall (Figure 18.6). In a tension
pneumothorax, damage to the lung results in air entering the pleural space between
the lung and chest wall. When the patient breathes they expand the chest cavity, but
not the lung, and insufficient air moves into the lung. In severe cases, pressure build-
up can also cause the collapse of the uninjured lung resulting in respiratory failure (Fig-
ure 18.7).

Diving

As divers descend, the pressure exerted by the water increases (at a rate of about 100 kPa
for every 10 m extra depth). The pressure in the lungs must go up too. If no extra air
is breathed in, this pressure increase is achieved by a decrease in lung volume. Con-
versely, as divers ascend, the external pressure drops, thus reducing the pressure in the
divers lungs also. The lungs expand as the pressure is reduced. If divers ascend too
rapidly without breathing out, their lungs may rupture.

18.4 Kinetic Theory of Gases

The ideal gas law (Eq. (18.4) and Eq. (18.6)) shows the relationship between the bulk
properties of the gas: temperature, pressure, volume and quantity. However, the way
the gas exerts pressure on the walls of a container is by individual molecules striking
the walls with momentum. Here we will take a closer look at the speeds and energies
of the molecules in order to get a better understanding of temperature.

Energy of an Ideal Gas

Temperature is a measure of how rapidly atoms or molecules are moving. The amount
of movement increases with increasing temperature, so the particles must have more
kinetic energy as the temperature rises. For a monatomic gas, i.e., a gas in which each
molecule consists of just one atom, the thermal energy is the kinetic energy due to
random translational motion of the molecules in the sample. More complex molecules
can have other forms of internal energy – this will be discussed later.

The pressure of the gas is dependent on the number of collisions per square metre
of wall, and the average force exerted on the wall per collision. Molecules exert a force
on the wall during collisions as a result of their momentum being changed by the colli-
sion. The total pressure exerted on the wall will be the average pressure exerted on the
wall by each molecule multiplied by the number of molecules in the container. If the
gas contains N molecules,

P = N Pper molecule (18.11)

Imagine our gas is contained in a cube with all sides having length a, and sides
parallel to x, y and z axes. Provided the cube is not too big, the pressure in the gas
is the same throughout, and so the pressure exerted on each of the walls is the same.
Pressure is force per unit area, so the average pressure exerted per molecule on a wall
equals the average force exerted per molecule on that wall, divided by the wall area

Pper molecule =
Fper molecule

A
= Fper molecule

a2
(18.12)

In the Mechanics topic (Chapter 6), it was shown that the force exerted on a wall
when an object collides with it depends on the change in momentum of the object and
the duration of the collision (see Figure 18.8). To determine the average force exerted
on the wall per molecule, we need to know by how much the molecule’s momentum
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changes per collision, and the average time between collisions. We will assume col-
lisions between gas molecules and the wall are elastic (that is, kinetic energy is con-
served) and that the walls are stationary before and after the collision. Each molecule
rebounds with the component of velocity perpendicular to the wall reversed in direc-
tion, but unchanged in size.

The change in momentum of a molecule following a collision with a wall in the
y z-plane (perpendicular to the x-direction) is in the x-direction. In other words, the
molecule’s momentum in the x-direction reverses in the collision, but its momentum
in the y- and z-directions does not change

Figure 18.8 When a molecule collides with a
wall in the yz-plane, the force is only in the x-
direction, and the velocity component in the x-
direction is changed.

∆p =−2mvx (18.13)

where ∆p is the change in the molecule’s momentum, m is the molecule’s mass, and
vx is the molecule’s initial velocity in the x-direction. The momentum imparted to the
wall during the collision has the same magnitude

∆pwall =−∆pmolecule = 2mvx (18.14)

The average force exerted on this wall due to each collision is ∆p/∆t , where ∆t
is the time between collisions. At points in time between consecutive collisions, our
molecule exerts no force on the wall. The force we are interested in is the average force
our molecule exerts on the wall over all time, not just the collision time, so to get the
average force, we divide by the time between consecutive collisions of the same wall–
molecule pair. This time is the average time for the molecule to cross the container
twice in the x-direction, travelling a distance 2a

∆t = 2a

vx
(18.15)

Our molecule exerts, on average, a force on the wall of

Fmolecule =
∆p

∆t
= ∆pvx

2a
= 2mv2

x

2a
= mv2

x

a
(18.16)

hence the average pressure on the wall due to this one molecule will be

Pmolecule =
Fmolecule

a2
= mv2

x

a3
= mv2

x

V
(18.17)

as the volume of the container V = a3.
Because there are a large number of molecules colliding with the wall at random

times, the forces exerted on the wall get smoothed out to give a time-independent force
on the wall. The total pressure exerted on the wall will be the sum of the pressures from
all the molecules:

P = m

V

(
v2

x1
+ v2

x2
+ . . .+ v2

xN

)= N mv2
x

V
(18.18)

where v2
x is the average of the squares of the x components of the velocity for each of

the N molecules, which is

v2
x =

v2
x1
+ v2

x2
+ . . .+ v2

xN

N
(18.19)

Writing this another way

PV = N
(
mv2

x

)
(18.20)

As we already know that PV = N kT , it follows that

mv2
x = kT (18.21)

so
1

2
mv2

x = 1

2
kT (18.22)
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In other words, the average kinetic energy of the gas sample associated with ran-
dom motion of gas molecules in the x-direction is 1

2 N kT , or 1
2 kT per molecule.

As the motion is random, each direction is the same. The average velocity squared
is

v2 = v2
x + v2

y + v2
z = 3v2

x (18.23)

This gives us an important relationship

KEaverage, per molecule =
1

2
mv2 = 3

2
kT (18.24)

The average kinetic energy of an atom is 3
2 kT , showing that absolute temperature

is proportional to average kinetic energy associated with the random translational mo-
tion of atoms.

For an ideal monatomic gas, the only form of thermal energy is the kinetic energy
associated with random translational motion of the gas atoms, so we can conclude that
the thermal energy (U ) of the gas sample is proportional to the absolute temperature
of the gas and given by

U = N
1

2
mv2 = 3

2
N kT = 3

2
nRT (18.25)

In diatomic or polyatomic gases we also need to consider kinetic energy associated
with rotation and/or vibration of the molecules. The thermal energy of these gases is
higher for the same temperature. To see how much energy is associated with rotation
and vibration, we apply the principle of equipartition of energy, which we will state here
without proof.

x

y

z

x

y

z

Three degrees
of freedom

Five degrees
of freedom

Ne, Ar, etc

N , O , etc2 2

Monatomic

Diatomic

Figure 18.9 Both monatomic and diatomic
gases have three translational degrees of free-
dom. Diatomic molecules have two more due to
rotation. They have rotational symmetry about
one axis, and energy is required for rotation
about the other two.

Key concept:

The thermal energy of a system in equilibrium has the same value for each of the
degrees of freedom, being 1

2 kT .

By degrees of freedom, we mean all the independent ways that a molecule can pos-
sess energy. For example, as shown in Figure 18.9, there are three directions in space,
so there is 3× 1

2 kT per molecule associated with translational motion – 1
2 kT per degree

of freedom. For a monatomic species such as helium, the atom is rotationally symmet-
ric, so there is no energy associated with rotation. For a diatomic molecule like oxygen,
there is one axis of symmetry, and any rotation about the other two axes requires en-
ergy, and so the are two more degrees of freedom. For diatomic gases like nitrogen and
oxygen at room temperature

Uper molecule =
5

2
kT (18.26)

The atoms in diatomic molecules like these are rather like two masses attached
by a spring (the bond holding them together), so the atoms can also vibrate. There
are two degrees of freedom (kinetic and potential) so the average thermal energy per
molecule is expected to be 7

2 kT . In practice, however, the vibrational motion occurs
only at temperatures well above room temperature, so for most situations, Eq. (18.26)
is the correct equation.

The Maxwell–Boltzmann Distribution

The molecules in the gas do not all move at the same speed – they collide with each
other frequently and undergo changes in velocity. Some of the molecules will be mov-
ing faster than the average and some will be moving slower. The distribution of speeds
is known as the Maxwell–Boltzmann distribution.

Figure 18.10 The Maxwell–Boltzmann distribu-
tion. This plot shows the distribution of speeds
for some of the noble gases at 25 °C. [Public do-
main image from Wikipedia.]

Figure 18.10 shows the distribution of speeds for some gases at 25 °C. The area un-
der any portion of the curve gives the relative probability that the speed lies in that
range, so the higher the curve at a particular speed, the more molecules have that
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speed. The figure also shows that lighter atoms (like He) have higher speeds than heav-
ier ones (like Xe). The average speed obtained from Eq. (18.24) is

vrms =
√

v2 =
√

3kT

m
(18.27)

Problem: What is the mean speed of molecules of oxygen when the temperature is T = 293 K (20 °C)?

Example 18.5 Kinetic theory of gases

Solution: The kinetic energy depends on temperature

1

2
mv2

m = 3

2
kT

where vm is the mean speed of the molecules. Here m is the mass of an oxygen molecule, which is the molar mass of
O2 divided by Avogadro’s number

m = 32.0×10−3 kg mol−1

6.022×1023 mol−1
= 5.316×10−26 kg

and k = 1.381×10−23 J K−1. So

v2
m = 3kT

m
= 3×1.381×10−23 J K−1 ×293 K

5.316×10−26 kg
= 228 000 m2 s−2

⇒ vm = 478 m s−1

This is about 1720 km h−1. Something to think about: would vm be more or less than this for N2?

Problem: If we have 1 kg of oxygen at T = 293 K, what is the energy due to the random linear motion of the molecules?

Example 18.6 Kinetic theory of gases

Solution: The kinetic energy per molecule is

3

2
kT = 1.5×1.381×10−23J K−1 ×293 K = 6.07×10−21J

We calculated the mass of an oxygen molecule in the previous example (5.316× 10−26 kg), so the number of oxygen
molecules will be

1 kg

5.316×10−26 kg
= 1.881×1025

So the total energy due to linear motion is

6.07×10−21 J×1.881×1025 = 114×103J = 114 kJ

18.5 Summary

Key Concepts

Charles’ law At low densities and fixed pressure, the volume of a fixed amount of gas is propor-
tional to the absolute temperature.

Boyle’s law At low densities and fixed temperature, the absolute pressure of a fixed amount of
gas is inversely proportional to the volume.
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Ideal gas law At low density, for a fixed quantity of gas, the value of PV
T is constant. This is

usually written as PV = nRT or PV = N kT , where P is the pressure, V is the volume, T is
the absolute temperature, n is number of moles of gas, N is the number of molecules of
gas, R is the universal gas constant and k is Boltzmann’s constant.

Dalton’s law The sum of the partial pressures of all the component gases is the total pressure of
the gas mixture.

partial pressure The partial pressure of a component of a gas mixture is the pressure it would
have if only that component of the gas was present in the same volume.

universal gas constant or ideal gas constant (R) A physical constant which appears in the ideal
gas law, and is closely related to Boltzmann’s constant. R = 8.314 J K−1 mol−1.

Boltzmann’s constant (k) A physical constant which relates particle energy to temperature.
k = R/NA , where R is the universal gas constant and NA is Avogadro’s number.
k = 1.381 × 10−23 J K−1.

Avogadro’s number or Avogadro constant (NA) The number of atoms in exactly 12 g of carbon-
12. NA = 6.022×1023 mol−1.

mole The SI unit of amount of substance. One mole of anything contains the same number of
elementary units as 12 g of carbon-12. Its symbol is mol. See also Avogadro’s number.

molar mass (M) The mass of one mole of a substance. Molar masses may be given in g mol−1 or
kg mol−1. For example, M(H), the molar mass of hydrogen, is 1.008 g mol−1 or 1.008× 10−3 kg mol−1.
The mass of a sample of n moles is m = nM .

Maxwell–Boltzmann distribution A probability distribution which predicts the fraction of the
molecules in a gas sample which have speeds in a particular range.

Equations

V = aT at constant P

P = b

V
at constant T

PV = N kT = nRT

Ptotal = P1 +P2 + ...+Pm

n = N

NA
m = Mn

KEaverage, per molecule =
1

2
mv2 = 3

2
kT

Uper molecule =
5

2
kT (diatomic, room temp)

vrms =
√

v2 =
√

3kT

m
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18.6 Problems

18.1 A sample of an unknown gas (gas A) has a volume of 3.2 m3

at a temperature of 10 °C. Another sample of an unknown gas (gas
B) has a volume of 4.5 m3 at a temperature of 250 °C. Assuming
that both gases obey Charles’ law at all temperatures and are at
the same pressure,

(a) Could gas A and gas B be samples of the same gas at differ-
ent temperatures?

(b) What is the volume of gas A at the following temperatures:
-50 ◦C, 0 ◦C, 50 ◦C, 100 ◦C ?

18.2 A sample of a hypothetical ideal gas has a volume of 0.5 m3 at
a temperature of 5 ◦C and a pressure of 250 kPa.

(a) How many molecules of gas are there in this sample?
(b) How many moles of gas are there in this sample?

18.3 A novice pearl diver takes a deep breath before diving. She
fills her lungs to their maximum capacity, which is 3 litres. Before
diving the pressure in her lungs is 101.3 kPa and the temperature
is 37 ◦C. She then dives to a depth of 20 m.

(a) How many moles of air has she inhaled?
(b) If the temperature in her lungs does not change, she does

not exhale at all, and the pressure in her lungs is the same as the
surrounding water pressure, what is her lung volume at the bottom
of her dive (in litres)?

18.4 Two identical industrial gas cylinders (cylinder A and B) each
have a volume of 2.25 × 10−2 m3 and are maintained at 20 ◦C
(MO2 = 32 g mol−1, MN2 = 28 g mol−1, and MCO = 28 g mol−1).

Cylinder A contains: 1 kg of O2, 1 kg of N2, and 1 kg of CO.
Cylinder B contains: 2 kg of O2, 0.5 kg of N2, and 0.5 kg of CO.
(a) What is the partial pressure of O2, N2, and CO in each cylin-

der?
(b) What is the total pressure in each cylinder?
(c) What is the total thermal energy in each cylinder?
(d) What is the rms velocity of O2, N2, and CO in each cylinder?

18.5 A sealed cylinder (with fixed volume) contains one mole of
He gas and is slowly heated until the temperature of the gas has
increased by 50 K. Which of the following statements are correct?
(Note: more than one statement may be correct)

(a) Rotation of the molecules contributes to the thermal energy
of the gas as it is heated.

(b) The average kinetic energy of the individual atoms of He in-
creases by 4.2×10−19 J.

(c) The total thermal energy of the gas increases by 620 J (to 2
s.f.).

(d) The density of the gas decreases as the gas is heated.

(e) The pressure of the gas decreases as the gas is heated.

18.6 Container A has 1.0 mole of O2 gas and container B has
1.0 mole of He gas. The containers, which have different volumes,

are brought into thermal contact and reach thermal equilibrium.
Which of the following statements are correct?

(a) The total thermal energy of the two gases is the same.

(b) The average kinetic energy of the atoms of He is the same as
that of the molecules of O2.

(c) The temperatures of the two gases need not be the same.

(d) The gases in the two containers have the same mass.

(e) The gases in the two containers have the same pressures.

18.7 Suppose air at 20 °C contains 10 g of water vapour per cubic
meter of air. Given the molar mass of water is 18 g mol−1, what is
the partial pressure of water vapour (to 3 s.f.)?

18.8 Which of the following statements are correct? (Note: more
than one statement may be correct)

(a) The average kinetic energy of an atom of an ideal gas ap-
proaches zero at a temperature of 0 °C.

(b) Two moles of helium (He) has the same total thermal energy
as one mole of nitrogen (N2) when they are both at 10 °C,
because nitrogen is a diatomic gas.

(c) The average translational kinetic energy of the molecules of
air is 3

2 kT , where k is the Boltzmann constant and T is the
temperature in kelvin.

(d) The average thermal energy of the molecules of air is 5
2 kT ,

where k is the Boltzmann constant and T is the temperature
in degrees kelvin.

(e) The ideal gas law can be written as PV = N kT , where N is
the number of molecules of the gas in the volume V and k is
the Boltzmann constant.

18.9 A marine mammal holds its breath and dives 200 m below the
sea surface, where the total pressure is 2.061 MPa. The volume of
the mammal’s lungs when fully inflated at sea surface (air pres-
sure = 101.3 kPa) is 7 L. Assuming that the mammal’s core temper-
ature remains constant at 310 K, what will the volume of its lungs
be when it reaches a depth of 200 m?

18.10 A gas mixture is contained in a sealed flask at atmospheric
pressure, 101.33 kPa. When all the carbon dioxide is chemically
removed from the sample, keeping the same temperature, the fi-
nal pressure is 67.89 kPa. What percentage of the molecules of the
original sample was carbon dioxide?

18.11 In the "death-zone" on Mt Everest the atmospheric pressure
is typically 34 kPa. The air at this elevation contains a negligible
quantity of water vapour. On a molar basis the composition of the
air is 20% O2, 79% N2 and 1% Ar. Determine the partial pressure
of O2 in the death-zone.
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CHANGE
19.1 Introduction

19.2 Phase Changes

19.3 Temperature Changes

19.4 Energy Conservation

19.5 L and c Values for Water

19.6 Summary

19.7 Problems

19.1 Introduction

This chapter looks at phase-change phenomena and thermal energy in order to pro-
vide a framework for understanding how the body controls its temperature, energy and
moisture balances.

Key Objectives

• To understand the concepts of phase change and latent heat.

• To be aware of vapour pressure and its dependence on temperature.

• To understand the concept of specific heat.

• To be able to apply these concepts to energy-conservation problems.

19.2 Phase Changes

Real Gases

For real gases, the ideal gas equation no longer holds when the interaction between the
atoms or molecules becomes significant. This happens when the temperature is low
and the density is high.

Figure 19.1 In a real gas, there are short-range
interactions between the molecules that cannot
always be ignored.

Consider what you know of the properties of a solid. A solid retains its shape, which
indicates that there must be attractive forces between the molecules when they are close
enough. When the density is high, the molecules are closer together. Also, when the
temperature is low, the potential energy associated with the attractive force between
the molecules can no longer be ignored (see Figure 19.1) compared to the kinetic en-
ergy – the attraction becomes significant and the behaviour of a gas deviates from ideal
gas behaviour.

States of Matter

Pure samples of chemically-simple substances are typically found in one of three dif-
ferent physical states: solid, liquid or gas. Other states exist under more extreme con-
ditions, such as plasma (ionised gas) which exists at high temperature, and the Bose-
Einstein condensate state, which requires extremely low temperatures.

For this section we will be considering only the simplest materials, such as sam-
ples of pure elements and simple chemicals with relatively small molecules. This ex-
cludes such things as emulsions, gels, complex biological materials and long-chained
molecules like plastics and fatty acids.

State and phase

These two terms are often used interchange-

ably, which is fine when we are discussing

pure substances. The Merriam–Webster dic-

tionary defines phase as ‘a homogeneous,

physically distinct, and mechanically separa-

ble portion of matter present in a nonhomoge-

neous physicochemical system’. An example

where state and phase are not the same thing

is an oil–water mixture; there are two distinct

phases, one of which is oil-rich, and the other

which is water-rich. They are both in the liquid

state.

A solid has a definite shape and volume. In a solid the particles are not free to move,
only to vibrate.

A liquid has a fixed volume (at a particular pressure and temperature) but the shape
is determined by its container. The molecules are usually further apart than in the solid
state.

Introduction to Biological Physics for the Health and Life Sciences Franklin, Muir, Scott, Wilcocks and Yates
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Figure 19.2 At low temperatures, Charles’ law no longer holds true. On cooling at constant pressure, the gas will
condense to form a liquid, and in most cases will eventually solidify at lower temperature. For water, the volume of
the solid is slightly larger than the liquid, whereas for most substances it is smaller, as shown here. (The change in
volume on transition from liquid to solid has been exaggerated.)

In the gas state, the molecules are far apart on average, and the gas has its shape
and volume fixed by its container.

We are all familiar with matter changing phase: when heated, solid ice will become
liquid water, and then turn into a vapour as steam. At normal atmospheric pressure,
these phase changes occur at 0 °C and 100 °C. However, these temperatures are highly
pressure-dependent. On top of Mt Everest, water will boil at about 69 °C, as the pressure
is about 30% of the pressure at sea level.

There are different names given to the various phase transitions:

Vaporisation Liquid to gas

Condensation Gas to liquid

Melting Solid to liquid

Freezing Liquid to solid

Sublimation Solid to gas

Deposition Gas to solid

We will now take a look at how pressure, temperature, volume and the state of mat-
ter are related.

Phase Diagrams

Consider a sample of water completely isolated from the rest of the world. The sam-
ple is inside a container with all the air removed, and sealed by a movable piston so
the volume and pressure can be varied. To begin with, imagine that the volume of the
container is held fixed (and is greater than the liquid volume). At around room temper-
ature, say 20 °C, the water is mostly in the liquid state. However, some of the molecules
have enough energy to break free of the liquid surface. Even though there is no air in
our container, there will be some vapour above the liquid, and the liquid and vapour
regions will be easily distinguishable.

Boiling Point

The boiling point of a liquid is the tempera-

ture at which the liquid and vapour phases

are in equilibrium, which depends on the pres-

sure. If the vapour pressure of the gas phase

is lower than the saturation vapour pressure,

then molecules can continue to break away

from the liquid and join the gas phase. If the

liquid is not in a sealed container, the gas

molecules will escape, ensuring the vapour

pressure will stay below saturation. This is

while water bubbles continuously at 100 °C at

sea level.

Key concept:

The vapour pressure of a substance is the gas pressure created by the solid or liquid
phases, and is a consequence of the faster molecules breaking away from the liquid
or solid.
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When the system reaches thermodynamic equilibrium at this temperature then the
rate at which the molecules leave the liquid and the rate at which they rejoin it are the
same. The pressure exerted by this saturated vapour is 2.33× 103 Pa: this is the sat-

uration, or equilibrium, vapour pressure of water at 20 °C. In this mixed-phase stage
where liquid and vapour are in equilibrium, the pressure is not dependent on the vol-
ume. It depends only on the temperature of the mixture. This particular pressure cor-
responds to a water vapour density of 17.2 g m−3 at 20 °C. The density of the liquid
phase will be close to 1000 kg m−3 at this temperature, which is more than 53 000 times
larger than the vapour density.

Key concept:

The saturation vapour pressure depends only on temperature.

Note that as the piston is moved to increase the volume, the system is no longer in
thermodynamic equilibrium. More molecules will evaporate than will condense until
the saturation vapour pressure is reached.

Figure 19.3 A typical P–T phase diagram.Now consider what will happen as the temperature is raised while the volume is
held fixed. More water molecules from the liquid phase will have the energy to break
free and join the vapour phase, and so the pressure and density of the vapour phase will
increase. The liquid water will expand as the temperature is raised and it will become
slightly less dense. When the temperature reaches 100 °C, then the saturation vapour
pressure will reach 1.01×105 Pa – standard atmospheric pressure at sea level.

As the temperature increases still further, then the vapour increases in density and
the liquid density decreases until eventually they will be the same. The temperature
at which this happens is called the critical temperature. Above this temperature, the
liquid phase can’t exist, and there is no distinction or phase boundary between liquid
and gas, and it is called a super-critical fluid. The critical point for water occurs 647.1 K
(374.0 °C), at a pressure of 22.06× 106 Pa (219 atm).

Figure 19.4 The lines show where two phases
can co-exist in equilibrium, and these separate
regions where each phase is stable.

If the container is instead cooled, then at some temperature ice begins to form. At
this temperature, the solid, liquid and gas phases are all in thermodynamic equilib-
rium: this is called the triple point. The triple point occurs at a unique temperature,
which is not affected by the volume of the container, or the amount of the substance
in it. For this reason, it is the triple-point temperature of water, not the freezing point
(which is pressure dependent) that is used to define the kelvin temperature scale. The
triple-point temperature of water is defined to be at 273.16 K, so that it is at 0.01 °C,
and the freezing point at standard atmospheric pressure still occurs at 0 °C. Below the
triple-point temperature, liquid and vapour cannot exist together in equilibrium. In-
stead, the vapour co-exists with the solid phase, provided the volume is large enough.

If the piston in our container is moved so that there is no room for vapour, only the
solid and liquid phase can co-exist and the temperature at which this happens is the
melting point. The melting point typically varies only a little with changes in pressure.

The P –T phase diagram shows this behaviour, plotting the regions in which the
different phases exist together as a function of temperature and pressure. Figure 19.3
shows the phase diagram for a typical pure substance. The co-existence lines show the
conditions under which two phases co-exist in dynamic equilibrium. These lines sepa-
rate the regions where each phase is stable. A phase change corresponds to movement
across the boundary lines. The boundary line between the liquid and vapour phases
ends at the critical point, and at temperatures above this, the substance cannot be liq-
uefied at any pressure. At these temperatures, a supercritical fluid is formed, which
has properties that vary between an incompressible liquid and a gas, depending on
the pressure, but there is no distinct change of phase. However, if the pressure is high
enough, further phase changes can occur. In water, for example, even the supercritical
fluid will change into the solid phase, a form of ice, at pressures above 1010 Pa.

The slope of the boundary line between the solid and liquid phases is very steep
as there is little change in temperature with pressure. For water, the slope of this line
is negative, so it is in fact possible to turn ice into water by increasing the pressure. If
the temperature is near the melting point and the pressure is increased sufficiently, the
solid ice will become liquid water, which will refreeze when the additional pressure is
removed. The boundary between the gas phase and a condensed phase varies strongly
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Figure 19.5 The P–T diagram for water. Water is unusual in that the slope of the melting point line is negative.

with pressure, as compressing a gas increases the rate of collisions between molecules
and favours condensation.

Figure 19.6 For an ideal gas at constant temper-
ature, the product of P and textitV is fixed, giving
the P–V graph a hyperbolic shape.

Another type of phase diagram is the P–V phase diagram. This shows how pres-
sure and volume are related when the temperature is held fixed. Recall from earlier
that Boyle’s law states that for a gas at a fixed temperature, pressure is inversely pro-
portional to volume. Plotting this relationship gives a graph that looks like Figure 19.6.
A curve with this shape is called a hyperbola. This relationship between pressure and
volume breaks down at low temperatures when the attraction between molecules be-
comes significant and the gas begins to condense into a liquid.

Figure 19.7 A typical P–V diagram, showing isotherms. In the region where the gas behaves like an ideal gas, the
isotherms are hyperbolic in shape. At lower temperatures, the isotherms deviate from this behaviour. The critical
isotherm has zero slope at the critical point.

Imagine that we again have a sealed container, with a movable piston, contain-
ing only water molecules. At around room temperature, if we make the volume large
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enough we can see from the P–T diagram that all the water will exist as water vapour
at low pressure. As we decrease the volume, the pressure will go up. Eventually, when
the pressure reaches the vapour pressure (2.33×103 Pa at 20 °C), the water vapour will
begin to condense into a liquid. As the volume continues to decrease, the pressure
will not change, as there is only one pressure at each given temperature when the gas
and liquid phases co-exist. If the temperature of our sample of water is instead 100 °C,
then the liquid–vapour equilibrium region happens at normal atmospheric pressure
(1.013×105 Pa). Eventually, all the gas will condense into the liquid phase. Figure 19.7
shows the corresponding P–V diagram. The lines on the plot each correspond to one
temperature, and are called isotherms.

At the critical temperature, there is no pressure at which the liquid phase exists –
there is no liquid-vapour equilibrium region, so the isotherm has zero slope only at a
single point, the critical point.

Phase Changes and Latent Heat

To change the phase of a substance requires thermal energy. To turn a solid into a
liquid, the bonds that hold the molecules in place can only be broken with the addition
of energy. Similarly, energy is required to turn a liquid into a gas. Conversely, to change
a gas into a liquid or a liquid into a solid requires that thermal energy be removed.

The amount of energy required to transform a substance from one phase to another
depends on what the substance is, as this determines the strength of the molecular
forces involved, and on how much of the substance there is. The amount of heat, Q, is
therefore

Q = mL (19.1)

where m is the mass and L is the latent heat of phase change. The word latent means
hidden, and is used because during the phase change, when the substance exists in
both phases simultaneously, the temperature does not change.

Why doesn’t the temperature change dur-

ing a phase change?

Consider what happens when we add energy

to ice to melt it. The ice can’t exist at tem-

peratures higher than the melting point, but

the water can. If the heat went into the water

and increased its temperature, it would then

be warmer than the ice, and so because heat

goes from warmer objects to colder ones, it

warm the ice, melting it. This means that the

water doesn’t rise in temperature until all the

ice melts.

The value of L differs for each type of phase change, and has some dependence on
temperature. Lf is the heat of fusion, the energy required to change 1 kg of the sub-
stance from solid to liquid. Lv is the heat of vaporisation, which is the energy needed
to change 1 kg of the substance from liquid to vapour. Some substances can go straight
from the solid to the vapour phase, so Ls is used then – the heat of sublimation.

The sign of Q is positive when energy is put into a substance and negative when it
is taken out. The same coefficient can be used to calculate the energy required to go
from, say, solid to liquid or liquid to solid, but the sign of the latent heat transferred is
different.

The latent heat of phase change is dependent on temperature. For example, for
water at 100 °C, the latent heat of vaporisation is 2256.3 kJ kg−1. At lower temperatures,
it is higher. Between 0 °C and 100 °C (with T in Celsius)

Lv = 2500−2.269 T −0.00164 T 2 (19.2)

19.3 Temperature Changes

Heat and Temperature

When a substance has thermal energy transferred to it, it can produce a phase change,
as discussed in the previous section. The other possible result is a change in tempera-
ture. The amount of temperature change depends on the substance being heated. Heat
and temperature are not the same. Heat is energy transferred due to a temperature dif-
ference, and is measured in joules.

In everyday English, it is common to use the word heat in ways that are incorrect
when used in a scientific setting, such as when people refer to heat when they really
mean temperature. It is also wrong to say an object possesses heat; it possesses in-
ternal or thermal energy. An object’s internal energy, and hence temperature, can be
increased by doing work on it. It is not possible to tell whether the object was heated,
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had work done, or if there was a combination of both. (James Prescott Joule (1818–
1889) performed experiments determining the mechanical equivalent of heat, helping
to show that energy is conserved. His contributions were considered important enough
that the SI unit of energy now bears his name.)

Specific Heat

Temperature is a measure of the average kinetic (thermal) energy of the molecules in a
substance, as shown by Eq. (18.24). Therefore, it seems reasonable that putting more
thermal energy into something will raise the temperature. Doubling the amount of
energy input should double the increase in temperature. Also, if we double the mass
of an object, we will need to put in twice the amount of energy for the same change in
temperature. In other words, when there is no change of phase, Q, the heat input, is
proportional to both the mass and temperature change. Hence

Q = mc∆T (19.3)

where m is the mass, and ∆T is the temperature increase caused by the amount of heat,
Q. The symbol c stands for the specific heat capacity – the amount of heat required to
increase the temperature of 1 kg of a particular substance by 1 K. The specific heat
capacity is dependent on the substance in question, its temperature and the phase of
the substance. For example, the specific heat capacity of water is 4186 J kg−1 K−1 at
15 °C, and for ice it is 2072 J kg−1 K−1 at –5 °C.

The SI unit for heat is the joule, as it is a transfer of energy. The historic unit for heat,
the calorie, is still in widespread use. A calorie is the amount of energy required to raise
the temperature of 1 g of water by 1 °C. (The value of c for water is slightly temperature
dependent, so care is required in defining this. The 15 °C calorie is the energy to change
1 g of water from 14.5 °C to 15.5 °C.) One calorie is equal to 4.186 J. It is still common to
see the energy content of foods listed in both kilojoules (kJ) and in kilocalories (kcal),
which are also called ‘large calories’ (written as Calorie) sometimes. This can cause
some confusion, especially when food labellers don’t distinguish between calories and
Calories, so it is wise to stick with kcal or kJ.

19.4 Energy Conservation

When objects are placed in thermal contact, energy is exchanged until the objects reach
thermal equilibrium. At this point, the net exchange of energy ceases, and the objects
have the same temperature. We can use the conservation of energy principle to predict
how the temperature of objects placed in contact will change.

The Simple Case – No Phase Change

In the case where the amount of energy transferred between objects in contact will not
cause any phase changes, we can write a simple equation relating the masses, heat
capacities and temperature changes. If there are only two objects in thermal contact
and they are isolated from their surroundings, then the heat lost by one will be same
magnitude as the heat gained by the other:

Qobj 1 =−Qobj 2 (19.4)

Note the minus sign in the Eq. (19.4). One object loses energy, so Q is negative, and the
other gains energy, having Q positive, so they are not equal. The sign must be taken
into account, and forgetting to do so will give an unphysical solution if you are trying
to solve a problem. A more general way of writing energy conservation for a system of
objects placed in thermal contact is

sum of heat inputs =Qobj 1 +Qobj 2 +Qobj 3 + . . . = 0 (19.5)

Recall from Eq. (19.3) above that Q = mc∆T tells us the amount of heat transferred
to increase the temperature by ∆T . As ∆T is defined as the final temperature minus the
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initial temperature, then Q is positive for an increase in temperature and negative for a
decrease.

For the case of two objects placed in contact and reaching a common final temper-
ature, Tf, we have

mobj 1cobj 1(Tf −Tobj 1, i)+mobj 2cobj 2(Tf −Tobj 2, i) = 0 (19.6)

where the m values are the masses of the two objects, the c values are their specific heat
capacities, and Tobj 1, i and Tobj 2, i are their initial temperatures. This can be simplified
to

Tf =
m1c1T1 +m2c2T2

m1c1 +m2c2
(19.7)

(We have simplified the notation a little for clarity.)

This formula closely resembles the formula for calculating the centre of mass of a
two-mass system. This is worth keeping in mind, as it can be a great help in checking
that calculated temperatures seem reasonable. For example, suppose we are mixing
1 kg of water at 20 °C with 2 kg of water at 50 °C. In the same way the center of mass of a
system of a 1 kg mass and a 2 kg mass will be along the line joining the masses, and will
be two-thirds of the distance along this line, closer to the 2 kg mass, the final tempera-
ture of the mixture will be two-thirds of the temperature difference higher than 20 °C.
So, for this example, the final temperature will be 40 °C.

Problem: Two objects of known initial temperature and mass are placed in contact and allowed to come to thermal

equilibrium. Derive an expression for their final temperature.

Example 19.1 Thermal equilibrium

Solution: Here, energy as heat is transferred from the hotter object to the cooler object until they reach the same
temperature. The initially hot object loses a total amount of energy

Qhot =−mhotchot∆Thot

=−mhotchot(Thot, final −Thot, initial)

The energy gained by the initially cold object is

Qcold = mcoldccold∆Tcold

= mcoldccold(Tcold, final −Tcold, initial)

Assuming our experiment is isolated from its surroundings so there are no energy transfers between the objects and the
surroundings, then the energy lost by the hot object must equal the energy gained by the cold object so Qcold =−Qhot.
When the two objects finally reach thermal equilibrium, they must have the same final temperature:

Thot, final = Tcold, final = Tfinal

so (with slightly simplified notation)
−mhch(Tf −Th) = mccc(Tf −Tc)

We can rearrange this to find a formula for Tf:

−mhchTf +mhchTh = mcccTf −mcccTc

Tf(mhch +mccc) = mhchTh +mcccTc

Tf =
mhchTh +mcccTc

mhch +mccc
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Problem: An indoor swimming pool containing 20×103 L of water has a temperature of 20 °C. In an attempt to

increase the pool’s temperature some heated rocks are added to the pool. These rocks have an initial temperature

of 80 °C and a total mass of 500 kg of hot rock is added to the pool. What is the pool’s final temperature?

Example 19.2 Thermal Equilibrium

Solution: Energy is transferred as heat from the rocks to the water in the pool. (Note: we will assume that heat transfer
between the pool and its surroundings is negligible. This is a reasonable assumption if the air is also at 20 °C.) In the
previous example we derived an expression that we can apply to this situation

Tf =
mrcrTr +mwcwTw

(mrcr +mwcw)

The density of water is 1000 kg m−3, which gives a mass of 1 kg for every litre of water

mwater = ρV

= 1kg L−1 ×20000 L

= 20000 kg

The specific heat capacities are

cr = 790 J kg−1K−1(for granite) and cw = 4190 J kg−1K−1

so

Tf =
500 kg×790 J kg−1K−180 °C+20000 kg×4190 J kg−1K−1 ×20 °C

(500kg×790 J kg−1K−1 +20000 kg×4190 J kg−1K−1)
= 20.3 °C

Note that we can use temperatures in °C in Eq. (19.7) as the factor of +273 K that is added to each temperature in °C to
get the temperature in kelvin cancels out in Eq. (19.6).

Problem: Your coffee is too hot to drink at 90 °C, so you would like to cool it to 65 °C. You are impatient and don’t

want to wait, so you decide to add some tap water which has come out of a Dunedin, NZ, tap in winter, and is at about

7 °C. If your hot coffee has a mass of 250 g, what mass of tap water do you need to add to it to achieve the required

temperature?

Example 19.3 Thermal equilibrium

Solution: Energy is transferred as heat from the hot coffee to the cold tap water until they both reach the final temper-
ature of 65 °C. The energy lost as heat by the hot coffee must equal the energy gained as heat by the cold tap water. (We
are neglecting any energy transfers between the coffee and the air. This will be a good approximation, as stirring water
into coffee is quick, so not too much heat will be lost to the surroundings during this time.) We can calculate the
heat transferred to or from the hot coffee from its mass, specific heat capacity and temperature change

Qcoffee = mcoffeeccoffee∆Tcoffee

=−0.250 kg××4190 J kg−1 K−1(65−90)K

=−2.6×104 J

The heat is negative, and the coffee is losing energy. Conservation of energy means that Qcoffee +Qwater = 0. From this
we can see that Qwater = 2.6×104 J.

The mass of tap water required is then determinable by rearranging Qwater = mwatercwater∆Twater

mwater =
Qwater

cwater∆Twater

mwater =
2.6×104 J

4190 J kg−1K−1 × (65−7)K
= 0.1 kg

You will need a reasonably large coffee cup to do this.
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19.5 L AND c VALUES FOR WATER

Latent heat of fusion (0 °C) 334.4 kJ kg−1

Latent heat of vaporisation (100 °C) 2256.3 kJ kg−1

Specific heat capacity of liquid (15 °C) 4.186 kJ kg−1 K−1

Specific heat capacity of solid (–5 °C) 2.072 kJ kg−1 K−1

Table 19.1 Latent and specific heat values for water

A helpful hint: Many people are quite comfortable with the idea of ‘magnitude of
heat lost equals magnitude of heat gained’ and will happily solve a problem like those
here this way. This approach quickly falls apart when there are more than two objects
involved, and will also give a result that is unphysical if you leave out a critical minus
sign. A much more reliable approach to such problems is to remember that the sum of
the Q values will be zero if no heat is exchanged with anything outside the system, and
if there is no phase change, Q = mc∆T . By using ∆T = Tfinal −Tinitial, the sign of Q will
always be correct.

Thermal Equilibrium With Phase Change

The equation we previously gave for conservation of energy where objects are in ther-
mal contact, Eq. (19.5), is still valid for cases where a change of phase occurs. We now
need to include the heat transfers that occur during the changes in phase, however. For
example, suppose we have a glass of water in which we place an ice cube (at 0 °C). At
least some of the ice will melt, and the resulting melt-water will then mix with the orig-
inal water to come into thermal equilibrium. If the ice melts completely, and the final
temperature of the mixture is Tf, then

mwatercwater(Tf −Twater, i)+micecwater(Tf −0 °C)+miceLf = 0 (19.8)

Once the ice has melted, it is still at 0 °C, so this is the initial temperature of the
resulting water. It takes energy input to melt ice into water, so there is a plus sign in
front of mL. If the phase change was, say, vapour to liquid instead, we would need a
minus sign.

19.5 L and c Values for Water

Table 19.1 summarises the most important values for water.

These numbers show some interesting facts. It takes as much energy to melt 1 kg
of ice as it does to raise the temperature of that 1 kg of water by about 80 K. It is also
quite clear from the large value of the latent heat of vaporisation that the phase change
from water to steam takes a lot of energy. This is responsible for the very strong cooling
effect of evaporation from the skin, and for the severity of burns caused by steam. As
steam condenses to water on the skin, it transfers a large amount of heat, so the effect
is much worse than a burn from water at 100 °C.

The latent heat of vaporisation changes with temperature, but at normal skin tem-
peratures it is still large (≈ 2450 kJ kg−1). When water or sweat evaporates from the skin,
this transfers heat from the skin, so this is one of the key ways our bodies regulate tem-
perature. Humans are one of the few species that can sweat, and many animals pant
instead, cooling the mouth and lungs. Like us, horses and primates also have sweat
glands in the armpits (or the equivalent part of their anatomy).

Cooling by evaporation can occur only if the air is not already carrying as much
water vapour as possible, so the humidity plays a crucial role in determining how com-
fortable we are in an environment. We will look at the importance of water vapour in
the air in the next chapter.
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Problem: You want to add just enough ice to your room-temperature (25 °C) beer to bring it to a temperature of 4 °C,

which is what it would have been if you had remembered to put it in the fridge. What mass of ice (at 0 °C) is required?

Assume the mass of beer is 300 g and that beer and water have the same specific heat capacity.

Example 19.4 Thermal equilibrium with phase change

Solution: This problem is similar to the previous one. However this time we need to take into account that the ice will
have energy put into it to change state, as well as to warm up to the final temperature.

Energy is transferred as heat from the warm beer to the ice, cooling the beer and melting the ice and then warming
up the resulting water from its starting temperature of 0 °C.
For the beer

Qbeer = mbeercbeer∆Tbeer = 0.3 kg×4190 J kg−1K−1 × (4−25)K =−2.6×104 J

For the ice/ice-water

Qice = miceLwater +micecwater∆Ticewater = mice ×
(
334×103J kg−1 +4190 J kg−1K−1 × (4−0)K

)
There must be heat transferred to the ice to melt it, so the sign of mL is positive. We use the specific heat capacity of
water, not of ice, because the ice has turned into water before its temperature increases.

Qice +Qbeer = 0

so

mi ce =
2.6×104 J

334×103J kg−1 +4190 J kg−1K−1 × (4−0)K
= 0.074 kg

This is quite a lot of ice, and would dilute the beer by almost 25%. This would ruin the taste, and is why nobody puts ice
in their beer!

19.6 Summary

Key Concepts

phase The term phase usually refers to a part of a sequence, and it is used differently in sev-
eral areas of physics, such as wave motion and astronomy. In thermodynamics, it refers
to a state of a macroscopic physical system that has uniform composition and physical
properties.

state (of matter) A form of matter. The three traditional states are solid, liquid,and gas. Other
forms of matter, such as plasma, are now also referred to as states.

P –T phase diagram A diagram showing the stable states of matter for a particular substance as
pressure and temperature are varied. On the boundary lines between these regions, two
phases can exist in equilibrium.

P –V phase diagram A diagram showing how pressure and volume are related. Each line plotted
on the diagram shows the P–V relationship for a fixed temperature, and these are called
isotherms.

heat Thermal energy transferred due to a temperature difference.

specific heat capacity (c) The amount of heat required to change the temperature of 1 kg of a
substance by 1 K.

latent heat coefficient (L) The amount of heat that must be transferred to change 1 kg of a sub-
stance from one phase to another. The latent heat coefficient depends on the phase
change involved and the temperature.

evaporation A change of state from liquid to gas.

condensation A change of state from gas to liquid.

melting A change of state from solid to liquid.

freezing A change of state from liquid to solid.

sublimation A change of state from solid to gas.

deposition A change of state from gas to solid.
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vapour pressure The gas pressure created by the equilibrium between vaporisation/sublimation
and condensation/deposition. It depends only upon the temperature.

vapour The term vapour is used when a substance is in its gas phase at a temperature lower
than its critical temperature.

Equations

Q = mc∆T

Q = mL

sum of heat inputs =Q1 +Q2 +Q3 +·· · = 0
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19.7 Problems

19.1 Which of the following statements are correct? (Note: more
than one statement may be correct)

(a) When the liquid and vapour phases of a substance co-exist
the pressure depends only on the volume, not the tempera-
ture.

(b) When the temperature of a substance is less than the criti-
cal temperature there is a distinct phase change between the
liquid and solid phases involving latent heat.

(c) The latent heat for the vaporisation of water is greater at 0 °C
than at 100 °C.

(d) When two objects (1 and 2) exchange heat, the correspond-
ing heat quantities, Q1 and Q2, satisfy the equation Q1 =Q2.

(e) The specific heat capacity of a substance is numerically the
same as the amount of thermal energy required to increase
the temperature of 2 kg of the substance by 0.5 °C.

19.2 A 1 kg block of copper and a 2 kg block of wood each absorb
the same amount of heat, and the temperature of the wood in-
creases by 2 °C. The specific heat of wood is 1700 J kg−1 K−1. The
specific heat of copper is 387 J kg−1 K−1. How much does the tem-
perature of the block of copper increase?

19.3 To cool a hot bath containing 50 litres of water at 50 °C down
to 20 °C,

(a) what volume of cold water at 5 °C would be needed (in
litres)?

(b) what mass of ice at 0 °C would be needed?

19.4 How much heat must be transferred into a 50.0 kg block of ice
at -10 °C to raise its temperature to 0 °C, melt it into liquid water,
heat it to 100 °C and then evaporate all of the water?

19.5 By mistake I run a bath using 60 kg of water from just the hot
tap and the water temperature is 65 °C. I decide to cool the water
to 40 °C with snow, which is at 0 °C. The specific heat capacity of
the water is 4.19 kJ kg−1 K−1 and the latent heat of fusion of ice is
333 kJ kg−1. What weight of snow should I use?

19.6 A 65 kg patient suffers from hyperthermia, having a mean
body temperature of 41 °C. The patient is placed in a bath con-
taining 50 kg of water. The specific heat capacity of the water is
4.19 kJ kg−1 K−1 and the average specific heat capacity of the pa-
tient is 3.49 kJ kg−1 K−1. In order for the final temperature of the
water and patient to be 37 °C, what should the initial temperature
of the water be?

19.7 A hyperthermic male, weighing 104 kg, has a mean body tem-
perature of 42 °C. He is to be cooled to 37 °C by placing him in
a water bath, which is initially at 25 °C. What is the minimum
amount of bath water required to achieve this result? The specific
heat of the body is 3.5 kJ kg−1 k−1. The specific heat of water is
4.19 kJ kg−1 k−1.

19.8 A beaker of water and a beaker of an unknown liquid are
weighed and their temperatures measured. The unknown fluid
has a mass of 1.2 kg and the water has a mass of 0.8 kg. They are
both at an initial temperature of 20 ◦C. The beakers are then simul-
taneously heated on the same heating element for the same length
of time and then they are weighed and their temperatures mea-
sured again. Their weights did not change when they were heated
in this way, but the water now has a temperature of 28 ◦C whereas
the unknown fluid has a temperature of 34 ◦C. What is the specific
heat of the unknown fluid?

19.9 Steam condenses on a 5 kg iron plate. The plate was initially
at 15 ◦C and it is found that 10 g of steam has condensed onto the
plate. What is the temperature of the plate after the steam has con-
densed? (The specific heat capacity of iron is 449.4 J kg−1 K−1)

19.10 A 70 kg runner loses 0.5 kg of water each hour through evap-
oration of perspiration in order to maintain a stable temperature.
The latent heat of water at his skin temperature is 2440 kJ kg−1 and
the average specific heat capacity of his body is 3.5 kJ kg−1 K−1. If
he stopped perspiring, how much would his temperature rise in
the following 30 minutes?
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20.1 Introduction

The air in the Earth’s atmosphere is made up of a mixture of gases, mostly nitrogen and
oxygen, with smaller amounts of argon, carbon dioxide and other gases. Excluding wa-
ter vapour, the composition of this mixture does not change to any significant degree
in most situations, so for many purposes it can be treated like a single gas. However,
the quantity of water vapour mixed in with this dry air changes as environmental con-
ditions change, which has important consequences for the body’s thermoregulation.
In this chapter, we will learn about the effects of water vapour in the air, and how this
affects our ability to survive in our environment and regulate our body temperature.

Key Objectives

• To be able to determine the relative humidity from the partial pressure and satu-
rated vapour pressure of water.

• To understand the various quantities used to characterise water-vapour/dry-air
mixtures, such as wet-bulb temperature, dry-bulb temperature, dew-point tem-
perature and moisture content.

• To be able to use a psychrometric chart to determine the properties of water-
vapour/dry-air mixtures.

20.2 Mixtures of Water Vapour and Air

Dalton’s Law

Dalton’s law was covered earlier along with the other ideal gas laws. Recall that the
partial pressure exerted by one gas in a fixed volume is the pressure it would exert if
it was the only gas present. The total pressure is the sum of the partial pressures of
all the gases present. In the atmosphere, the total atmospheric pressure is the sum of
the partial pressure exerted by the dry air and the partial pressure due to water vapour.
The total pressure at sea level varies with time and location, and the contribution due
to water vapour varies as the amount of water vapour changes. The partial pressure
due to water vapour can be as high as 4% of the total atmospheric pressure in humid
tropical conditions. In cold, dry, polar environments it can be 0.1% or less.

Water Vapour in the Air

In the section on phase diagrams we considered what would happen to water in a
sealed container at different temperatures. When the vapour and liquid phases are
in equilibrium, i.e. evaporation and condensation are occurring at the same rate, the
vapour density (and hence the pressure exerted by the vapour) has a fixed value at each
temperature. If any more vapour is added, it will condense and if vapour is removed,
more evaporation will occur.

Introduction to Biological Physics for the Health and Life Sciences Franklin, Muir, Scott, Wilcocks and Yates
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If another gas is introduced into our container, this does not affect the partial pres-
sure due to the water vapour. This is important when looking at water vapour in the
atmosphere. There is a fixed maximum amount of water vapour that a volume can hold
at any particular temperature, corresponding to the maximum partial pressure due to
water vapour, the saturated water vapour pressure. Figure 20.1 shows the maximum
pressure that can be exerted by water at each temperature.

Figure 20.1 The saturation vapour pressure of
water depends on temperature. Between 10 °C
and 30 °C, the vapour pressure doubles approx-
imately every 10 °C.

In an open environment, the water vapour is generally not in equilibrium with any
liquid water present. The air usually has less water vapour mixed with it than the max-
imum possible, so any liquid water in the environment will evaporate over time. An
important measure of how much moisture is in the air is the relative humidity, RH.
This is given by

RH = Partial pressure of water vapour in the air

Saturated water vapour pressure, same temperature
×100% (20.1)

It is usually given as a percentage. At 100% relative humidity, the atmosphere has
the maximum amount of water vapour possible at its current temperature. This is an
important condition, because sweat will no longer evaporate from the skin. Recall from
the previous chapter that the phase change from liquid to vapour requires a significant
input of energy, which usually comes from the surrounding skin, cooling it. This is a
very important mechanism for keeping body temperatures inside a suitable range. As
the humidity gets higher, the evaporation of sweat slows down, and so even if the tem-
perature is unchanged, changing the relative humidity can strongly affect how com-
fortable we feel in an environment.

20.3 Partial Pressure, Moisture Content

The partial pressure due to water vapour and the amount of moisture in the air are
related, and we can apply the gas laws already encountered to derive a mathematical
relationship. The moisture content is the mass of water vapour in the air per unit mass
of (dry) air. As this is quite a small fraction, it is often given in units of grams of mois-
ture per kilogram of air. The moisture content is also known as the absolute humidity

(sometimes called the humidity ratio).
Suppose that a volume V contains nw moles of water vapour with a partial pressure

of Pw. The corresponding mass of water, mw = Mwnw = 18×10−3 kg mol−1 ×nw as the
molar mass of water is 18 g mol−1. We can obtain nw from the ideal gas equation,
nw = PwV

RT , so the mass of the water vapour is

mw = 18×10−3 kg mol−1 ×nw = 18×10−3 kg mol−1 PwV

RT
(20.2)

The mass of the dry air can be written similarly. Its partial pressure is Pt −Pw, the
total pressure minus the partial pressure due to the water vapour, and its molar mass is
28.97 g mol−1. (Air is mostly N2, so the molar mass is close to the 28 g mol−1 of diatomic
nitrogen molecules.) The air has mass

ma = 28.97×10−3 kg mol−1 ×na = 28.97×10−3 kg mol−1 (Pt −Pw)V

RT
(20.3)

Both gases share a common temperature, and occupy the same volume. Combin-
ing these two equations gives us the moisture content in terms of the partial and total
pressures

mw

ma
= 18Pw

28.97(Pt −Pw)
= 0.621× Pw

(Pt −Pw)
(20.4)

(Note that this is for the mass of water vapour in kg per kg of dry air. To get the moisture
content in grams per kilogram of dry air, multiply by 1000.)

As the value of Pw is at most a few percent of the total pressure, the approximation
for the relative humidity

RH ≈ moisture content

saturated moisture content at that temperature
×100% (20.5)

is normally good enough to find the relative humidity from the moisture content.

196 www.wiley.com/go/biological_physics



20.4 ATMOSPHERIC PROPERTIES

20.4 Atmospheric Properties

There are a number of things we can measure that tell us the amount of water vapour
mixed in with a sample of dry air. We can use these to calculate other quantities.

Dry-Bulb Temperature

The dry-bulb temperature, Tdb, is the normal temperature that an ordinary thermome-
ter reads. We will soon be introducing some other different kinds of temperature mea-
surement, so the ‘dry-bulb’ label is nearly always used in psychrometrics (the study of
gas–vapour mixtures) to reduce the possibility of getting them mixed up.

The Dew-Point Temperature

Figure 20.2 A wet-bulb thermometer usually
reads a lower temperature than an ordinary dry-
bulb thermometer due to evaporation.

The dew-point temperature, Tdew, is the temperature to which a surface located in
an air–water mixture needs to be cooled before condensation occurs on the surface. In
other words, it is the temperature at which the saturated vapour pressure of water is the
same as the partial pressure of water vapour in the atmosphere. Atmospheric samples
with the same dew-point temperature have the same partial pressure of water vapour.
If the total pressure is the same, these samples will all have the same moisture content,
but can have different dry-bulb temperatures, and different relative humidities.

The dew point is measured by cooling a surface below the ambient temperature
of the room and recording the temperature at which condensation first forms on a sur-
face. In practice it is hard to measure accurately, and is easily under-estimated, because
it requires looking for the temperature at which a very small amount of condensation
has occurred. The dew-point temperature is always less than or equal to the dry-bulb
temperature. When the dew-point and dry-bulb temperatures are the same, the rela-
tive humidity is 100%.

Wet-Bulb Temperature

Figure 20.3 The wet-bulb reading is lower than
the dry-bulb temperature when the relative hu-
midity is less than 100%. The lower the humidity,
the bigger the temperature difference.

The wet-bulb temperature, Twb, is different to the dew-point temperature and is more
easily measured. Wet-bulb temperature is the reading of a thermometer whose bulb
is wrapped in cloth which is kept wet (see Figure 20.2). The wet-bulb temperature is
always less than or equal to the dry-bulb temperature. It is also more than, or equal to,
the dew-point temperature.

If the relative humidity is anything less than 100%, evaporation is possible, as the
water vapour pressure is lower than the saturation water vapour pressure. The reason
the wet bulb reads lower is that it is in a dynamic equilibrium with the surroundings.
Because the thermometer is colder than its surroundings, it is constantly receiving heat
from its surroundings. However, it is also constantly losing heat due to evaporation of
water from the cloth that is wrapped around its base. The wet-bulb temperature is the
equilibrium temperature such that the rate at which heat is lost by the thermometer
due to evaporation is equal to the rate at which heat is transferred to the thermometer
due to the temperature difference between it and its surroundings.

The evaporation rate is higher when the air is more able to receive extra water
vapour, i.e. when the relative humidity is low. If the relative humidity is low, there
will be a large difference between dry-bulb and wet-bulb temperatures (Figure 20.4).
If the relative humidity is high, there will only be a small difference between dry-bulb
and wet-bulb temperatures (Figure 20.3).

To give an accurate reading, the rate of air flow over the wet wick must be at least
3 m s−1, and the wick must be clean and free of dirt and oils that affect the evaporation
rate.

Figure 20.4 At lower humidity, the wet-bulb tem-
perature is much lower than the dry-bulb temper-
ature.

Humidity, Moisture Content and Partial Pressure

Relative humidity, moisture content and partial pressure due to water vapour are all
difficult to measure directly, and are instead usually calculated from the temperatures
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mentioned above. One way of determining these values is to use a psychrometric

chart. This is the topic of the next section.

20.5 Psychrometry

Background

Psychrometry is the study of gas–vapour mixtures, usually mixtures of water vapour
and air. The term vapour is used when a substance is in its gas phase at a temperature
lower than its critical temperature. In this situation the vapour can be condensed into
a liquid when the partial pressure is high enough. The critical temperature for water is
374 °C, so water vapour will always condense under typical atmospheric conditions if
the partial pressure is increased sufficiently.

There are many possible quantities that we might want to specify for a given sam-
ple of water vapour and air: relative humidity, moisture content, wet-bulb temperature,
dry-bulb temperature, dew point and energy content per unit mass, to name a few. For-
tunately, these quantities are not independent, and so we need only measure a few to
know the rest too. There is a simple postulate behind this, which is that to characterise
the thermodynamic state of simple, single-component system requires determining
the values of just two independent parameters. With a two-component mixture like we
have here, that would require four, but because the temperatures of the two compo-
nents are the same, we need only three. Total pressure is easily measured, so only two
other measurements are required.

Plotting the relationships between various quantities simplifies the calculation, and
this is the purpose of the psychrometric chart.

Psychrometric Charts

The psychrometric chart shows many of the quantities we mentioned earlier: mois-
ture content (and/or partial pressure due to water vapour), relative humidity, wet-
bulb temperature and dry-bulb temperature, typically, though others may be shown
on more sophisticated charts. Each chart is valid for a particular total pressure, and all
the ones shown in this book are for standard atmospheric pressure, 1.013×105 Pa. Ev-
ery point on the chart below the 100% relative humidity line represents a possible state
that a mixture of water vapour and air might be in. Each line on the chart correspond-
ing to a stated property value (such as Tdb = 20 °C) shows all the states that share that
value. If we measure two independent properties of our mixture, we can find the one
point on the chart which corresponds to the state of the mixture.

On the charts we will use for all our examples, the right-hand vertical axis shows
the moisture content – how many grams of moisture per kilogram of dry air – so each
horizontal line corresponds to a particular moisture content. The bottom horizontal
axis shows the ordinary dry-bulb temperature, and so each vertical line is a particular
temperature.

Closely related properties

On some charts the moisture content is sup-

plemented or replaced by the vapour pressure.

As shown by Eq. (20.4), they are closely re-

lated, and nearly proportional.

The curved lines show states that share a common relative humidity. For a given
dry-bulb temperature, the relative humidity varies from 0% up to 100%, with the 100%
value occurring at the moisture content that corresponds to the maximum moisture
content of the air at that temperature. As the temperature rises, the amount of water
vapour the air can hold rises, doubling every 10–12 °C, so the lines curve up.

The diagonal lines represent constant wet-bulb temperature. At 100% relative hu-
midity, the wet-bulb temperature is the same as the dry-bulb temperature, as no evap-
oration occurs. The lines of constant wet-bulb temperature intersect with the 100%
humidity line when the dry-bulb temperature has the same value. There is a minimum
temperature that the wet-bulb thermometer can reach at a given room temperature.
For example, at 24 °C, the minimum wet-bulb reading, which occurs when the relative
humidity is zero, is approximately 7.5 °C.

The dew-point temperature is not labelled, but it is easy to determine from the
other information. To measure the dew point, the mixture is cooled until 100% rela-
tive humidity (saturation point) is reached, without changing the total pressure or the
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Figure 20.5 A psychrometric chart valid for water vapour and air mixtures at standard atmospheric pressure. [Cre-
ated from data in ASHRAE Fundamentals Handbook 2001.]

moisture content. This process corresponds to moving the state of the mixture hor-
izontally across the chart to lower temperature until the 100% RH curve is reached.
The temperature of the point where this happens is the dew-point temperature. Hence
measuring the dew point tells us which horizontal moisture content line indicates the
state of our original (uncooled) mixture.

In summary, for mixtures of water vapour and dry air with a fixed total pressure:

• Two independent measurements define the state of a water-vapour–air mixture.

• Horizontal lines = lines of constant moisture content, dew-point temperature
and partial pressure of water vapour.

• Vertical lines = constant dry-bulb temperature.

• Curved lines = constant relative humidity.

• Diagonal lines = constant wet-bulb temperature.

• If a mixture is heated or cooled without adding or removing water it moves hori-
zontally across the chart.

• If water is added to or taken away from a mixture without changing its tempera-
ture, then its state moves vertically up or down the chart.

• If a mixture would have a humidity above 100% (which is equivalent to having a
temperature lower than its dew-point temperature) then condensation will occur
until the humidity is reduced to 100%. This is the process that produces clouds.
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To use the psychrometric chart for some useful calculations, we often need to first
find out the mass of dry air we are dealing with. This can be found from the volume, say
the volume of the room in question, and the density of dry air, which is about 1.2 kg m−3

at 20 °C.

Problem: A room 3.5 m by 5 m by 2.4 m contains air and water vapour at a dry-bulb temperature of 20 °C with a

dew-point temperature of 7 °C. The density of dry air is 1.2 kg m–3. Locate this point on a psychrometric chart, and

determine the following:

(a) The moisture content.

(b) The relative humidity.

(c) The total quantity of water vapour in the room.

(d) How much water, if any, would condense if a boiling kettle added 800 g of water vapour to the air without

changing the temperature.

Example 20.1 Moisture added to a room

Solution:

Figure 20.6 Use the dew-point temperature of 7 °C and dry-bulb temperature of 20 °C to determine the moisture
content from the psychrometric chart.

(a) Find 7 °C on the horizontal axis and go up to the 100% humidity line. This gives us a moisture content of 6 g kg−1.

(b) The atmosphere in our room has the same moisture content as this, so moving across horizontally until we reach
the correct air temperature of 20 °C, we can see that the relative humidity is 42%.

(c) Volume = 3.5 m× 5 m×2.4 m = 42 m3

Mass of dry air = density × volume = 1.2 kg m−3× 42 m3 = 50.4 kg
Mass of water vapour = mass of dry air × moisture content = 50.4 × 6 = 302.4 g

(d) Total water vapour = 302.4 g + 800 g = 1102.4 g
New moisture content = 1102.4 g/50.4 kg = 22 g kg−1

Water will condense. There are several ways of seeing why:

• There is more water vapour (22 g kg−1) in the room than the maximum (14.5 g kg−1) possible at 20 °C.
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• The dew point temperature for air with 22 g −1kg of water vapour is 26 °C which is higher than the room temper-
ature, so water vapour will condense.

• If we find the point on the chart with 22 g kg−1 of water vapour and a room temperature of 20 °C, it is above 100%
relative humidity, so water will condense to reduce the relative humidity to 100%.

Water will condense until the relative humidity is 100%. At which point the moisture content is 14.5 g kg−1. The dif-
ference between this and 22 g kg−1 tells us how much water has condensed per kilogram of air. So 22 g kg−1 – 14.5 =
7.5 g kg−1 of water has condensed. The total amount of water vapour that will condense is 7.5 g kg−1 ×50.4 kg = 378 g.

Problem: A bathroom with dimensions of 6 m × 3 m × 2.4 m is at a temperature of 28 °C and contains 1.24 kg of

water vapour. (ρair = 1.2 kg m–3.)

(a) What is the humidity in this bathroom?

Over time the bathroom cools down to 16 °C and some of the water condenses leaving the room at a relative humid-

ity of 35%.

(b) What is the amount of water vapour in the bathroom now?

Example 20.2 Humidity

Solution: (a) we already know the dry bulb temperature in the bathroom is 28 °C, in order to find the humidity using
the psychrometric chart we need to know either the wet-bulb temperature or the moisture content of the room. We
have no information that will enable us to find the wet-bulb temperature, but we do know the volume of the room, the
density of air and the total amount of water vapour in the room. By combining these three values we can calculate the
moisture content

M.C. = mwater

mair

The mass of water vapour is 1.24 kg or 1240 g. The mass of air in the room is

mair =Vroomρair = (6 m×3 m×2.4 m)×1.2 kg m−3 = 51.8 kg

so the moisture content (in g kg−1) is

M.C. = 1240 g water

51.8 kg air
= 24 g kg−1

By finding the intersection of the 28 °C dry bulb line and the 24 g kg−1 moisture content line on the psychrometric
chart we can find the relative humidity (and the wet-bulb temperature) from the psychrometric chart. As shown in
Figure 20.7, the 28 °C dry-bulb line and the 24 g kg−1 moisture content line meet at the 100% relative humidity line.
(b) We can solve this in a similar way to part (a). From the intersection of the 16 °Cline and the (estimated) relative
humidity 35% line we can see (Figure 20.8) that the moisture content of the bathroom at this later time is 4 g kg−1. Now
we can work backwards to find the amount of moisture in the room.

M.C. = mwater

mair

mwater = M.C.×mair = 4 g kg−1 ×51.8 kg = 207 g
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Figures for the previous example:

Figure 20.7 Finding the relative humidity of the bathroom.

Figure 20.8 Finding the moisture content in the bathroom at a later time.

Problem: The temperature in a lecture theatre filled with students is initially 22 °C and the relative humidity is

initially 40%. Over the course of a 50 minute lecture, an air-conditioning system drops the temperature to 16 °C.

A fault in the air-conditioning system means that the wet-bulb temperature has remained the same as when the

lecture began.

(a) What is the wet-bulb temperature at the beginning of the lecture?

(b) What is the relative humidity at the end of the lecture?

Example 20.3 Wet-Bulb Temperature

Solution: (a) We know the dry-bulb temperature and the relative humidity at the beginning of the lecture and so we
can use the psychrometric chart to find the wet-bulb temperature (and moisture content) at this time as shown in
Figure 20.9.
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Figure 20.9 Wet-bulb temperature at the beginning of the lecture.

So the wet-bulb temperature at the beginning of the lecture was 14 °C.
(b)

Figure 20.10 State of the air in the theatre at the end of the lecture.

The wet-bulb temperature remains constant over the course of the lecture, despite the reduction in dry-bulb tempera-
ture. We know that the difference between the wet-bulb and dry-bulb temperatures is indicative of the relative humidity
and that the closer the two temperatures are, the higher the humidity. This indicates that the humidity in the lecture
theatre will have risen. Figure 20.10 shows the state of the air in the lecture theatre after the lecture in which the relative
humidity is 80%.

20.6 Applications

Medical Equipment: Humidification and Ventilators

As we breathe in air, it gets warmed to 37 °C and humidified to 100% humidity (this
is 44 mg of water vapour per litre). If we breathe in air that is cooler than this, heat
will be transferred from us to the air. If the air we breathe in has lower humidity than
this, then we may lose water in the air we breathe out. In day-to-day life, we normally
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breathe in air that is cooler and less humid than the air we breathe out. This means that
we lose water, which needs to be provided in our diet. It also takes some of our energy
to heat this air. Patients requiring ventilatory support are often in a precarious position;
they may be out of fluid balance and short on metabolic resources. Providing air at the
same temperature and humidity as the air that will be breathed out reduces the heat
and water loss by the patient. In designing breathing equipment for these patients, it is
important to take these thermodynamic factors into consideration.

Combined Temperature Measures

The relative humidity is a key factor in determining how comfortable an environment
is as well as the temperature, so a number of other measures have been developed to
indicate when conditions are potentially hazardous. The heat index uses a formula
based on temperature and relative humidity to try and indicate the air temperature
that is perceived by the body, which differs from the true dry-bulb temperature.

Many organisations concerned with heat stress in industry and sports use a com-
posite measure called the wet bulb globe temperature (WBGT) to estimate the com-
bined effects of humidity, radiation and temperature. It uses a formula that is heavily
weighted in favour of the wet-bulb temperature.

WBGT = 0.7 Twb +0.2 Tg +0.1 Tdb (20.6)

where Twb is the wet-bulb temperature, Tdb is the normal dry-bulb temperature and
Tg is the temperature on a black globe thermometer, which measures solar (or other)
radiation. In hot climates, a system of flags is used to indicate the WBGT at US military
bases, and there are guidelines in place for what activities are considered appropri-
ate for the situation. When the WBGT is over 32 °C (shown by a black flag), physical
training and hard work are to be suspended for all personnel, excluding essential oper-
ational commitments.

20.7 Summary

Key Concepts

psychrometry The study of gas–vapour mixtures, usually mixtures of water vapour and air.

psychrometric chart A chart showing the relationships between various properties of dry-air/water-
vapour mixtures. These often include moisture content, partial pressure due to water
vapour, relative humidity, wet-bulb temperature and dry-bulb temperature, though oth-
ers may be shown on more sophisticated charts. Each chart is valid for a particular total
pressure.

relative humidity (RH) A measure of how much water vapour is present in a sample as a per-
centage of the maximum amount that could be present at that temperature.

dew-point temperature (T dew) The temperature at which the partial pressure exerted by water
vapour in the atmospheric sample in question is equal to the saturation vapour pressure
of water. This is the temperature to which the atmosphere must be cooled for dew to begin
to form.

dry-bulb temperature (T db) The temperature measured by a standard thermometer.

wet-bulb temperature (Twb) The temperature shown on a thermometer that has the bulb cov-
ered with a thin, wet cotton wick which has an air flow of at least 3 m s−1 past it. For hu-
midities below 100%, evaporative cooling will cause the temperature reading to be lower
than the dry-bulb temperature.

moisture content The mass of water vapour per unit mass of (dry) air, usually expressed in
g kg−1. It is also called the absolute humidity.

saturated vapour pressure The maximum water vapour pressure that can be sustained in a vol-
ume at a particular temperature.
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Equations

RH = partial pressure of water vapour

saturated water vapour pressure at the same temperature

moisture content = mass of water vapour

mass of dry air

mw

ma
= 0.621× Pw

(Pt −Pw)
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20.8 Problems

20.1 You wish to measure the humidity in your flat. To do this you
use two thermometers; one of which you wrap in a wet cloth and
blow air over using a fan. The thermometer that is not wrapped in
a wet cloth reads 18 ◦C, the one wrapped in a wet cloth reads 16 ◦C.

(a) What is the relative humidity in this room?

(b) You measure the temperature of the inner surface of one
of the room’s windows. At what window temperature would you
expect water to condense on this window?

20.2 At a dry bulb temperature of 14 ◦C and at an atmospheric
pressure of 101.3 kPa the moisture content of the air is 4 g (kg-dry
air)−1 (ρair = 1.2 kg m−3 and MH2O = 18 g mol−1).

(a) What is the relative humidity?

(b) What is the partial pressure of water vapour?

20.3 An infection control room in a paediatric ward has dimen-
sions 3×3×4 m. The dry bulb temperature is 20 ◦ and the wet bulb
temperature is 18 ◦. The temperature of the window surfaces drops
to 15 ◦C overnight (the windows are not double glazed). What is
the minimum volume of water that a dehumidifier must remove
from this room such that condensation will not occur on the win-
dows overnight?

20.4 At a dry bulb temperature of 30 ◦C, an atmospheric pressure
of 101.3 kPa, and a humidity of 90% what is the partial pressure of
water vapour in the atmosphere (MH2O = 18 g mol−1)?

20.5 The air dry-bulb temperature in a room is 22 °C and the rela-
tive humidity is 60%. What is the minimum temperature of the in-
side surface of the glass in order to avoid the windows of the room
getting fogged-up?

20.6 The bathroom mirror is all steamed up and the dry-bulb tem-
perature is 28 °C. The mirror is slowly warmed from an initial cold
temperature and it starts to clear when its temperature reaches
22 °C. What is the relative humidity in the bathroom?

20.7 The wet-bulb temperature in the room is initially 20 °C and
the dry-bulb temperature is 24 °C. The surface temperature of
the windows falls to 12 °C, while the room temperature remains
constant. When moisture finally stops collecting on the windows,
what is the wet-bulb temperature? (Assume that the dry-bulb tem-
perature remains constant)

20.8 After taking a deep breath I exhale approximately 2.5 g of air.
The intake air is at 20 °C at 40% relative humidity, and the air ex-
haled is at 100% relative humidity at a temperature of 34 °C. What
is the net mass of water expelled during one breathing cycle?

20.9 The temperature of the air in a room is 13 °C and the partial
pressure of water vapour is 1.10 kPa. The volume of the room is
60 m3 and the molar mass of water is 18 g mol−1. What is the mass
of water vapour in the room?

20.10 The temperature of the air in a room is 14 °C and the relative
humidity is 70%. The volume of the room is 60 m3, the molar mass
of water is 18 g mol−1, and the density of air is 1.2 kg m−3. What is
the partial pressure of water vapour in the room?

20.11 On a cold evening, when the temperature of a particular
room is 20 °C, condensation starts to form on the windows when
the window surface temperature falls to 14 °C. Determine the rel-
ative humidity in the room.

20.12 The dry-bulb temperature of a sample of air is 30 °C and the
relative humidity is 40%. Which of the following statements are
correct? (Note: more than one statement may be correct.)

(a) The moisture content of the air is 27 g kg−1.

(b) The dew-point temperature is 15 °C.

(c) If the moisture content is increased while keeping the wet-
bulb temperature fixed, the relative humidity will reach
100% when the moisture content is 22 g kg−1.

(d) The wet-bulb temperature is 20 °C.

(e) If the moisture content is increased keeping the dry-bulb
temperature fixed at 30 °C, the maximum moisture content
will be 27 g kg−1.

20.13 Which of the following statements are correct? (Note: more
than one statement may be correct.)

(a) An air condition with high relative humidity normally makes
people feel uncomfortable because they are unable to lose
heat easily through evaporation of perspiration.

(b) Except at 100% relative humidity, the dew-point tempera-
ture for air is greater than the wet-bulb temperature.

(c) When air flows over a wet surface it can cool the surface right
down to the dew-point temperature, but no further.

(d) When the dew-point temperature is defined the moisture
content of the air is also specified.

(e) When the wet-bulb temperature is defined the moisture
content of the air is also specified.

20.14 On a certain day the dry-bulb temperature is 24 °C and the
wet-bulb temperature is 20 °C. Which of the following statements
is correct? (Note: more than one statement may be correct.)

(a) The dew-point temperature is 12 °C.

(b) The moisture content of the air is 6.5 g kg−1.

(c) If the air is cooled to 6 °C at 100% relative humidity it will lose
9 g of moisture per kg of dry air.

(d) The relative humidity is 60%.

(e) At the same dry-bulb temperature the minimum wet-bulb
temperature is approximately 8 °C.
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21.1 Introduction

21.2 Conduction

21.3 Convection

21.4 Radiation

21.5 Combined Transfer Processes

21.6 Summary

21.7 Problems

21.1 Introduction

Most biological systems need to exchange thermal energy with their surroundings in
order to control their temperature. The main ways of transferring thermal energy from
one place/object to another are conduction, convection, and radiation. Heat is energy
transferred from hot materials to cooler ones, and so the driving force behind these
methods is a temperature difference. The human body also transfers thermal energy
to its surroundings by evaporation of perspiration, a phase change process. This is not
driven by a temperature difference, but by a difference in the vapour pressure of water,
so can be used to transfer heat to the environment even when the surroundings are
hotter than the body.

Key Objectives

• To understand how conduction, convection and radiation transfer thermal en-
ergy.

• To understand the concepts of thermal conductivity and heat transfer coeffi-
cients.

• To be able to calculate heat-transfer rates under the following conditions: con-
duction through single and multiple layers, convection for air speeds up to 4 m s−1,
radiation and a combination of all these.

21.2 Conduction

Heat Transfer by Conduction

Heat conduction is the transfer of thermal energy from an object at higher temperature
to one at lower temperature by contact (Figure 21.1). The two objects can be in direct
contact, or there may be a medium separating them. The material of the objects, or the
medium connecting them, does not flow from one place to another, but the thermal
energy is transferred through it, either by transfer of vibrational motion from molecule
to molecule, or by conduction electrons wandering from atom to atom.

Figure 21.1 Heat transfer can take place by con-
duction when two bodies are in direct contact, or
are connected by another medium. If the bodies
are at different temperatures, there is a net flow

of thermal energy at the rate ∆Q
∆t .

The rate of heat transfer through a material will depend on its microscopic struc-
ture. Metals, which are good conductors of electricity, are also good conductors of ther-
mal energy as the electrons are able to move freely from atom to atom, carrying thermal
energy. Materials which are poor electrical conductors (that is, good electrical insula-
tors), such as plastics, wood and glass, also tend to be poor conductors of heat. The
thermal conductivity, given the symbol k, is the property of the material that tells us
how readily heat is conducted through it. The thickness of the material will also af-
fect the rate of energy transfer, as will the cross-sectional area; more area means more
molecules in contact, and more thickness means more molecules to pass the energy
through. The temperature difference driving the transfer will also have an effect: a big-
ger difference means a higher transfer rate.

Introduction to Biological Physics for the Health and Life Sciences Franklin, Muir, Scott, Wilcocks and Yates
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Eq. (21.1) takes account of how these three factors influence the rate of heat transfer

∆Q

∆t
= k A∆T

d
= hconduction A∆T (21.1)

where ∆Q
∆t is the rate of heat (Q) transfer by conduction, k is the thermal conductivity

of the material, d is the thickness of the material, A is the cross-sectional area and
∆T is the temperature difference between the surfaces separated by thickness d . In the
second part of Eq. (21.1) we have simplified the equation slightly, to put it in a form that
will make it easier to combine with other types of heat transfer, using the coefficient of

conduction heat transfer, hconduction = k
d . When in doubt about which coefficient is

you have been given, check the units: h has units of W m−2 K−1, while k is measured in
W m−1 K−1.

Coefficients of Heat Transfer

The coefficient of heat transfer, h, has been introduced to make it easier to combine the
effects of various heat-transfer mechanisms, and to deal with more than one material
layer. The heat transfer coefficient tells us how rapidly heat is being transferred per
square metre of surface area, when there is a 1 K temperature difference. To work out
the rate of heat transfer we multiply the coefficient of heat transfer (h-value) by the
surface area and by the appropriate temperature difference. For example, for a house,
the h-value could be for a single insulation layer, or it might be a total h-value that takes
into account several insulation layers as well heat loss by convection and radiation.

R-values

An alternate measure of the heat-transfer

properties of a layer of material is the R-value,

which is widely used in the building trades.

The R-value is a measure of thermal resis-

tance, and is the reciprocal of the h-value, i.e.

R = d /k. The larger the R-value of the mate-

rial, the better it is for insulation. Many coun-

tries use non-SI units for R-values, and some

use a mixture, so some care is required.

The h-value used in a calculation needs to match with the correct temperature dif-
ference. If, for example, the h-value you have is for conduction through a single layer,
such as a thick woollen coat, then the corresponding temperature difference is the dif-
ference between outer surface of the coat and the inner surface. (Note that the temper-
ature of the outer surface of the coat will normally be different from the surrounding air
temperature.) If instead the h-value included conduction from a person’s core through
their tissue and clothing, plus convective and radiative heat losses from the outside of
their clothes, then the temperature difference to use would be the person’s core tem-
perature minus the air temperature.

Problem: What is the rate of heat loss from a person with a core temperature of 37 °C and a skin temperature of

27 °C? Would you expect the surrounding air to be (a) hotter than 27 °C, (b) 27 °C or (c) colder than 27 °C?

The person’s tissue is modelled as providing an insulating layer of thickness 1.0 cm, surface area 1.2 m2 and conduc-

tivity k = 0.2 W m–1 K–1.

Example 21.1 Heat loss by conduction

Solution:

hconduction = k

d
= 0.2 W m−1 K−1

0.01 m
= 2 W m−2 K−1

∆Q

∆t
= k A∆T

d
= h A∆T = 20 W m−2 K−1 ×1.2 m2 × (37−27) K = 240 W

(c) They are losing heat from their core to their skin and their skin to their surroundings. You would expect their skin
temperature to be intermediate between their core temperature and the temperature of the surroundings.

Conduction Through Multiple Layers

In many situations, heat is transferred from the body to the environment through mul-
tiple layers and we need to combine the effects of more insulation layers. For example,
on a cold day heat is being conducted from a person’s core through a layer of tissue to
the skin surface, and then through a layer of clothing. When more layers are added,
we would expect the rate of heat transfer to decrease. Therefore, we expect the h-value
for multiple layers to be less than the h-value for any individual layer, so simply adding
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h-values together is incorrect. The inverse of the h-value is a measure of thermal resis-
tance, and we will see in the Electricity and DC Circuits topic that for resistors in series,
the resistances add. Similarly, to get the total h-value for multiple layers we add the
reciprocal h-values together:

1

htotal
= 1

hlayer 1
+ 1

hlayer 2
+·· · (21.2)

Problem: What is the rate of heat loss from a person with a core temperature of 37 °C, a 1.0 cm thick tissue layer with

conductivity of 0.2 W m–1 K–1, and 5 mm thick clothing with conductivity of 0.04 W m-1- K–1? The outer surface of

his clothing has a temperature of 10 °C. (We will assume a body surface area of 1.2 m2.)

Example 21.2 Heat loss by conduction through multiple layers

Solution:

htissue =
ktissue

dtissue
= 0.2 W m−1 K−1

0.01 m
= 20 W m−2 K−1

hclothing =
kclothing

dclothing
= 0.04 W m−1 K−1

0.005 m
= 8 W m−2 K−1

therefore

htotal =
1

1
hclothing

+ 1
htissue

= 5.7 W m−2 K−1

The rate of heat loss is therefore

∆Q

∆t
= h A∆T = 5.7 W m−2 K−1 ×1.2 m2 × (37−10) K = 185 W

If we add more clothing layers, what happens to the rate of heat loss? What happens to htotal? What happens to the

skin temperature as we add more insulating layers of clothing?

The rate of heat loss decreases as there is more insulation. htotal gets smaller when we add more layers. The skin
temperature gets higher. As the rate of heat transfer by conduction through the body tissue is lower than before, but
htissue and A are the same, ∆Ttissue is less.

21.3 Convection

Heat transfer by fluid convection occurs as a result of the bulk motion of a fluid. For
example, natural convective transfer occurs as a result of temperature-related density
differences. A fluid that is heated becomes less dense, and hence more buoyant, rising
upwards. (At least this will happen in an environment like the Earth’s surface – this
process will not happen somewhere like an orbiting space station.)

Forced convection happens when the fluid motion is caused by an external agent,
such as a fan. In practice, the rate of heat transfer is measured for a particular circum-
stance and this is used to find the h-value for that convective process. For example,
for air moving at speeds of less than 0.2 m s−1 over a surface like the human body,
hconvection = 3.1 W m−2 K−1. For higher air speeds v , in the range from 0.2–4.0 m s−1,
then hconvection = 8.3v0.6 W m−2 K−1. These equations are examples of some useful ap-
proximations and apply for air; different values would be obtained if the fluid was, say,
water.

As for conduction, the rate of heat transfer is

∆Q

∆t
= hconvection A∆T (21.3)
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21.4 Radiation

All objects radiate energy in the form of electromagnetic radiation, with the rate and
the frequency range being determined by temperature. Radiative heat transfer is espe-
cially important for the energy balance of the human body.

The Stefan–Boltzmann Law

The Stefan–Boltzmann law gives the rate at which an object radiates energy as electro-
magnetic radiation:

∆Q

∆t

∣∣∣∣
emitted

= εσAT 4 (21.4)

where ε is the surface emissivity, σ is the Stefan–Boltzmann constant, A is the surface
area and T is the absolute temperature. The emissivity is between zero and one. (See
the next section.) σ has the value σ= 5.670×10−8 W m−2 K−4.

Eq. (21.4) is for the rate of emission of radiation. Any object that emits radiation will
in fact be in an environment that is radiating energy back at it, which it will absorb. The
net rate of heat transfer will be

∆Q

∆t

∣∣∣∣
net

= εσAT 4
surface −εσAT 4

environ = εσA
(
T 4

surface −T 4
environ

)
(21.5)

where the temperatures Tsurface and Tenviron are the surface and environment temper-
atures.

This is not in the form ∆Q
∆t = h A∆T . However, we can re-write it in this form by using

an approximation, and this will be useful in many situations when we wish to combine
heat-transfer mechanisms. Suppose we write the temperature of the surface in terms
of the temperature of the surroundings T and the difference, ∆T , so Tsurface = T +∆T .
Then the rate of heat loss by the surface is

∆Q

∆t

∣∣∣∣
net

= εσA[(T +∆T )4 −T 4]

= εσA[T 4 +4T 3
∆T + terms involving higher powers of ∆T −T 4]

≈ 4εσAT 3
∆T

This assumes that ∆T is much smaller than T , so that higher powers of ∆T (e.g.
∆T 2) are small enough that we can ignore any terms involving them. We now have a
useful form of Eq. (21.5):

∆Q

∆t

∣∣∣∣
net

= hradiation A∆T (21.6)

where hradiation = 4 ε σ T 3, known as the radiative surface heat-transfer coefficient.
The closer together the two temperatures are the more accurate this approximation is.
A reasonable rule of thumb is that if the temperature difference is 10% or less of the
absolute temperature of the surroundings then it is reasonable assumption. A good
approximation for cases where we wish to calculate rates of heat loss from the body is
to take T = 290 K and ε = 0.9, so that hr = 5.0 W m−2 K−1.

Emissivity Values

How well a surface emits radiation is normally determined by how well it absorbs it.
The emissivity of a shiny, metallic (reflective) surface is very low (less than 0.1). Dull,
black surfaces have the highest emissivities, between 0.9 and 1. The best emitters have
high emissivity values. The theoretical perfect emitter/absorber has a emissivity of 1
and is known as a blackbody.

At the temperature of the human body and the environment, objects emit no visi-
ble light, only infrared. In this region of the electromagnetic spectrum, most surfaces
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have emissivities in the 0.9 to 1 range, with the exception of mirror-polished metallic
surfaces. At infrared wavelengths, human skin has a high emissivity (about 0.97) which
is why we can so easily feel the heat from a source like a radiant heater on our skin.
Snow is an extreme example of the wavelength dependence of the emissivity. In the
visible region its emissivity is very low, but in the infrared it is high, so to an infrared
camera, snow looks black.

Problem: A person is running at 3 m s–1 on a calm 5c̃elsius day. They have a surface area of 1.7 m2. The outer

surface of their clothing has a temperature of 9 °C. What is their rate of heat loss due to convection?

Example 21.3 Heat loss by convection

Solution: Temperature difference is between surface and surroundings, and is ∆T = 4 K. For convection

hconvection = 8.3 v0.6 W m−2 K−1 = 8.3×30.6 W m−2 K−1 = 16.0 W m−2 K−1

∆Q

∆t
= hconvection A∆T = 16.0 W m−2 K−1 ×1.7 m2 ×4 K = 109 W

Problem: A person is running at 3 m s–1 on a calm 5 °C day. They have a surface area of 1.7 m2. The outer surface of

their clothing has a temperature of 9 °C. What is their rate of heat loss due to radiation?

Example 21.4 Heat loss by radiation

Solution: The temperature difference between the person’s clothing surface and surroundings is again 4 K. This time
the heat loss is by radiation. Method 1: (You need to know both the surface and the surroundings temperature to use
this method.) We expect the person’s clothing to be effective at radiating in the infrared range, so we will use ε= 1

∆Q

∆t
= εAσT 4

surface −εAσT 4
surroundings

∆Q

∆t
= 1×1.7 m2 ×5.67×10−8 W m−2 K−4 × [

(282 K)4 − (278 K)4]= 33.9 W

Method 2: Using surroundings temperature to calculate hradiation:

hradiation = 4εσT 3
surroundings = 4.87 W m−2 K−1

∆Q

∆t
= hradiation A∆T = 4.87 W m−2 K−1 ×1.7 m2 ×4 K = 33.1W

Using the surroundings temperature to calculate hradiation underestimates heat loss slightly.

Colour and Temperature

The wavelength, and hence colour, of light emitted by a hot object is temperature de-
pendent. For example, a piece of heated metal emits only infrared radiation at first,
then as it gets hotter, it begins to glow red (as red is at the low-energy end of the spec-
trum), and if it is heated sufficiently, it changes colour to get closer to white. In fact, the
temperature to which you would have to heat a perfectly-emitting blackbody source to
get a particular colour of light is often used to describe the colour of light sources in
the form of a colour temperature. A candle has a colour temperature of about 1900 K, a
domestic tungsten filament bulb is about 2700 K, and full sunlight is 5500–6000 K, close
to the surface temperature of the sun, but varying with the location of the sun. (Light
on an overcast day is referred to as ‘cooler’ in hue, being bluer, but is actually spectrally
similar to the radiation from a higher temperature source, at more like 7000 K.)

Radiation and frost formation

The effective temperature of the cloudless

night sky is much lower than the local sur-

roundings at ground level. This is because the

atmosphere gets colder as you go up. Radia-

tive heat loss is increased from surfaces fac-

ing the sky. This is why we get frost on clear

nights, and why covering plants can protect

them from frost.

The wavelength at which the most emission occurs (λmax) is related to the temper-
ature by the Wien displacement law

λmax =
b

T
(21.7)
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where T is the absolute temperature and b is a constant, which has the value 2.9×
10−3 m K. This puts the peak emission wavelength of the Sun (with effective surface
temperature 5780 K) at 502 nm, which is in the green region of the visible spectrum
where the human eye is most sensitive.

21.5 Combined Transfer Processes

Normally, conduction, convection and radiation all contribute to the heat transfer from
an object.

Consider how weather affects you. On a cold, overcast day, you may have a high
rate of heat loss due to radiation. On a windy day you may have a high rate of heat
loss due to convection. A cold and windy day is when your rate of heat loss will be
greatest, so we would expect the effects of convection and radiation to be additive, i.e.
the h-value for convection and radiation from a surface will be greater than either of the
individual h-values. Because the heat losses add cumulatively, the value for hsurface, the
coefficient of thermal heat transfer for combined convection and radiation heat losses
from a surface

hsurface = hconvection +hradiation (21.8)

Take the more complex situation of heat transfer from a person’s core to the sur-
roundings. In this case we need to consider heat loss through many layers:

• Conduction

– through their tissue

– through their clothing.

• Convection from the surface of their clothing.

• Radiation from the surface of their clothing .

The temperature difference that we are likely to know here is Tcore −Tsurroundings,
therefore the h-value that we need must take into account all the mechanisms listed.
For conduction, htissue = ktissue/dtissue and hclothing = kclothing/dclothing. These values
can be combined to give the total hconduction:

1

hconduction
= 1

htissue
+ 1

hclothing
(21.9)

We can determine the surface coefficient for heat transfer by convection, hconvection,
from the air speed and empirical data. hradiation = 4εσT 3 (≈ 5.0 W m−2 s−1), where T is
the air temperature. We then combine the effects of convection and radiation.

hsurface = hconvection +hradiation (21.10)

To combine the h-value for heat loss from the surface with the h-value for heat loss
by conduction through insulating layers, we treat the surface h-value like we would
another conducting layer

1

htotal
= 1

htissue
+ 1

hclothing
+ 1

hsurface
(21.11)

If we look at heat loss from a person’s core to their surroundings, then the thermal
energy is moving via conduction through their tissue, then by conduction through their
clothes, then by a mixture of convection and radiation from the surface of their clothes
to the surroundings. If we assume an equilibrium situation, so that the temperatures
of surfaces and layers are constant, then heat must leave any layer at the same rate as
it enters that layer. This means that the rate of heat transfer via conduction through
the person’s tissue is equal to the rate of heat transfer via conduction through their
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clothing, and is equal to the rate of heat transfer via convection and radiation from the
clothing surface to the surroundings.

∆Q

∆t
= htissue A(Tcore −Tskin)

= hclothing A(Tskin −Touter surface of clothing)

= hsurface A(Touter surface of clothing −Tsurroundings)

= htotal A(Tcore −Tsurroundings)

If we know Tcore and Tsurroundings we can use htotal to determine the rate of heat
transfer. We can then determine the temperature at any intermediate surface.

Problem: At what rate does the runner in Examples 21.3 and 21.4 lose heat due to convection and radiation?

Example 21.5 Combined heat loss mechanisms

Solution: From Examples 21.4 and 21.3

hradiation = 4.87 W m−2 K−1

hconvection = 16.05 W m−2 K−1

hsurface = hradiation +hconvection = (4.87+16.0) = 20.9 W m−2 K−1

∆Q

∆t
= h A∆T = 20.9 W m−2 K−1 ×1.7 m2 × (9−5) K = 142W = 109W +33W

How is this related to the rate at which they lose heat due to each of convection and radiation alone?

The rate at which heat is lost due to both convection and radiation = the rate at which heat is lost due to convection
alone plus the rate at which heat is lost due to radiation alone.
In this example we have not considered the thickness and conductivity of the runner’s clothes. Does this affect our

ability to solve the problem?

No. We are told the temperature of the outer surface of their clothing and of the air so we are looking for the h-value for
mechanisms of heat loss from the outer surface of the clothing to the surroundings.
What would change if the runner put on more clothes and why?

Heat transfer through the runner’s clothing determines the temperature of the outer surface of their clothing. If they put
on more clothes it would reduce their rate of heat loss from their core to the outer surface of their clothing. Heat must
be transferred away from the outer surface of the clothing at the same rate as it arrives there, so this has also reduced
the rate of heat loss from the outer surface of the clothing to the surrounding air. The temperature of the outer surface
of their clothing would be closer to the surroundings when more clothes were put on.

Problem: A person’s rate of heat transfer from core to surroundings is 100 W, their core temperature is 37 °C, and the

external air temperature is 10 °C. What is the person’s skin temperature? (Assume he has a 3 cm thick tissue layer

with conductivity of 0.2 W m–1 K–1, 5 mm thick clothing with conductivity of 0.04 W m–1 K–1, and a surface area of

1.2 m2.)

Example 21.6 Combined heat loss mechanisms

Solution: Rate of heat transfer from core to surroundings = Rate of heat transfer from core to skin = 100 W.
Rate of heat transfer from core to skin = htissue A∆T .

htissue =
k

d
= 0.2 W m−1 K−1

0.03 m
= 6.7 W m−2 K−1

∆T =
∆Q
∆t

Ahtissue
= 100 W

1.2 m2 ×6.7 W m−2 K−1
= Tcore −Tskin = 12.5 K
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This gives us a skin temperature of

Tskin = Tcore −∆T = 37 °C−12.5 °C = 24.5 °C

Problem: In Example 21.5 we were able to calculate the rate of heat loss from the runner without making any ex-

plicit calculations for conduction, but what if we did not know the runner’s surface temperature, but we did know

their core temperature?

In this example, our runner has a 1.0 cm thick tissue layer with conductivity of 0.2 W m–1 K–1, and 2 mm thick cloth-

ing with conductivity of 0.04 W m–1 K–1. Her surface area is 1.7 m2, her core temperature is 37 °C, the surrounding

air temperature is 5 °C, and she is running at 3 m s–1.

Example 21.7 Combined heat loss mechanisms

Solution: From Example 21.21.5

hsurface = (4.87+16.0) W m−2 K−1 = 20.9 W m−2 K−1

Using the information we have about the persons tissue and clothes

htissue =
ktissue

dtissue
= 0.2 W m−1 K−1

0.01 m
= 20 W m−2 K−1

hclothing =
kclothing

dclothing
= 0.04 W m−1 K−1

0.002 m
= 20 W m−2 K−1

1

hconduction
= 1

htissue
+ 1

hclothing

= 1

20 W m−2 K−1
+ 1

20 W m−2 K−1
= 1

10 W m−2 K−1

therefore hconduction = 10 W m−2 K−1

1

htotal
= 1

hsurface
+ 1

hconduction

= 1

20.9 W m−2 K−1
+ 1

10 W m−2 K−1

= 0.15 W−1 m2 K

therefore htotal = 1
0.15 W−1 m2 K

= 6.7 W m−2 K−1

∆Q

∆t
= h A∆T = 6.7 W m−2 K−1 ×1.7 m2 × (37−5) K = 360 W

21.6 Summary

Key Concepts

heat transfer by conduction The transfer of thermal energy from a region of higher tempera-
ture to one of lower temperature through matter by direct contact.

convection The movement of molecules of a fluid.
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heat transfer by convection The transfer of thermal energy assisted by the bulk movement of
fluid molecules.

radiation Energy emitted by a body as electromagnetic waves that travel through a medium or
through space.

heat transfer by radiation The transfer of thermal energy by the emission and absorption of
electromagnetic radiation from the surfaces of objects.

thermal conductivity (k) The property of a material that relates to its ability to conduct heat.
The thermal conductivity is measured in W m−1 K−1.

coefficient of heat transfer (h) The proportionality constant relating the rate of heat transfer
per unit area to the temperature difference. The heat transfer coefficient has units of
W m−2 K−1.

emissivity (ε) The ratio of the electromagnetic radiation emitted by an object to that emitted by
a perfect emitter at the same temperature. The emissivity lies in the range from zero to
one, is dependent on wavelength, and is dimensionless. The more reflective a material is
in a particular wavelength range, the lower its emissivity.

Stefan–Boltzmann law The rate at which electromagnetic energy is radiated by an object per
unit of surface area is proportional to the absolute temperature to the fourth power. See
Eq. (21.4).

Stefan–Boltzmann constant (σ) The constant of proportionality in the Stefan–Boltzmann Law.
σ= 5.670×10−8 W m−2 K−4.

Wien displacement law The wavelength at which the peak emission occurs for a blackbody is
inversely proportional to its absolute temperature. See Eq. (21.7).

Wien’s displacement constant (b) The constant of proportionality in Wien’s law, which is equal
to 2.898 × 10−3 m K.

Equations

∆Q

∆t
= k A∆T

d
= hconduction A∆T

1

htotal
= 1

hlayer 1
+ 1

hlayer 2
+ . . .

∆Q

∆t
= hconvection A∆T

∆Q

∆t

∣∣∣∣
emitted

= εσAT 4

∆Q

∆t

∣∣∣∣
net

= hradiation A∆T

hradiation = 4εσT 4

λmax =
b

T
hsurface = hconvection +hradiation
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21.7 Problems

21.1 A penguin generates thermal energy through metabolic pro-
cesses at a rate of 50 W, but loses 8 W due to respiration and mois-
ture loss. Its surface area is 0.63 m2 and the average thermal con-
ductivity of its feather layer is 0.031 W m−1 K−1. The penguin
maintains a skin temperature of 35 °C when the outer surface of
its feather layer is −10 °C. What is the thickness of the penguin’s
layer of feathers?

21.2 The core temperature of an athlete is 37 °C and his surface
area is 1.8 m2. The thermal conductivity of his surface tissue,
which is 6 mm thick on average, is 0.18 W m−1 K−1. If heat is trans-
ferred from his core to his skin at a rate of 270 W, what is the aver-
age temperature of his skin surface?

21.3 You have choice between wearing a dark woollen jersey
(εjersey = 0.9, kwool = 0.04 W m−1 K−1, and djersey = 5 mm) and
a top made with a new high-tech material (εhtm = 0.1, khtm =
0.01 W m−1 K−1, and dhtm = 1 mm).

(a) Ignoring heat transfer due to radiative and convective pro-
cesses, which top would you predict will keep you the warmest on
a cold day?

(b) Which top would you predict will keep you warmest on
a cold day if you take into account radiative and convective heat
transfer (use hconvection = 3.1 W m−2 K−1 and Tair = 2 ◦C)?

21.4 An Olympic swimmer is waiting to compete. Her average skin
temperature is 33 °C and the average temperature of the pool hall
is 23 °C. Her surface area is 1.6 m2, her surface emissivity is 0.9 and
where she stands the mean air speed is 1.5 m s−1. Determine sep-
arately the rates at which she loses heat by radiative heat transfer
and by convection.

21.5 A penguin is standing in a sheltered spot somewhere near the
coast of Antarctica. The penguin is losing heat from it’s core, which
is at 39 °C, through a layer of fatty tissue and also through a layer of
insulating feathers. The layer of fatty tissue is 2 cm thick, the layer
of feathers is also 2 cm thick, the total rate at which the penguin
is loosing heat is 70 W, and the total surface area of the penguin is
0.7 m2 (ktissue = 0.2 W m−1 K−1, kfeathers = 0.035 W m−1 K−1).

(a) What is the rate of heat transfer across the layer of fatty tis-
sue?

(b) What is the rate of heat transfer across the layer of feathers?

(c) What is the skin temperature of the penguin (in °C)?

(d) What is the temperature of the outside surface of the pen-
guin (in °C)?

21.6 A person has a core body temperature of 37 °C, a tissue layer
that is 5 mm thick with a thermal conductivity of 0.2 W m−1 K−1

and a surface area of 1.4 m2. The average thickness of her clothes is
9 mm, with a thermal conductivity of 0.04 W m−1 K−1. The surface
heat transfer coefficient of her clothes is 22 W m−2 K−1. Deter-
mine her rate of heat loss when the external temperature is 12 °C.
What will be her average skin temperature under this condition?

21.7 The core temperature of a naked male, standing in air at 8 °C,
is 37 °C. His surface area is 1.6 m2. The thermal conductivity of his
surface tissue, which is 1.2 cm thick on average, is 0.20 W m−1 K−1.
If heat is transferred from his core to his skin at a rate of 195 W,
what is his average skin temperature ?

21.8 You are working outside on a cold day (Tair = 2 °C). Your core
body loses heat through a 2 cm thick layer of fatty tissue and a
1 cm thick layer of clothes. Your total surface area is 2m2 and the
thermal conductivities of fatty tissue and your clothes are ktissue =
0.2 W m−1 K−1 and kclothes = 0.01 W m−1 K−1. Your clothes are a
light color (ε= 0.4) and it is a windy day (vair = 3.6 m s−2).

(a) What is the total surface heat transfer coefficient?

(b) What is the combined heat transfer coefficient for heat con-
duction through your fatty tissue and clothes?

(c) What is the total heat transfer coefficient taking into ac-
count all methods of heat transfer?

(d) If the rate at which your core body is losing heat is 56.6 W,
what is your core body temperature? Should you stay outside?

21.9 A 110 kg fisherman with a surface area of 2.2 m2 falls from his
boat into the cold southern ocean (Tocean = 2 °C). The fisherman
has a 4 cm thick layer of fatty tissue (ktissue = 0.2 W m−1 K−1) and
is wearing cold weather survival gear which is 1.5 cm thick and has
a thermal conductivity of ksg = 0.03 W m−1 K−1.

(a) If the fisherman’s core body temperature is initially a
healthy 37 °C estimate how long will it be before his body tem-
perature drops to 34 °C (specific heat of the human body - cbody =
3.5 kJ kg−1 K−1)?

(b) Suppose the fisherman was wearing ordinary clothes
(kclothes = 0.1 W m−1 K−1 and dclothes = 5 mm) instead of the sur-
vival gear. Estimate how long would it take for their temperature
to drop to 34 °C in this case.

21.10 For each square metre of the sun’s visible surface the rate of
energy transferred to outer space is 63 MW. The emissivity of the
sun’s surface is approximately 1.0. Which of the following state-
ments is correct?

(a) The temperature of the sun’s surface is approximately
5766 K.

(b) The solar energy that reaches the earth from the sun involves
radiative heat transfer primarily.

(c) Because the sun’s surface temperature is relatively stable it
must be receiving energy from space at a rate of 63 MW m−2.

(d) The energy transferred from the sun is carried mainly by the
solar wind, so the process is primarily convective.

(e) The rate at which energy leaves the surface if the sun cannot
be calculated using the Stefan–Boltzmann law, because the
sun’s surface is white, not black.
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22.1 Introduction

22.2 The First Law

22.3 Energy and the Body

22.4 Thermoregulation

22.5 Temperature and Health

22.6 Summary

22.7 Problems

22.1 Introduction

In this chapter we will apply the thermodynamics we have learned to help understand
how the body regulates its temperature, and the energy balance of the human body.

Key Objectives

• To understand how the first law of thermodynamics applies to the body.

• To understand the mechanisms the body employs for thermoregulation.

• To be aware of the factors affecting human comfort levels in various environ-
ments.

22.2 The First Law

The first law of thermodynamics is a statement of conservation of energy. A system
may be heated, cooled, have work done on it and do work on other objects. These may
change the internal energy of the system. For a stationary system that can exchange
energy, but not matter, with its surroundings, this change is equal to the energy trans-
ferred to the system as heat, less the energy transferred from the system to external
agents on which the system does work.

The total internal energy of a system, which is given the symbol U , is a measure of
the amount of energy in the system in the kinetic energy of molecules and the various
forms of potential energy. Conservation of energy requires that

∆U =Q −W (22.1)

where∆U is the change in total internal energy of a system, Q is the net heat transferred
to the system and W is the net work done by the system.

Eq. (22.1), which is an expression of the first law of thermodynamics, is a statement
that energy can be transferred from one form to another, but it cannot be created or
destroyed.

22.3 Energy and the Body

The concept of conservation of energy was first stated by a physician, Julius Robert von
Mayer (1814–1878), studying the energy balance of the human body. First, the body
loses or gains energy as heat from the environment, due either to the temperature dif-
ference between the body and the surrounding environment, or the latent heat asso-
ciated with evaporation of perspiration. Second, when a person does physical work,
some of their energy is transferred to the surrounding environment. Third, molecular
energy is stored in the relatively weak bonds in food. We can obtain energy from food
through a series of biochemical reactions which convert the potential energy of food
molecules to other forms; this set of chemical reactions is called metabolism. Another
way of looking at this is that in eating we add high-energy molecules to our bodies, and
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following metabolism, excrete lower energy molecules, with the difference in energy
being transferred to our bodies.

These are three ways the body can gain or lose energy (∆U ):

1. Through heat transfer with its surroundings. The net heat transferred into the
body is Q.

2. Through the body doing work on the surroundings. The net work done by the
body is W .

3. Through gain of material by the system. The net gain of energy due to this type
of process is E .

In this situation, the first law is

∆U =Q −W +E (22.2)

where E is the energy gained by the body as a result of ingestion and metabolism of
food.

The second law

The second law of thermodynamics is beyond

the scope of this book, but we will mention

it here briefly. It states that for an isolated

system that is not in equilibrium, the entropy

will tend to increase over time. Entropy is a

measure of the disorder of a system, and also

a measure the unavailability of energy to do

work.

Metabolism, Hypothermia and Hyperthermia

The reason we can maintain a core body temperature that is usually higher than our
surroundings is that we are constantly producing energy as a by-product of metabolism.
Metabolic processes in the body convert stored energy into other forms of energy use-
ful for biological function. This process is somewhat inefficient and much of the stored
energy is not converted into useful forms, but is instead deposited in the body in the
form heat. If this was not the case, we would quickly reach thermal equilibrium with
our surroundings as we continued to lose heat via thermal transfer. Our metabolic
rate is how many joules of energy per second that we are producing from metabolism.
It is higher when we are exercising our muscles than when we are sitting still. If our
metabolic rate is lower than our rate of heat loss to the environment then we will lose
heat energy and our core temperature will decrease. If we stay in such a situation too
long the result will be hypothermia, a potentially serious decrease in core body tem-
perature below the normal 37 °C. (The prefix ‘hypo’ means low or below normal.) On
the other hand, if our metabolic rate exceeds our rate of heat loss then we will gain en-
ergy, and our core temperature will increase. Remaining in an environment where this
is the case for too long may result in hyperthermia and heat stroke. (The prefix ‘hyper’
is the opposite of hypo, and means over or excessive.)

Hyperthermia and fever

When the body has a raised temperature due

to fever, it is because of the action of the hy-

pothalamus. The body raises its temperature

to better fight invading bacteria or viruses. In

the case of hyperthermia, the rise in tempera-

ture is due to external factors and is not insti-

gated by the body’s control systems.

We can calculate how much a person’s core temperature will change from heat ex-
change and metabolism. First, we calculate the person’s net rate of loss of energy from
heat loss to the surroundings (due to conduction, convection, radiation as covered in
the last chapter) and metabolism

net rate of energy loss = rate of heat loss – metabolic rate

total energy lost = net rate of energy loss × time

decrease in core temperature =
total energy lost

(mass of body)×(specific heat capacity of the body)

Energy Value of Food

When food is fully oxidised, the amount of energy released per mole is the same whether
that occurs rapidly in one step or slowly in many steps. The energy values of food are
found by measuring the heat produced when food is oxidised by combustion. In cellu-
lar respiration, food is also oxidised to the same final products as in combustion, so the
amount of energy released is the same, the difference being that in the body it is done
in a controlled way. When listing the energy content of a particular food item, these
values are adjusted to account for those parts of food, such as dietary fibre, which the
body is unable to digest, and which are excreted unoxidised.

Energy values of major food components:
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• Lipids (fats) 37 kJ g−1 (9 kcal g−1)

• Protein 17 kJ g−1 (4 kcal g−1)

• Carbohydrate 17 kJ g−1 (4 kcal g−1)

• Alcohol 29 kJ g−1 (7 kcal g−1)

The recommended daily intake (RDI) of energy for young adults is around 10 MJ for
males and 8 MJ for females.

Efficiency

The work efficiency, η, of the body is defined as the ratio of the mechanical work done
by the body (e.g. work done climbing up a mountain, running a marathon, or walking
to university) to the energy used for mechanical work. The work done by the body is
W , and the energy used will be the energy gained from food, plus any decrease in the
internal stored energy, E−∆U . This is equivalent to the work output from the body plus
the heat lost, which is W −Q, so

η= W

E −∆U
= W

W −Q
(22.3)

If the body uses up reserves to perform the work then ∆U < 0 and the person reduces
their stores of high-energy compounds in the short term and loses weight in the long
term. If the body has more intake than required for the work to be done, this is stored
long term as fat deposits. If the body neither uses stored reserves or adds to stored
reserves over the time period of interest then ∆U = 0 and in that case we have η= W

E .

The work efficiency of the body is typically around 2–10%, though it can be as high
as 25% when engaged in sports. As the work efficiency is typically low, the heat loss
from the body is normally about the same as the metabolic rate. For a person taking in
enough food to maintain their stores, this suggests that the energy lost as heat will be
about the same as the energy taken in, i.e., E ≈−Q.

Problem: A 60 kg person has a core temperature of 37 °C. The onset of mild hypothermia occurs at a core body

temperature of about 35 °C. The specific heat capacity of human tissue is 3500 J kg–1 K–1. He is losing heat at a rate

of 300 W to his surroundings, and will be exposed to this environment for two hours. Will he get hypothermia if he

is sitting still? What about if he is walking or running?

Example 22.1 Energy balance and hypothermia

Solution: Sitting still metabolic rate = 100 W; walking metabolic rate = 250 W; running metabolic rate = 600 W. Assume
the work efficiency is negligible.

Sitting: Net rate of heat loss = 300 W – 100 W = 200 W

∆T = 200 W×7200 s
60 kg×3500 J kg−1K−1 = 6.9 °C ⇒ hypothermic.

Walking: Net rate of heat loss = 300 W – 250 W = 50 W

∆T = 100 W×7200 s
60 kg×3500 J kg−1K−1 = 1.7 °C. They will be cold but above the hypothermia threshold.

Running: Net rate of heat loss = 300 W – 600 W = –200 W. They are producing heat more rapidly than they are losing it,
so they will not become hypothermic. Thermoregulatory processes will normally intervene to prevent overheating.
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Problem: How do male emperor penguins survive winter on the Antarctic ice? Males do not eat for four months

while they incubate an egg in temperatures down to –60 °C. They are 100 km from open water. Determine their

energy inputs and outputs. Can they survive?

Example 22.2 Penguins

Solution: To solve real world problems like this, we consider a model penguin with the following characteristics:

• To get from the sea to the breeding site and back to the sea takes the penguins five days walking in each direction
with a metabolic requirement of 80 W.

• Over the 120 days the males lose 15 kg of body mass.

• The average air temperature is –20 °C and the penguin’s body core temperature is 39 °C.

• The penguin’s layer of feathers is 2 cm thick with k = 0.03 W m−1 K−1.

• Penguins can be treated as cylinders 0.8 m high with 0.12 m radius.

• Metabolism produces 37 MJ per kg of lost body mass (fat).

Surface area of simplified model penguin = surface area of cylinder

A = 2πr h +2πr 2 = 0.694 m2

∆Q

∆t
= k

d
A∆T = 0.03

0.02
× (0.694×59) W = 61.4 W

It will take about 10 days× 24 hours per day× 3600 seconds per hour× 80 J per second = 69 MJ of energy to make the
five-day journey each way. The total energy available is 15 kg × 37 MJ kg−1 = 555 MJ. This leaves about 487 MJ
for the 110 days they are incubating the eggs. At the rate of conduction loss we calculated, they will lose about
(110×24×3600×61.4) J = 584 MJ. So, these model penguins are in energy deficit by 97 MJ. To avoid this problem,
real emperor penguins huddle together in colonies to reduce their heat loss during the Antarctic winter.

22.4 Thermoregulation

Thermoregulation is the maintenance of a constant core body temperature in an or-
ganism. Humans and other warm-blooded organisms (homeotherms) thermoregulate.
Organisms, such as reptiles, that do not are called thermoconformers, and their tem-
perature changes according the environmental temperature.

Heat Sensors

The human body has temperature-sensitive receptors located in many places, such as
the skin, hypothalamus, midbrain, spinal cord and abdominal cavity. The thermore-
ceptors sense either hot or cold, and most areas have both types. The sensors send
information to the hypothalamus, which controls the body’s response.

Vasoconstriction and Vasodilation

When the internal body temperature and/or the skin temperature gets too low, the
blood vessels adjacent to the skin constrict, reducing the blood flow from the core to
the surface. This response, called vasoconstriction, reduces the rate of heat loss from
the skin surface by allowing the skin to get colder.

The minimum blood flow to the skin is about 3 × 10−3 kg s−1 for a male. If the
temperature of the blood is reduced by 2 °C in transferring heat from the core to the
skin, then the corresponding rate of heat loss is

4200 J kg−1 K−1 ×3×10−3 kg s−1 ×2 K = 25 W

To increase the rate of heat loss, when the body is too hot, then the blood supply to
the skin can be increased by vasodilation. This increase in the blood flow to the skin,
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which reduces blood pressure, can be up to about 15 times the minimum blood flow, a
maximum of 45×10−3 kg s−1 for a male. The corresponding rate of heat loss for a 2 °C
temperature change between the core and the surface is about 378 W.

Piloerection and Shivering

Piloerection (which causes ‘goosebumps’) occurs when the fine body hairs stand on
end in an attempt to reduce convective heat loss from the skin. The raising of the hairs
is intended to create a stationary layer of air between the skin and the surroundings. As
humans have little body hair and tend to be clothed, this doesn’t normally play a major
role in human thermoregulation.

Another physiological response to cold temperatures is shivering. Cold signals
from the skin and spinal cord are transmitted to the part of the hypothalamus responsi-
ble for shivering, trigger the reflex. The body’s muscles begin to make small movements
in order to expend some metabolic energy and generate thermal energy. A person with
a fever may experience shivering as a response to perceived cold, as the fever changes
the temperature that the body’s regulatory processes consider to be normal.

Perspiration

Perspiration, or sweating, is a very effective cooling mechanism, as the latent heat of
evaporation of water is high. Heat loss by evaporation of liquid from the skin is the
only way we can lose heat when the air temperature is above 37 °C. The human body
has sweat glands in the skin which excrete fluid (mainly water with some dissolved
salts). The rate of moisture loss by perspiration can reach up to 3 kg per hour, which is
faster than the gut can absorb water (about 1 kg h−1). This corresponds to a maximum
rate of cooling of 2 kW, but this is obviously unsustainable.

A moisture loss rate of around 25 g h−1 for a male with skin temperature 30 °C is
more typical, and this provides about 0.025 kg×2430 kJ kg−1× 1

3600 s h−1 = 17 W. This is
about 20–25% of the resting body heat loss, and the moisture loss is split 50/50 between
losses through the respiratory tract and losses through the skin, normally without wet-
ting the skin.

The effectiveness of sweating is dependent on the relative humidity of the local en-
vironment. In low humidity, the skin can remain quite dry even with significant sweat-
ing rates, but when the air is close to saturation with water vapour, the rate of evapo-
ration is reduced. Thus, at high humidity, the area of the body that must be dampened
by sweat for effective cooling is higher, and this is quite a lot less pleasant. When the
surface area of the skin that is wet is more than a quarter of the total, most people ex-
perience discomfort.

Figure 22.1 The effect of wind speed on the
equivalent temperature. The wind-chill equiv-
alent temperature provides an estimate of the
still-air temperature that would provide the same
cooling effect on exposed skin. [Created from
data in ASHRAE Fundmentals Handbook 2001.]

Behavioural Responses

A highly effective way of regulating body temperature is for an organism to adjust its
behaviour. Cold-blooded animals such as lizards bask in the sun or hide under rocks
to control their temperature. Some animals, such as bats, hibernate through periods of
low environmental temperature. Animals with high metabolic rates may spend parts
of the day inactive to conserve energy.

In humans, adding or removing clothing layers, removing oneself from hot or cold
environments, and changes of posture (such as folding arms) and exercise are ways
in which we can affect the rate of heat exchange with the surroundings. A further
behavioural response is the use of technology to regulate the environment with air-
conditioning or heating systems.

Extreme Conditions: Wind-chill

The rate of heat loss due to convection is dependent on the air speed. The wind-chill
temperature gives an estimate of the equivalent still-air temperature that would pro-
vide the same cooling rate on exposed 33 °C skin that the current conditions (air tem-
perature and wind speed) provide. At higher wind speeds, the model for heat transfer
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by convection that we developed earlier no longer holds, and the wind-chill equivalent
temperatures are the result of experiment. Figure 22.1 shows the effect of wind-chill on
exposed skin.

22.5 Temperature and Health

Factors Affecting Comfort Level

A person feels comfortable when their temperature can be maintained in a narrow
range, and they are not shivering or feeling sweaty. In high-humidity environments,
low evaporation can lead to unpleasantly damp skin. At the other extreme, low humid-
ity can cause unpleasant drying of the mucous membranes of the nose, and the eyes
and throat. This is a problem that long-haul flight passengers are all familiar with. The
relative humidity on an airplane can be a low as 1–2%. To humidify the air on planes
would significantly increase costs.

Figure 22.2 80% of people are thermally comfortable in the zones indicated. [Created from data in ASHRAE Fun-
damentals Handbook 2001.]

The effects of humidity on comfort levels can be slightly counter-intuitive. Even
though a more humid environment may make it more difficult to lose heat by evapo-
ration, in cold conditions it is more likely that the moisture that is lost through the skin
will condense in and dampen the clothing. This can increase its thermal conductivity,
making us feel cooler. Also, any significant wetting of the skin will increase discomfort,
as will increased friction from clothing caused by the dampness.

Adverse Effects of Temperature

The elderly and infants are more susceptible to thermal stress, with the elderly at height-
ened risk for medical and often financial reasons. Many prescription drugs alter the
body’s ability to regulate temperature and increase the risks; these include sedatives,
antidepressants, tranquilizers and cardiovascular drugs. Drugs can also increase the
risk of heat stress. Medication for Parkinson’s disease can decrease perspiration, and
diuretics reduce the body’s fluid reserves and decrease the blood flow to the skin.

The mortality rate for the elderly typically increases markedly during cold winters,
particularly in temperate climates. In countries that do not have particularly cold win-
ters, houses are often inadequately insulated, and populations may be under-prepared
for the cold weather conditions. In these conditions, the leading cause of death amongst
the elderly is not actually hypothermia from extreme cold, but stroke and heart attack.
As vasoconstriction restricts the blood flow to the skin, this increases the amount of
blood going to the central organs, putting them under stress. The body’s response to
this is to reduce the blood volume by excreting salt and water, which thickens the blood,
increasing the risk of blood clotting. Older people’s blood vessels often have rougher

222 www.wiley.com/go/biological_physics



22.6 SUMMARY

linings, so they are more at risk from clotting. In the UK, according to the Met Office,
the winter death rate goes up about 1.4% for every degree drop in temperature below
18 °C.

This has significant public-health implications, as shown by two intervention stud-
ies by Professor Philippa Howden-Chapman of the Wellington School of Medicine and
Health Sciences, University of Otago, which concluded that insulating houses led to a
significantly warmer, drier indoor environment and resulted in improved health, less
wheezing, fewer days off school and work, and fewer visits to general practitioners. It
was also concluded that the use of non-polluting, effective home heating improved
well-being and reduced symptoms of asthma and days off school.

Temperature can also affect health through air quality. Some of the contaminants
that occur indoors are allergens such as dust, moulds and spores, and volatile organic
compounds (e.g. acetone and toluene). High temperatures can increase the presence
of volatile organic compounds in the air from sources such as carpets and furniture.
On the other hand, low temperatures can increase relative humidity and condensation
on surfaces, leading to the growth of moulds. There is also a risk of reducing air qual-
ity through decreased ventilation to maintain indoor air temperatures. Poor air quality
can cause headaches, nausea, nasal congestion, fatigue and other symptoms. Individ-
uals with asthma are more susceptible to adverse effects of poor air quality.

22.6 Summary

Key Concepts

work Energy transferred in a form that can perform mechanical work.

metabolism The series of biochemical reactions which convert stored energy in food molecules
to other forms.

metabolic energy The amount of energy transferred to the body by oxidation of food.

first law of thermodynamics A statement that energy is conserved. Energy can be transferred
from one form to another, but it can be neither destroyed nor created.

Equations

∆U =Q −W +E

η= W

E −∆U
= W

W −Q
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22.7 Problems

22.1 A cyclist does 2 MJ of mechanical work over the course of a
day. His work efficiency is 20% and the metabolic energy of the
food consumed during the day is 8 MJ.

(a) What is the net metabolic energy used during the day?

(b) How much heat does the cyclist transfer to his surroundings
during the day?

(c) How much extra food will the cyclist need to consume at the
end of the day in order not to loose weight?

22.2 A rugby player uses metabolic energy at a rate of 430 W while
playing. At the same time he loses energy at an average rate of
210 W, due to work being done, convection, radiation and respira-
tion. Assume that his core temperature does not change during an
80 minute game, and that the latent heat of vaporisation of perspi-
ration is 2440 kJ kg−1. How much moisture will he lose as a result
of the evaporation of perspiration during the game?

22.3 During the course of a day a climber does 3.0 MJ of work with
a mean work efficiency of 20%. How much heat must he lose dur-
ing the day in order to avoid getting too hot?

22.4 On a long-distance polar trek an explorer has a nutritional in-
take of 15.6 MJ per day. She does mechanical work at an average
rate of 100 W for 10 hours per day. Assuming she does not lose or
gain weight, what is the average rate at which she loses heat to the
environment (in W)?

22.5 During a tennis match the metabolic heat generation rate
of a player is 450 W. She loses heat at a rate of 170 W by con-
vection, radiation and respiration, how much moisture will she
lose through evaporation of perspiration during a match lasting
3 hours? Assume that the core temperature of the tennis player
does not change, and that the latent heat of vaporisation of water
is 2440 kJ kg−1.

22.6 After eating a 150 g pottle of yoghurt, Bob decides to go for a
run to burn off the extra energy. The yoghurt provides 4.4 MJ kg−1,
and Bob is able to raise his metabolic rate to 220 W while running.
How long does he have to run?

22.7 An athlete runs 5000 m in 30 mins, with a mechanical power
output of 130 W. If she runs with a work efficiency of 15%, what is
the net metabolic energy used?

22.8 The following statements are about how humans can transfer
thermal energy to their surroundings when the air temperature is
greater than the core body temperature, 37 °C. Which statements
are correct? (Note: more than one statement may be correct)

(a) The body temperature is simply allowed to go up by a few
degrees, which is OK for a few hours.

(b) Sweat glands release liquid that is hotter than the air onto
the surface of the skin, so that the skin can then cool by con-
vective transfer of heat to the cooler surrounding air.

(c) Water-like body perspiration evaporates into the surround-
ing air, provided it is unsaturated, producing a cooling effect
at the skin surface

(d) It is impossible for the body to transfer thermal energy to the
surroundings under these conditions if the relative humidity
is 100%

(e) They cannot reject heat under these conditions, whatever
the relative humidity, so they should just drink cold liquids
to get cooler.

Activity Metabolic Rate (W)
Standing relaxed 105 - 125
Walking 3 km h−1 170 - 210
Walking 6 km h−1 330 - 450
Running 500 - 800
Strenuous exercise Exceeds 1000

Table 22.1 Metabolic rates associated with various levels of activity.

22.9 An endurance athletic event is conducted when the con-
ditions are extremely stressful, the dry-bulb temperature being
45 °C. One of the participants in the event, a male, is able to ab-
sorb 1.1 litre of water per hour through the gut, although he can
lose water through perspiration faster than this if necessary. The
latent heat of vaporisation of water at the participant’s skin tem-
perature is 2440 kJ kg−1.

(a) Determine the maximum rate at which he can reject heat by
perspiration without becoming dehydrated.

(b) The athlete has a surface area of 1.8 m2 and his surface heat
transfer coefficient, including convection and radiation, is
22 W m2 K−1. During the endurance event his skin tempera-
ture is 37°C. Determine the rate of heat gain (or loss) due to
convection and radiation alone, not including the effect of
perspiration.

(c) The table above shows the metabolic rate of the athlete do-
ing different activities. Assume this is the same as the rate
of production of thermal energy in his body. Determine the
maximum sustainable metabolic rate for the athlete during
the endurance event without any temperature rise. What
is the most vigorous activity that could be sustained under
these conditions?

(d) Suppose the event is rescheduled for a cooler day. Again
the athlete has sufficient water to perspire and evaporate
1.1 kg per hour and on this occasion he intends to run with
a metabolic rate of 800 W. What is the maximum dry-bulb
temperature at which he could do this sustainably, assum-
ing his skin temperature is 37 °C?
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IV

Electricity and DC Circuits
The two phenomena known to most people as electricity and magnetism are really
both aspects of a single force – the electromagnetic force, one of the four fundamen-
tal forces mentioned previously in the book. The science of electromagnetism is the
study of the interaction of particles which have an intrinsic property known as electric
charge.

An understanding of how charges interact by electromagnetic forces is useful for
the understanding of nearly every other branch of science. Light, as it will be explained
in the Optics chapters, is an electromagnetic phenomenon. In Mechanics, we saw how
the human body is a mechanical machine, and how the forces from muscle contrac-
tions allow us to move. The thoughts we have, the signals we send from the brain to the
muscles and the changes that cause the muscle fibres to contract are all electrical.

In the next few chapters we will review the physics of electricity and DC (direct
current) circuits, and present some examples of electric forces at work.
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23.1 Introduction

23.2 Charge

23.3 Conductors and Insulators

23.4 Charging of Objects

23.5 Polarisation

23.6 Summary

23.7 Problems

23.1 Introduction

It has been known since ancient times that rubbing amber will allow it to attract other
materials like straw, at least temporarily. This effect is due to the presence of stationary
electric charges. The study of phenomena caused by stationary charges is known as
electrostatics, and we will introduce the fundamental concepts of charge and the force
that exists between charged particles in this chapter and those that follow.

Key Objectives

• To see that charge is a property of sub-atomic particles.

• To understand the types of charge.

• To understand the origins of the electric force.

23.2 Charge

Naming the electron

The name ‘electron’ was proposed as the

name for the fundamental unit of charge by

Irish physicist G. J. Stoney in 1894. The name

for electricity came from the greek word elek-

tron, the Greek name for amber.

The matter we are surrounded with is made up of molecules containing atoms, which
are in turn made up of protons and neutrons (within the nucleus) and electrons (see
Figure 23.1). An attractive force exists between the protons and the electrons which
holds them together in the atom. There is some intrinsic property of these subatomic
particles which causes them to be subject to this force, while the neutrons are not – we
call this property electric charge and the force the electrostatic force or electric force.
Atoms are also bound together into molecules by electric forces.

Electric charge comes in only two types; these types are labelled positive and neg-

ative. A proton has a positive charge, and an electron has a negative charge of exactly
the same amount – they carry the same magnitude of charge. A particle that does not
have an electric charge, such as a neutron, is said to be neutral. In an atom, there
are equal numbers of protons and electrons (note that the atoms in Figure 23.1 have
equal numbers of each), so while the atom contains charged particles, overall we say it
is neutral since the positive and negative charges are balanced in magnitude and thus
cancel each other out. In the case of an ion, which is formed when an atom loses or
gains electrons, the number of negative charges is not equal to the number of positive
charges; this means that the positive and negative charges do not cancel each other out
and there is therefore a net charge.

Positive and negative

The labelling of the charge carried by an elec-

tron as negative rather than positive was arbi-

trary and was thus determined by an agreed

choice among scientists. The initial choice

was made by Benjamin Franklin, who de-

clared that rubbing silk on a glass rod left the

glass positively charged. A consequence of

this choice is that the electron is negatively

charged and the proton is positively charged,

even though Franklin made his choice well be-

fore the electron and proton were known to ex-

ist.

The electric force between like charges, which may be both positive or both nega-
tive, is repulsive; it tends to push the charges apart. The force between unlike charges
(i.e., a positive and a negative charge) is attractive, and it tends to draw the charges to-
gether. The force decreases in strength as the separation of the charges increases. We
will consider the exact nature of this force in more detail in Section 24.2 on Coulomb’s
law.

The SI unit of charge is the coulomb, symbol C. This is defined as the quantity of
charge that has passed in 1 s through the crosssection of an electrical conductor car-
rying one ampere of current. (Current is a measure of how much charge is moving
through a fixed area per second, and will be covered in Chapter 27.) The charge on an
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electron is −1.602×10−19 C (to 4 s.f.). A coulomb of negative charge would therefore
require 6.24×1018 electrons – over 6 billion billion electrons.

There are two important experimental observations relating to charge, those of
charge conservation and charge quantisation. In all observations ever carried out, the
net charge of an isolated system has never been found to change. While charged par-
ticles such as electrons can be created and destroyed, other particles are created or
destroyed at the same time to keep the overall charge of the system constant. This is
known as charge conservation. In addition, there is a limit to the smallest amount of
charge that can be measured on any free particle, and the net charge of any system is
an integer multiple of this quantity; this is known as quantisation of charge, and the
smallest amount of charge is the magnitude of the charge on an electron or proton,
often called e, the elementary charge. (The charge on an electron is −e and the charge
on a proton is +e.)

Figure 23.1 A (very) simple representation of the sub-atomic constituents of the two simplest atoms, hydrogen
and helium. Hydrogen has a nucleus which consists of a single positively charged proton and has a single electron
‘orbiting’ this proton. Helium has two protons and two neutrons in its nucleus, and two electrons ‘orbiting’ this nucleus.
Each atom has no net charge, despite being made of charged parts.

Problem: A 48 g ball of pure copper has a charge of +2µC. Given that each copper atom has 29 protons and an atomic

mass of 64 g mol−1, what fraction of the electrons in the copper have been removed?

Example 23.1 Charge

Solution: The magnitude of the charge on the copper ball represents the difference in the number of positive and
negative charges it contains (protons and electrons). As the ball is positively charged, there must be fewer electrons
than protons: 2 µC = magnitude of the charge on an electron × number of electrons removed, Ne.

Ne =
2µC

1.6×10−19
= 1.25×1013

Electron deficit, Ne = 1.25×1013.
The number of moles of copper atoms, nCu can be determined from the ball’s mass and the molar mass of copper

nCu = mCu

MCu
= 48

64
= 0.75 moles

so the number of copper atoms is

NCu = nCuNA = 0.75×6.0×1023 = 4.5×1023 atoms

The total number of electrons in the neutral copper ball are

Nn = 29×NCu = 29×4.5×1023 = 1.31×1025 electrons

and the fraction of electrons removed, fe is given by

fe =
Ne

Nn
= 1.25×1013

1.31×1025
= 9.58×10−13

which is a very small fraction.
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Problem: In order to convey signals a nerve cell transports ions across the cell membrane. If a particular cell trans-

ports 6.25×106 singly charged sodium ions (Na+) across its cell membrane, what total charge has it transported?

Example 23.2 Moving charges across a cell membrane

Solution: Each Na+ ion has a charge whose magnitude is equal to that of an electron, but of course positively charged
(QNa+ = +e = +1.6× 10−19 C). The total charge moved across the cell membrane is just the number of ions moved
multiplied by the charge on each ion

Q = N ×QNa+ = 6.25×106 × (+1.6×10−19 C
)= 1×10−12 C

23.3 Conductors and Insulators

Materials may be classified according to how easily charged particles move through
them. A conductor is a material through which charge flows easily, and an insulator is
one through which charge does not flow freely.

Metals are generally very good conductors. In a metal, the outermost electrons of
each atom are only loosely bound to the nucleus, so they are able to hop from atom
to atom, and are thus essentially free to move about inside the metal. The positively
charged atomic nuclei remain fixed in place. The positive charge of the stationary nu-
clei is always cancelled by the negative electrons flowing past, so a metallic wire is elec-
trically neutral even when a current flows through it.

Another type of conducting medium is a liquid containing ions in solution. This is
rather different from conduction in a metal in that both the positively and negatively
charged ions can move.

In insulators, there are no loosely bound electrons, and charge can’t move around
with the same ease. Common insulators are materials like glass, rubber and plastic.
In Chapter 27 we will give a quantitative measure of conductivity, and will see that an
insulator is simply a very poor conductor.

23.4 Charging of Objects

Figure 23.2 Rubbing two objects made of unlike
materials together can result in charge transfer,
leaving the object made of the most electropos-
itive material with a net positive charge and the
object made of the most electronegative material
with a net negative charge. The total charge is
conserved in this process; the two objects end
up with equal and opposite charges.

There are several methods for creating an excess positive or negative charge on an ob-
ject. All of these methods involve moving charge from one object to another, and then
separating the objects. Charge is conserved (as always), but one object is left more
positive and the other more negative.

The simplest way to induce a charge on many common materials is to rub unlike
materials together, as shown in Figure 23.2. As the electrons in the molecules on the
surfaces are pushed close together, the surface molecules of one object attract elec-
trons more strongly than they are held by the surface molecules of the other object,
and the electrons transfer from one surface to the other. The direction of transfer de-
pends largely on the property of atoms in a molecule known as electronegativity, which
is a measure of how strongly they attract electrons. This leaves one material with an
electron deficit (positively charged) and one with an excess of electrons (negatively
charged). This is called charging by friction, or the triboelectric effect.

It is possible to create an ordered list of materials showing which are more likely to
lose or gain electrons when rubbed against another material – this is called a triboelec-
tric series. If two objects are rubbed together, the one made of the material closer to the
positive end of the triboelectric series will be most likely be left more positive, and the
other more negative.

An object may also be charged by conduction, as shown in Figure 23.3. If a con-
ducting material is touched with a charged object, some charge will be transferred to
the conductor. If the charged object is negative, some fraction of it’s excess electrons
move off it onto the neutral conductor as the repulsive force between the electrons
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causes them to move as far apart as they can. Similarly, if the charged object is positive,
electrons flow off the conductor to fill the spaces left by the missing electrons and leave
the conductor positive.

Figure 23.3 (i) A neutral conducting sphere
(right) is brought close to an identical sphere with
an excess positive charge (left). (ii) The two
spheres are touched and the mobile charges re-
distribute over the surfaces of both, leaving both
with an excess positive charge. (iii) The two
spheres are separated, and each sphere has an
excess positive charge of half the magnitude of
the original excess charge on the left sphere.

In most situations, the only charged particles moving about are negatively charged
electrons, which is a consequence of the basic structure of atoms. In solid materials,
the positive nuclei are not free to move about, but some electrons – the conducting
electrons – don’t have to stay bound to a particular nucleus, and can migrate through
the material. However, if we remove an electron from a region which previously had an
equal amount of positive and negative charge, this leaves it positive.

As electrons move about, the positive gap they leave behind behaves in the same
way as a moving positive charge would: such a gap is usually referred as a ‘hole’. Fig-
ure 23.5 shows how this works. As a negative charge moves right to fill a positive gap,
leaving a similar positive gap behind it, this has the same effect as if the positive gap
moved towards the left. When a conductor has a net positive charge, it is because there
are holes that could be filled by electrons, but are not, leaving an excess positive charge.
It is often easier to visualise the movement of these holes as being like positive charges
moving about, which gives the same results.

Figure 23.4 (i) Two identical uncharged conduct-
ing spheres are in contact with each other. (ii)
A (negatively) charged object is brought close to
the two spheres, but not so close that charge is
transferred from the object to the spheres. This
causes charges to separate within the two touch-
ing spheres. (iii) The two spheres are moved
apart. As they are now no longer touching re-
combination of the separated charge is impos-
sible. (iv) The charged object is removed and
each of the conducting spheres finishes with an
excess charge of equal magnitude but opposite
sign.

Figure 23.5 The movement of negative charge to the right has the appearance of positive charge moving to the left.

It is also possible to charge an object by a process known as charging by induction.
In this process, two neutral conductors in contact are placed in the vicinity of a charged
object, but not touching it. In the example shown in Figure 23.4, a negative rod is placed
near the initially neutral conductors. Some of the negatively charged electrons move
away from this negative rod, giving the conductor farthest away a negative charge, and
leaving the nearer one positively charged. While the total amount of charge on the
conducting spheres is unchanged, a charge separation has been induced. While the
charges are still separated by the presence of the charged rod, the conductors can be
physically separated, so they each retain a net charge, one sphere positive and the other
negative.

Another way of using induction to create a permanent charge on a conductor is to
‘earth’ some part of the conductor while the charges are separated by the presence of a
nearby charged object. The Earth acts like a giant source or sink of electrons. Just as the
ocean contains so much water that a few drops more or less is unimportant, the ground
can give up or accept quantities of charge without the change being noticeable. If a wire
connected directly to the ground is touched to part of our conductor, that region of the
conductor will lose excess electrons or gain extra ones to become neutral, which will
affect the overall charge on the conductor once the wire is removed. In diagrams, a
wire connected to the ground is represented by a line ending with the symbol .

23.5 Polarisation

It is possible to have a separation of charge within an object that, overall, has no net
charge. This is called polarisation. Polarisation can be permanent, induced or instan-
taneous.

Permanent polarisation of a molecule occurs when the molecular structure is such
that one side of the molecule is more positive than the other. Such molecules are called
polar molecules. A common example is the water molecule, H2O, shown in Figure 23.6.
The end of the molecule where the oxygen atom is located is more negative than the
ends with a hydrogen atom.

We already seen an example of induced charge separation in Figure 23.4. In this
case, the charge in a conductor was separated by movement of the charges on a macro-
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scopic scale. Induced polarisation can also occur by the separation of charges on a
microscopic level. Any material, even an insulator, can become polarised by the dis-
tortion of the molecular electron clouds, so that on average one side of the molecule or
atom is more positive, and the other more negative. The overall effect of these micro-
scopic movements of charge is that the average position of all the positive charge and
the average position of the negative charge no longer lie at the same place. In these
situations, the polarisation persists for some time.

Figure 23.6 A simple representation of a very
common permanently polarised molecule – the
water molecule.

Figure 23.7 shows induced polarisation in both a conductor and an insulator in the
presence of a charged rod. When the molecules in the material are already polar, then
the material can become polarised in the presence of charged object by re-orientation
of the molecules.

Figure 23.7 (i) Conductor: charges can move
throughout the conductor and opposite charges
accumulate on end of the conductor. (ii) Insula-
tor: charges are still bound to a particular loca-
tion in the insulator, but may spend more time on
one side or other of a molecule.

The changing nature of the instantaneous configuration of charges in an object may
lead to it being polarised at some times, that is, an instantaneous polarisation may
exist.

Because a charged object will cause a neutral object to become polarised, an at-
tractive force can result. This is because, on average, the charges in the neutral object
with same sign as the charged object are farther away than the charges with opposite
sign. The force that charges exert on one another (which is covered in more detail in
the next chapter) is dependent on distance, so the attraction dominates because the
unlike charges are closer. This is easily demonstrated: a charged rod will pick up neu-
tral paper, and a stream of water will be deflected towards a charged rod, regardless of
which charge the rod carries.

Problem: A conducting, uncharged metal sphere (labelled A below) on an insulated base has an earth wire attached

from the sphere to the ground. A second sphere, B, of the same shape, size and material, carrying a charge +Q, is

brought close to, but not touching, the sphere A. Describe what happens. While keeping the sphere B close to sphere

A, we remove the earth wire from the sphere A. If we now remove the sphere B, what is the charge on sphere A? How

is this charge (if any) distributed?

Example 23.3 Charging by induction

Solution:

When sphere B is brought close to sphere A, electrons in sphere A are
attracted to the side of sphere A close to sphere B, leaving a positive
charge on the opposite side of sphere A.

Electrons are attracted from the ground via the earth wire onto
sphere A to counter this positive charge on the side away from sphere B.
When the earth wire is removed, there is no longer a path for electrons
to move to or away from sphere A.

When we remove sphere B from the vicinity of sphere A the electrons
on sphere A spread uniformly around the outside of sphere A. Sphere A
has a charge of −Q. This is known as charging by induction.

23.6 Summary

Key Concepts

charge (Q or q) Electric charge is a fundamental property of matter, and comes in two types,
known as positive and negative, which are referred to as the sign of the charge. The SI unit
of charge is the coulomb (symbol C).

elementary charge (e) The smallest (non-zero) charge magnitude that can be carried by any
observable elementary particle. Electrons have a charge of −e and protons have a charge
of +e. It has the value of 1.602×10−19 C.

electron A fundamental subatomic particle that carries a negative electric charge of
−e =−1.602 × 10−19 C, and has mass 9.109×10−31 kg.
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atom Usually defined as the smallest entity that retains the chemical properties of an element.
An atom consists of a nucleus and electrons, with the number of electrons equalling the
number of protons in the nucleus.

ion An atom that has gained or lost electrons and consequently carries a net positive or negative
electric charge.

triboelectric effect A form of electrification by contact, which is the charging that happens when
two materials are rubbed together. Some charges are transferred from one object to the
other, leaving one object more positive than before and the other more negative.

conductor A material that will readily permit the flow of electric charges.

insulator A material which does not readily permit the flow of electric charges.

polarisation In electrostatics, the partial or complete separation of positive and negative elec-
tric charge in a system.

Equations

charge on an electron =−e =−1.602×10−19 C

charge on a proton =+e =+1.602×10−19 C
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23.7 Problems

23.1 An uncharged metal sphere, A, is on an insulated base. A
second sphere, B, of the same shape, size and material carrying
a charge +Q is brought into contact with sphere A.

(a) Describe what happens to charges on spheres A and B as
they are brought into contact.

(b) If we now remove sphere B and place it far away, what is the
charge on sphere A?

(c) How is this charge (if any) distributed?

23.2 An uncharged metal sphere, A, is on an insulated base. A
second sphere, B, of the same shape, size and material carrying
a charge +Q is brought close to, but not touching, sphere A.

(a) Describe what happens to the charges on spheres A and B as
they are brought close together but not touching.

(b) If we now remove sphere B, what is the charge on sphere A?

(c) How is this charge (if any) distributed?

23.3 A positively charged metal sphere, sphere A, is held close to
but not touching an identical uncharged sphere, sphere B. Sphere
A is now removed. After sphere A has been removed Sphere B is
touched to an initially uncharged sphere, sphere C. What is the
sign of the charge (if any) on sphere C after it has been touched
to sphere B?

23.4 A physicist traps an ionized atom in a magnetic trap. She
performs an experiment and finds that the atom has a charge of
+3.2×10−19 C. If the atom has 12 protons and 12 neutrons, now
many electrons must it have at the time it was trapped by the
physicist?

23.5 A small sheet of aluminium foil measuring 2×2 cm is charged
by rubbing it on some plastic material. The charge on the small
sheet of aluminium foil is then measured and found to be +Q. An

uncharged sheet of gold foil measuring 4×4 cm is brought close to,
but not touching, the sheet of aluminium.

(a) What is the total charge on the sheet of aluminium?

(b) What is the total charge on the sheet of gold?

The gold foil and aluminium foil are now allowed to touch before
being separated again.

(c) What is the total charge on the sheet of aluminium now?

(d) What is the total charge on the sheet of gold now?

(Note: both aluminium and gold are good conductors)

23.6 The following pairs of materials were rubbed together and
the sign and approximate magnitude of the charge on each mate-
rial noted. Use this information to rank these materials from least
electronegative (most likely to lose electrons) to most electronega-
tive. In other words construct a small triboelectric series.

Paper and synthetic rubber: paper, small +ve charge; rubber,
small -ve charge.

Paper and polypropylene material: paper, medium +ve
charge; polypropylene, medium -ve charge.

Rabbit fur and synthetic rubber: fur, medium +ve charge; rub-
ber, medium -ve charge.

Rabbit fur and polypropylene material: fur, large +ve charge;
polypropylene, large -ve charge.

23.7 To answer these questions use the small triboelectric series
constructed in Problem 23.6.

(a) What would the sign of the charge on synthetic rubber be if
it were rubbed against polypropylene material?

(b) What would the sign of the charge on paper be if it were
rubbed against rabbit fur?
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24ELECTRIC FORCE AND ELECTRIC

FIELD
24.1 Introduction

24.2 Coulomb’s Law

24.3 Superposition of Electric Forces

24.4 Inverse Square Laws

24.5 The Electric Field

24.6 Electric Field Diagrams

24.7 Superposition of Electric Fields

24.8 Summary

24.9 Problems

24.1 Introduction

We have already stated that there is a force between charged objects; this electric force
decreases with increasing separation. In this chapter, we will take a closer look at this
force, which is described by Coulomb’s law, and present an equation that tells us pre-
cisely how it changes with charge separation.

Also in this chapter we will introduce the concept of the electric field. A field is a
physical quantity that is associated with each point in space (and time, though we will
be looking at only static fields in this text). Charges are able to influence each other
at a distance, and one way of describing this process is to picture a group of charges
generating a field, which then creates a force on other charges placed in the field. This
is a useful concept in many situations, as the field description allows the inclusion of a
time delay to the interaction between particles. We will take a look at both the size and
strength of the field created by simple configurations of charge, and look at the force
that an electric field exerts on a charged object.

Key Objectives

• To be able to use Coulomb’s law to calculate the size of the electric force.

• To understand the type of electric fields that exist around simple charge config-
urations, such as isolated positive and negative charges.

• To be able to calculate the size and direction of the force a field exerts on charges
placed within it.

24.2 Coulomb’s Law

A force exists between charged particles. It has been experimentally determined that
the magnitude of this force depends on the magnitude of each charge and how far apart
they are (see Figure 24.1) according to the following formula, known as Coulomb’s law

|F 1 on 2| = |F 2 on 1| = k

∣∣q1q2

∣∣
r 2

(24.1)

where F 1 on 2 is the force on charge 2 exerted by charge 1, which is the same in magni-
tude as F 2 on 1, the force exerted on charge 1 by charge 2. The magnitudes of the two
charges are q1 and q2, r is the distance separating the charges, and k is an experimen-
tally determined constant of proportionality.

The constant k equals 1
4πε0

≈ 9×109 N m2 C−2. (The quantity ε0 is a constant known
as the permittivity of free space, which we will encounter again when we look at capac-
itors. ε0 = 8.854×10−12 F m−1).

The direction of the force is along the line joining the two charges. The force is
attractive if the two charges have opposite signs and repulsive if they have the same
sign. (Figure 24.1 shows the direction of these forces for like charges. If the charges had
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Figure 24.1 The Coulomb force between two ‘like’ charges (i.e., both positive, or both negative).

opposite signs, the forces would be attractive.) This force is exerted on both charges,
that is, the first charge exerts a force on the second charge, and the second charge exerts
a force on the first. These two forces are equal in size, but point in opposite directions
– recall Newton’s third law from Mechanics.

24.3 Superposition of Electric Forces

The principle of superposition applies here as it does whenever we combine forces

Key concept:

The net force on an object that is interacting with more than one other object is the
vector sum of the forces from all the interactions.

For a charged particle, the net electric force on the particle is the vector sum of all
the electric forces due to all the other charges present:

F on 1, net = F 2 on 1 +F 3 on 1 +F 4 on 1 . . . (24.2)

where F 2 on 1 is the force that charge 2 exerts on charge 1 and so on.

Figure 24.2 A system of three charges, q1, q2 and q3. All three charges have the same magnitude, but not the
same sign. The net force on each charge is due to the superposition of the two individual Coulomb forces applied to
that charge by each other charge

This is illustrated in Figure 24.2. For example, the total force on charge 1 (the nega-
tive charge) is the sum of the forces exerted on it by both of the positive charges. Charge
3 has the opposite sign to 1, so it pulls charge 1 to the right. Charge 2 pulls charge 1 di-
rectly towards itself also. In this particular case, the two forces on 1 are the same size,
as the charges are all equal in magnitude and separation. The resulting force, however,
is not simply twice the size of F 2 on 1; it is a vector sum, so the magnitude is in fact less
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than the simple numeric sum. The direction of the resultant force must also be found
from a vector addition.

Problem: A proton and an electron are separated by the Böhr radius (the radius of a hydrogen atom). What electric

force does the proton exert on the electron?

Example 24.1 Coulomb’s law

Solution: The charge on a proton is +e = 1.6×10−19 C, the charge on an electron is −e = 1.6×10−19 C and the Böhr
radius is 5.29×10−11 m. To determine the electrical force that the proton exerts on the electron we use Coulomb’s law

F = k
∣∣q1q2

∣∣
r 2

Felectron = 9×109 ×1.6×10−19 ×1.6×10−19

(5.29×10−11)2
= 8.23×10−8 N

The proton exerts an 8.23×10−8 N attractive force on the electron.

Problem: A 2 C and 3 C charge are separated by 8 cm. If we double the distance between the charges, what happens

to the force on the 2 C charge? What about the force on the 3 C charge?

Example 24.2 Coulomb’s law

Solution: Because the magnitude of the Coulomb force follows an inverse square law, when we double the charge
separation, the force between the charges decreases by a factor of two squared (= four). The force on the 2 C decreases
by a factor of four. Newton’s third law tells us that the forces on each charge are equal in magnitude, but opposite in
direction so if the force on the 2 C charge has been reduced by a factor four, so too has the force on the 3 C charge.

Problem: A 5 C charge is positioned at x = 0 cm, a –2 C charge is positioned at x = 3 cm, and a 7 C charge is positioned

at x = 8 cm as shown in Figure 24.3. What is the net force on the –2 C charge due to the other charges?

Example 24.3 Coulomb’s law

Solution:

Figure 24.3 Three charges are arranged in a line.

We need to calculate the net force acting on the −2 C charge. In order to do
this we first calculate the forces on the −2 C charge due to each of the other
charges, we then add up these individual forces taking their directions into
account.

From Coulomb’s law we have that the electrical force on the −2 C charge
due to the 5 C charge is:

F = k |Q0 cmQ3 cm|
r 2

= 9×109 ×5×2

0.032
N = 1.00×1014 N

This force is to the left.
From Coulomb’s law we have that the electrical force on the –2 C charge due to the 7 C charge is

F = k |Q8 cmQ3 cm|
r 2

= 9×109 ×7×2

0.052
N = 5.04×1013 N

This force is to the right.
The net force acting on the −2 C charge is the vector sum of these two forces, 4.96×1013 N towards the left.
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Problem: Three charges are positioned as shown in Figure 24.4. A +3 C charge at x = 2 cm, a test charge q test at x =

0 cm, and an unknown charge Qu at x = 8 cm. If the net force on the test charge, q test is zero, what is the magnitude

of the unknown charge Qu?

Example 24.4 Coulomb’s law

Solution:

Figure 24.4 Two charges arranged such that a test
charge placed at x = 0 cm will experience no net elec-
trostatic force.

There are two forces acting on the test charge. In order for the net force on
the test charge to be zero, these two forces must be equal in magnitude, but
opposite in direction. In order for the magnitude of the two forces to be
equal we need

F3 C = 9×109 ×3×qtest

0.022
= FQu =

9×109 ×Qu ×qtest

0.082

Cancelling out common factors we have
3

0.022
= Qu

0.082

so

Qu = 3×0.082

0.022
= 48 C

The unknown charge has a magnitude of 48 C.

In order to determine the sign of the charge we need to consider the direction of the forces acting on the test charge.
If the test charge is positive, the 3 C charge will exert a repulsive force towards the left on the test charge. The force
exerted by Qu must therefore be to the right which in this case requires Qu to be negatively charged. This reasoning still
works if we assume the test charge is negative. In order for the net force on a test charge located at x = 0 to be zero, Qu

must be –48 C.

24.4 Inverse Square Laws

The form of the mathematical expression of Coulomb’s law bears a close resemblance
to the mathematical form of Newton’s law of gravitation. Both forces depend on the
inverse of the square of the distance between the two objects, and both depend on
the product of some property that the objects possess. This means that the electric
force scales in a similar way to the gravitational force: if the distance is doubled, then
the magnitude of the force drops to one quarter of the original value; if one charge is
doubled, the force doubles; and so on.

Gravitational analogy

The analogy between gravity and the electric

force can be useful. Another situation where it

helps is in the case of a uniform electric field,

which has similarities with the near-uniform

gravitational field near Earth’s surface (pro-

vided the change in height is small). We will

resort to using it on occasion, but the useful-

ness of the analogy is limited given that the

existence of charges of different signs, + and

−, make it a more complex situation.

There are important differences, however; primarily, that there is only one type of
mass, whereas there are two kinds of electrical charge. Also, for the typical sizes of
separation and charge encountered on a human scale on the surface of the Earth, the
electrostatic interaction between two objects is much, much stronger than the gravita-
tional attraction between them, as the masses are quite small. (We are not including
interactions with the Earth when we make this statement.)

There are a number of physical quantities that obey an inverse square law: electric
field strength from a point source falls with distance squared; the intensity of electro-
magnetic radiation (light) from a point source falls with distance squared; and, as al-
ready mentioned, gravitational attraction to a mass falls with distance squared. The
common factor in these situations is that something, be it light rays or field lines, is
spread out in three-dimensional space from a point. Whatever is spreading out is doing
so over the surface of a sphere, and so the surface area over which it is spread depends
on the radial distance squared from the source, because the surface area of a sphere is
also proportional to r 2.
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24.5 The Electric Field

Coulomb’s law is very useful for calculating the force on charged particles, but it is not
always the most convenient approach. Sometimes what we would really like to do is
to describe the overall effect of a large collection of charges, where the summation of
superposed forces is inconvenient to calculate. We are also typically interested only in
the force on a charge, and not the force exerted by it. This is where the field concept
becomes very handy.

The electric field is a way of describing how a configuration of charges affects the
surrounding space. It is defined in terms of the magnitude and direction of the electric
force per unit of charge that a charged object would be subjected to at a given point in
space. In the SI system, it has units of N C−1, so it is a measure of how much force a
+1 C charge would experience. The force on a charge is a vector quantity, and so the
electric field is also a vector quantity, with its direction being that in which a positive
charge would experience a force.

E = F

q
(24.3)

It is important to keep in mind the distinction between the ‘test charge’ that is of-
ten referred to, and the charges creating the field (the source charges). We can imagine
putting a one coulomb test charge at some place in order to ascertain how it would
be affected by a field. However one coulomb of charge is a very large amount in most
contexts and would likely alter the configuration of charges we were interested in in-
vestigating, as well as polarise any nearby material, and thus make it more difficult to
obtain useful information. The electric field describes the modification of the proper-
ties of the space by some collection of charges, and this exists whether this test charge
is there or not. The field strength in N C−1 tells us how much force +1 C would be sub-
jected to, but the equation above (Eq. (24.3)) can be used to find out how much force
any amount of charge would be subjected to. If +1 C would have a force of 1 N on it,
then +0.01 C would have 0.01 N, and so on. A ‘test charge’ then is a nominal (and possi-
bly imaginary) charge placed at a point in space that is small enough not to cause any
significant change in the system of charges which are being investigated, but which
allows us to investigate the electric field at a point in space.

The electric field due to a point charge is easy to derive from Coulomb’s law. If the
point charge creating the field is Q, and we imagine placing a test charge q a distance
r from the first charge, the magnitude of the force on the test charge is

F = k
Qq

r 2
(24.4)

The magnitude of the electric field is

E = F

q

and for a point charge Q we therefore have

E = k
Q

r 2
(24.5)

The direction of the field is the same as the direction that the force would be on a
positive charge – radially outward from the source charge if it is positive, towards the
source charge if it is negative.

24.6 Electric Field Diagrams

There are a few common methods of trying to represent electric fields on a flat page.
This is not a simple thing to do, because we are trying to represent a quantity that has
both a size and a direction at every point in space. One way of illustrating the field is to
draw a vector field. Representing the field at a single point in space is no problem – we
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can draw a simple vector showing the direction (which way it points) and the relative
size of the field (how long the vector is).

Figure 24.5 The electric field at various points in space around (i) an isolated positive charge and (ii) an isolated
negative charge. Each electric field vector represents the direction an magnitude of the electric field at the base of
the vector.

Figure 24.6 Electric field lines produced by an
isolated positive point charge.

Figure 24.7 Electric field lines produced by an
isolated negative point charge.

Doing this for every single point on a two-dimensional page is not possible; there
would be ink everywhere! When vectors are used to indicate electric field, the best we
can do is to use a small number of vectors to indicate what is going on at only a few
places, and leave it to the viewer to interpolate what is going on everywhere else. It
should be borne in mind, though, that the vector represents the field at a single place –
the base of the vector – and that no vector drawn in is not the same as no field at that
place. Figure 24.5 shows a vector field representation of the electric field created by
single point charges.

Another method of showing the field at different points in space is to draw field

lines. The line is intended to represent the direction of the coulomb force on a positive
charge. The lines are drawn with arrows so that the direction along the line is known,
but these field lines are not vectors; they have no length to indicate how large the elec-
tric field vector is. Instead the strength of the field on a diagram of this type is indicated
by how close together the lines are: the closer together the field lines are, the stronger
the field is.

Electric field lines are drawn starting on positive charges and ending on negative
charges. An electric field line is drawn starting or ending in free space only if the source
charges are outside the region being depicted, not because the lines don’t end on charges.
Electric field lines cannot cross, as this would indicate that the direction of the net force
on a charge could be in two directions at once, which is not the case. The arrows which
are drawn to represent electric field vectors can cross, as long as their bases are not
on the same spot. These vectors represent the size and direction of the electric field at
their base and not at any other point. If the arrows cross, it is only as a consequence of
the scale used to draw the vector, and has no special significance. Figures 24.6 and 24.7
show the field line representation of the field for the same point charges as before.

Figure 24.8 Uniform electric field lines pro-
duced by parallel plates carrying uniform oppo-
site charges. (Note that the non-uniform field
formed at the fringes of the plate is not shown
here.)

Some other charge configurations we will be interested in at times are the uniform
electric field in which the electric field has the same magnitude and direction at all
points, and the dipole field which is created between pairs of positive and negative
charges. A nearly uniform electric field can be generated by having parallel plates car-
rying a uniform charge distribution (as in Figure 24.8), with positive charge on one
plate and negative on the other. The field between the plates points from the positive
plate to the negative, and provided the distance between the plates is small in compar-
ison with the plate area, nearly the same magnitude and direction everywhere between
the plates. (In problems involving uniform fields, it can help to sketch in where such
plates creating the field might be.) The field is significantly non-uniform at the plate
edges – the field lines curve in this fringe area.

An electric dipole field can be created by equal magnitude positive and negative
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charges separated by some distance. The field lines point from the positive to the neg-
ative as shown in Figure 24.9.

Figure 24.9 Electric field lines produced by
equal magnitude positive and negative charges
(electric dipole field). The Coulomb force on a
positive charge placed on a electric field line al-
ways points along the line.

24.7 Superposition of Electric Fields

The principle of superposition holds for the electric field just as it does for the electric
force. The net electric field at any point in space can be found by a vector sum of the
fields at that point due to all the charges present. Figure 24.10 demonstrates how this
superposition principle can be used to find the dipole field shown in Figure 24.9. At
each point in space, the resultant electric field vector (dark blue) is the sum of the elec-
tric field vector that would be created by the lone positive charge (shown in green) and
that we would get from just the negative charge (shown in red).

Figure 24.10 Electric field vectors are shown for several points on an electric field line between two charges. Notice
that the electric field vector is parallel to the electric field line (at the vector’s base). Also shown are the electric field
components due to each individual charge.

24.8 Summary

Key Concepts

Coulomb’s law The law that describes the force between two point charges. The force is propor-
tional to the product of the magnitudes of the charges and inversely proportional to the
square of the distance between them.

field A numerical quantity associated with each point in space. A field can be scalar (as in the
case of a temperature field) or vector (like a velocity or electric field).

electric field (E ) The vector field produced by electric charge. The electric field vector is defined
as the Coulomb force per unit charge that a ‘test charge’ would experience if placed at that
point in space, and its magnitude is the same as the magnitude of the Coulomb force that
would be exerted on a +1 C ‘test charge’. The direction of the electric field vector is in
the same direction as the Coulomb force on a positive ‘test charge’. The electric field is
measured in units of N C−1 (or equivalently in volts-per-meter, V m−1: see next chapter).

Equations

F1 on 2 = F2 on 1 = k

∣∣q1q2

∣∣
r 2

E = F

q

E = k
Q

r 2
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24.9 Problems

24.1 A +3×10−6 coulomb charge is placed 5 centimetres due west
from a +2×10−6 coulomb charge.

(a) What is the force the +2 µC charge exerts on the +3 µC
charge?

(b) What is the force the +3 µC charge exerts on the +2 µC
charge?

24.2 Two charges, one +4 C and the other +2 C, are separated by
some distance R0. If we increase the distance between the charges
by a factor of 5, what happens to the magnitude of the force on the
+2 C charge?

24.3 Two charges, QA and QB, are separated by a distance x. If
we double the distance between the charges and triple the magni-
tude of charge A, what happens to the magnitude of the force that
charge A exerts on charge B? What happens to the magnitude of
the force that charge B exerts on charge A?

24.4 Three charges, QA,QB, and QC are positioned as shown in Fig-
ure 24.11

Figure 24.11 Three charges are arranged in 2 dimensions. What fourth charge
will ensure that the net electrostatic force on charge B is zero?

(a) Determine the net force acting on charge QB due to the other
two charges.

(b) A fourth charge, QD, is placed at position D shown in Fig-
ure 24.11 such that the net electrostatic force on charge QB
is zero. What is the sign and magnitude of QD?

24.5 A mad scientist invents a device that is able to teleport every
electron in their body to the center of the Earth (6.37×106 m be-
low). We can make the assumption that the human body is mostly
water with a bit of carbon and as such there will be about 3.2×1026

electrons per kilogram of body. If the mad scientist, who weighs
65 kg is so unwise as to actually use this device on himself what
will the magnitude of the attraction between his body (stripped of
all electrons) and all the electrons newly deposited at the center of
the Earth? (How does this compare with the gravitational attrac-
tion between the mad scientist and the Earth?)

24.6 A small charged particle of mass 9 × 10−6 kg and charge of
magnitude −3 × 10−6 C is placed in a chamber in which there is a
uniform electric field. If the charge accelerates due north at a rate
of 250 m s−2 what is the magnitude and direction of the electric
field inside the chamber? (ignore gravitational forces)

24.7 Answer the following:

(a) What is the magnitude and direction of the electric field 10 m
away from a +0.1 mC charge?

(b) What is the magnitude and direction of the electrostatic
force on a +1.5 mC charge placed at this point (10 m from
the charge in (a))?

(c) What is the magnitude and direction of the electrostatic
force on a −3.5 mC charge placed at this point (10 m from
the charge in (a))?

24.8 What is the magnitude and direction of the electric field at
each of the three points, A, B, and C shown in Figure 24.12?

Figure 24.12 Two charges of opposite signs are placed 45 cm apart.

24.9 What is the magnitude of each of the charges q and Q in Fig-
ure 24.13?

Figure 24.13 Two charges are placed 20 cm apart. The magnitude of the elec-
tric field at point A is zero, while the electric field at point B is non-zero.

24.10 An electric dipole shown in Figure 24.14.

(a) Calculate the electric field strength at points A, B, C, and D.

(b) What electrostatic force will a +0.2 µC charge experience
when placed at each of the four points in part (a)?

(c) What electrostatic force will a −0.1 µC charge experience
when placed at each of the four points in part (a)?

Figure 24.14 Find the electric force on charges placed at the points A to D.

242 www.wiley.com/go/biological_physics



25ELECTRICAL POTENTIAL AND

ENERGY
25.1 Introduction

25.2 Electrical Potential Energy

25.3 Electrical Potential

25.4 Electrical Potential and Work

25.5 Equipotential and Field Lines

25.6 Electrical and External Forces

25.7 The Heart and ECG

25.8 Summary

25.9 Problems

25.1 Introduction

In the previous chapter, we introduced the electric or Coulomb force and developed the
idea of the electric field. In the chapters on Mechanics, we saw that the idea of potential
energy may be associated with a conservative force. In this chapter, we will apply the
idea of potential energy to the electric force. We will define a new concept, the electrical
potential, and show how to use this to solve problems using energy methods. As in
mechanics, using the idea of potential energy makes it easier to solve some problems.

Key Objectives

• To understand electrical potential and electrical potential energy.

• To be able to apply the idea of electrical potential to calculate work done by elec-
tric fields.

• To understand representation of electrical potential by equipotential lines and
the relationship of electrical potential to electric field lines.

25.2 Electrical Potential Energy

The electric force has a great deal in common with the force of gravity. They are both
conservative, action-at-a-distance forces for which we can use a field description, and
associate a potential energy.

Imagine for a moment a universe containing nothing but a single, positive, point
charge. If another positive charge was to be placed anywhere in this universe, we can
see from Coulomb’s law that it would have a force pushing it towards or away from
the original charge. This force would cause it to accelerate, which would be an in-
crease in the kinetic energy of the new particle. From this information we can infer
that the charge gained potential energy when it was put in the electric field created by
the first charge. This electrical potential energy is very similar to the more familiar
gravitational potential energy. The electrical potential energy is often represented by
the symbol U .

Figure 25.1 (i) Moving two ‘like’ charges closer
together increases the electrical potential energy
of each charge. (ii) Moving two ‘unlike’ charges
further apart increases the electrical potential en-
ergy of each charge

The potential energy of any system, gravitational, electrical or otherwise, can be
found by calculating the amount of work needed to put that system together (see Fig-
ures 25.1 and 25.3). We can use this idea to calculate the potential energy of a system of
charges. Imagine we take each charge from infinity (where the force on it from the other
charges is zero) and bring it in to its final position. By multiplying the force applied to
the charge by the distance through which it is moved, we calculate the total work done
on the charge. We could then repeat this procedure for all of the charges that make up
the system we are analysing. However, the strength of the force varies with distance;
this means that the electric force that we have to move the charges against changes
considerably while we are moving our charge into position. We are still able to do the
calculation, but we need to use calculus, which is outside the scope of this book.

Introduction to Biological Physics for the Health and Life Sciences Franklin, Muir, Scott, Wilcocks and Yates
©2010 John Wiley & Sons, Ltd



25 · ELECTRICAL POTENTIAL AND ENERGY

As the calculation of the potential energy can be difficult, we will restrict ourselves
mainly to the simple case where the force is not changing, i.e., the electric field is uni-
form. This is much like we did in the case of gravity (see Figures 25.2 and 25.3), where
we restricted ourselves to cases dealing with objects near the Earth’s surface, where the
force changes slowly over the distances we are usually interested in, due to the enor-
mous size of the Earth compared to the relatively tiny distances we are moving things
on the surface.

Figure 25.2 A useful analogy can be drawn between the concept of gravitational potential energy and electrical
potential energy. Like most analogies it is imperfect, however. When considering electrical potential energy, we have
both positive and negative charges which means both attractive and repulsive forces are possible, unlike gravitational
potential energy, when all forces are attractive.

Figure 25.3 The gravitational force acting upon
an object can be considered constant when one
object is much more massive than the other and
only is moved over a short distance. In most
cases such a simplification cannot be made for
the electrostatic force between two charges, so
we will restrict ourselves mostly to the simple
case of a uniform electric field.

For a simple gravitational example, such as a billiard ball on a table top, we would
calculate how much work was done against the gravitational attraction of the Earth to
raise the billiard ball to its position on the table. We calculate the work done on the
billiard ball by multiplying the force applied to the ball by the distance through which
it moves. We know that the path we take to put the ball where we want it doesn’t matter
because gravity is a conservative force. The magnitude of the force we would need to
use to overcome the force of gravity is just F = mg , so the work done to raise the ball
to a height h is just W = mg h, and we recognise this as the increase in the potential
energy of the ball as it is moved to its final position.

In the rest of this chapter we will develop an understanding of the relationship be-
tween electrical work, potential energy and potential using the example of a constant
electric field.

25.3 Electrical Potential

The concept of the electrical potential is one of the more difficult in introductory-level
physics for those who haven’t encountered it before. We will discuss the electrical po-
tential and why it is useful, starting with a gravitational analogy.

The gravitational potential energy of a mass near the Earth’s surface increases as
its height above the surface increases. It makes some sense to think of greater height
being equivalent to greater potential energy. The difficulty with this view is that a 10 kg
mass only 10 m above sea level has more potential energy than a 1 kg mass which is
90 m above sea level. The gravitational potential energy depends on the mass of the
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object as well as its position. It would be useful sometimes to have a quantity that is
related to the potential energy that is dependent only upon position relative to a charge
or charges.

The electrical potential is such a measure. The electrical potential at a point in
space does not depend on the charge of any object placed at that point, but is a measure
of the electrical potential energy that a charge would have if it were placed at that point.
In this it is very similar to the concept of the electric field which is a measure force on
a charge if it were placed at a particular point in space. The electrical potential has a
value at each point in space whether or not it is occupied; just like the electric field
is present all through a region of space. The potential is a property associated with a
point in space caused by the presence of an electric field (which is due in turn to some
configuration of charges). The electrical potential is a scalar field – it has a value at each
place, but is directionless.

Conservative fields

The electric field, like the gravitational field, is

a conservative field (see Figure 25.13). This

means that the work done to move a charge

from one place to another depends only on the

start and finish points, not the path taken. We

will not attempt to prove this in this book; how-

ever, it is an important fact about the electric

field since it is this fact that allows us to use

the concept of potential energy.

We define the electrical potential, symbol V , by

V = U

Q
(25.1)

where U is the electrical potential energy of charge Q. The units of the electrical poten-
tial are volts, where 1 V≡ 1 J C−1.

The electrical potential is a useful tool in many situations as it is independent of the
charge. (Note that we mean the ‘test’ charge here, not the source charges creating the
field.) Two different charges placed in the same position would have different potential
energies, but they would have identical electrical potentials.

25.4 Electrical Potential and Work

Figure 25.4 Two charges, with magnitudes of +1 C and −3 C, are moved through a uniform electric field. Shown is
the amount of work done by the electric field when moving the charges, and the electrical potential energy at those
points in space where the electrical potential is : (i) −10 V, (ii) 0 V and (iii) +10 V.

When an object falls freely in the Earth’s gravitational field, work is done on the
object by that gravitational field. This work is the amount of gravitational potential
energy that is converted into kinetic energy. In the same way, when a charge moves
due to the influence of an electric field, work is done on the charge by the electric field.
The work done on the charge by the electric field is equal to the reduction in electrical
potential energy

∆U =−Welec (25.2)

For example, if the charge moves to a position where its electrical potential en-
ergy is lower, the change in electrical potential is negative, and the charge has positive
work done on it by the field. Figure 25.4 shows a constant electric field, and the work
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done moving different charges from place to place. For example, moving a +1 C charge
through a potential difference of +10 V, the work done by the electric field is −10 J. This
amount is only the work done by the electric field – we have made no statements about
any other forces acting at the same time. In fact, some external force would be needed
to achieve the movement of the positive charge in the direction shown.

In order take a better look at this and similar situations, we will derive some useful
expressions for the electrical work, the change in electrical potential energy and the
difference in electrical potential between points in a constant electric field pointing in
the x direction. Consider the work done by the electric field on a charge which is moved
from one point to another in the constant electric field. This is just

Welect = force×distance = F ×∆x (25.3)

In this equation, ∆x is the distance that the charge is moved in the direction of the force,
and F is the force exerted by the electric field on the charge. This force is given by
F = qE , so our equation for the work done by the electric field becomes

Welect = qE∆x (25.4)

where ∆x is the direction moved in the direction of the electric field.
Now that we have an expression for the work done by the electric field, we can de-

rive an expression for the change in the electrical potential energy of the charge as it
moves from one position to another

∆U =−qE∆x (25.5)

and the potential difference between the two points is (from V =U /q)

∆V =−E∆x (25.6)

Note that it is common to use almost any common distance symbol for distance
moved, so d ,∆x or l may all be seen in other textbooks in equations similar to Eq. (25.6).
Rearranging this

E =−∆V

∆x
(25.7)

This equation gives an alternate way of writing the units for electric field strength; we
can write the units as N C−1 or the equivalent V m−1. This provides us with another way
of thinking of electric field – the strength of the field tells us how rapidly the electrical
potential changes with distance. At right angles to the electric field direction, therefore,
the electrical potential is unchanging.

Problem: What is the electrical potential difference between point A and point B as shown in Figure 25.5?

Figure 25.5 Two points in a region of uniform electric field.

Example 25.1 Potential difference

Solution: The electrical potential difference, ∆V = −E∆l = −5 V m−1 × 0.05 m = −0.25 V. Note that the negative sign
indicates that a positive charge would have lower electrical potential energy at point B than point A.
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Problem: A muscle cell in the heart typically has a potential difference of 90 mV between the inside and outside of

the cell membrane. In order to function, the cell must ‘pump’ ions from one side of this membrane to the other.

(a) How much energy is required to pump a single Na+ ion from the outside of the cell membrane to the inside if

the outside of the cell is negatively charged with respect to the inside?

(b) A typical chocolate bar will release around 1000 kJ of energy into the body once metabolised. How many ions

can be transported across a heart cell membrane with this amount of energy?

Example 25.2 Heart cell

Solution: (a) If the outside of the cell membrane is more negatively charged than the inside, the electric field in the
vicinity of the cell membrane will be pointing from the inside of the cell, out. Moving a positively charged into the cell
thus requires it be moved against the direction of the electric field and so work will need to be done on the cell

∆U = q∆V = 1.6×10−19 C×90×10−3 V = 1.44×10−20 J

(b) 1000 kJ is enough energy to transport 1000×103 J
1.44×10−20 J per Na+ ion

= 6.9×1025 Na+ ions

25.5 Equipotential and Field Lines

In addition to showing the electric field on a diagram, we can also indicate the electrical
potential at various points in space. The electrical potential is a scalar quantity, so
rather than representing it with vectors or field lines, we can draw lines that show places
where the electrical potential is the same. These are called equipotential lines (see
Figures 25.6, 25.7 and 25.8).

Figure 25.6 A selection of electric field lines and equipotential lines for two unlike charges forming an electric dipole.

Figure 25.7 Electric field lines, electric field vec-
tors, and equipotentials around an electric dipole.
The electric field vector is perpendicular to the
equipotential line that it lies upon. Note that the
electric field strength is not the same at all points
on a single equipotential line.

Because any change in position that has a component in the direction of the elec-
tric field will result in a change in potential (∆V = E∆x), equipotential lines are always
perpendicular to electric field lines (see Figure 25.7). It is common to draw in equipo-
tentials at regular voltage spacings or to label them with the voltage. The electric field
points in the direction of decreasing electrical potential.
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It may help to think of the equipotential lines as being like contour lines on a to-
pographical map, and the electric field direction as the direction that points downhill.
The contour lines are closest together where the hills are steepest; the equipotential
lines are closest where the field is strongest, i.e., more change in volts per metre.

Figure 25.8 Equipotentials lines around an electric dipole. Each equipotential is labeled with the potential in volts.
The magnitude of the charges is |2|µC and they are separated by a distance of 0.5 m.

25.6 Electrical and External Forces

Now let’s look put all this together by looking at some possible scenarios.
Figure 25.9 A positive charge, initially at rest at
A, moves from A to B, and there are no external
forces acting. The electric field will accelerate
the charge and the charge will reach point B with
kinetic energy equal to the lost electrical potential
energy.

Positive Charge, No External Force

Take a look at Figure 25.9. A positive charge, initially at rest at A, moves from A to B (in
the direction of the field), and there are no other external forces acting. Here the work
done on the charge by the field is positive; the charge moves in the same direction as
the force exerted by the field. If it helps, remember that we can create a uniform field
with parallel metal plates carrying positive and negative charge. To create this field, the
positive plate would have to be on the right, as field lines point from positive charge to
negative charge. The force must therefore be to the left on our charge.

Figure 25.10 A positive charge, initially at rest
at A, moves from A to B, and finishes at rest at
B. The work done by the non-electrical external
force is negative and is equal in magnitude to
the positive work done by the electric field on the
charge.

If positive work is done by the field, the change in the electrical potential energy of
the charge is negative. It loses electrical potential energy and will gain kinetic energy.
The electric field will accelerate the charge, and the charge will reach point B with ki-
netic energy equal to the lost electrical potential energy. Since the change in electrical
potential energy is negative, the potential difference between point A and B, VB −VA,
will also be negative – point B is at a lower potential than point A. We could work this
out from the electric field direction, too.

Positive Charge, External Force

Figure 25.11 A negative charge at rest moves
from A to B, and finishes at rest at B. The work
done by the non-electrical external force is pos-
itive and is equal in magnitude to the negative
work done by the electric field on the charge.

Consider the charge shown in Figure 25.10, which is just like the previous figure, only
the final velocity is different. A positive charge, initially at rest at A, moves from A to
B (in the direction of the field), and finishes at rest at B. Unless there is another force
acting in this situation, this is not possible! A force must be applied to stop the particle
accelerating, or to slow it and stop it at B. In order to understand this scenario, we will
now consider how to include non-electrical external forces into our energy equation.

The electrical force is conservative and we can write an equation for energy conser-
vation in the following form:

(KE)f +Uf = (KE)i +Ui +Wapplied (25.8)
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The work done by some non-electrical force is labelled Wapplied. The work done by
the electric field is built-in to this equation as the change in electrical potential energy,
Welect =−∆U =− (Uf −Ui).

In the proposed situation, the electrical potential energy is initially greater than it is
after the move from A to B. This means that the change in electrical potential energy is
negative, and the work done by the field is positive. The initial and final kinetic energies
are zero, so the change in kinetic energy is also zero and so this can’t be used to balance
the equation. The only way that the energy equation can be balanced is if the work
done by the non-electrical external force is negative and is equal in size to the positive
work done on the charge.

To see that this makes sense, consider that if you had to apply a force to the charge
such that it could get from A to B without a change in kinetic energy, that force would
have to be exactly the same size as the electric force, so that the net force was zero.
(Remember, no net force, no acceleration, no change in kinetic energy.) Work done
equals force times distance, and here the external force is in the opposite direction to
the motion, hence negative work is done by it.

Figure 25.12 A positive charge is moved from C
to D along an equipotential line. There is no work
done by the electric field.

Negative Charge, External Force

This scenario is illustrated in Figure 25.11. A negative charge at rest at A moves from
A to B (in the direction of the field), and finishes at rest at B. This time, we can see
once again that an external force must be acting. Picture the charge configuration that
would create our uniform field, and you can see that this would be like our negative
charge moving towards other negative charges, which will not happen without another
force being applied.

Figure 25.13 The work done by an external
force to move (i) a mass up a hill and (ii) a charge
in a uniform electric field depends only upon the
start and end points. In the case of the mass, the
work done on the weight must be W = mg∆h
for either path, while for the charge it must be
W =−q∆V .

The external force is in the opposite direction to the force from the electric field, but
this time it is in the same direction as the motion, so the work done on the charge by
the external force is positive. The work done on the charge by the electric field must be
negative, as we have no change in kinetic energy –from Eq. (25.8), if Wapplied is positive,
∆U =Uf −Ui is positive, and Welec is negative.

We can check to see that this really makes sense by looking at it from another an-
gle. Moving the charge against the direction of the electrical force is like lifting a rock
against the direction of the gravitational force. The final potential energy must indeed
be higher, and the external force is adding energy to the rock/charge, so it does do pos-
itive work.

Also, the electrical potentials at both points, A and B, are completely independent
of the charges we put there. The electric field still points from A to B, so VA is still higher
than VB. From our stated relationship between V and U in Eq. (25.1),

∆U =Uf −Ui =Q × (VB −VA) (25.9)

We know VB −VA is negative, and the charge Q is negative also, so ∆U is positive.

Charge Moving Perpendicular to the Field Direction

Figure 25.12 shows a positive charge moving from C to D, two points at the same po-
tential, with no change in velocity. In this case, there is no change in potential energy,
and hence no work done by the electric field.

Problem: An electron travelling at 7 260 000 m s−1 is fired into a chamber like that shown in Figure 25.14 in which

there is a uniform electric field. The furthest the electron makes it into the chamber is 10 cm. What is the magnitude

of the electric field, E ?

Example 25.3 Electron energy
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Solution:

Figure 25.14 An electron is stopped and turned around by a uniform electric field.

The electron starts off with some kinetic energy which is converted into electrical potential energy by the electrostatic
force. When the kinetic energy is completely gone, the electron will change direction and start moving back towards
the entry point. (Note that the electron was always accelerating back towards this point.)

Given this we can say that

KEi =∆U = q∆V = qE∆x

E = KEi

q∆x
=

1
2 mv2

q∆x

=
1
2 ×9.11×10−31 kg× (

7 260 000 m s−1
)2

1.6×10−19 C×0.1 m
= 1500 V m−1

Problem: An electron, initially at rest, is accelerated by a 10 kV accelerating potential (i.e., placed in a electric field

such that the electron accelerates from an original position to a second position at a potential 10 kV higher that the

original).

(a) What is the change in electrical potential energy of the electron?

(b) What is the change in kinetic energy of the electron?

(c) What is the final speed of the electron?

(d) If the 10 kV potential is generated by a uniform electric field over a 0.2 m distance, what is the electric field

strength?

(e) What is the force on the electron due to the electric field?

Example 25.4 Potential difference and energy

Solution: Change in electrical potential energy = charge × change in electrical potential = −1.6× 10−19 × 10× 103 J
=−1.6×10−15 J.

This makes sense as the positive work done on the electron by the electric field corresponds to the decrease in its
electrical potential energy.

As no other forces act on the electron, the change in kinetic energy of the electron is equal to the work done on
the electron by the electric force. In other words, the change in the kinetic energy of the electron is equal to the nega-
tive of the change in the electrical potential energy of the electron. The electron’s electrical potential energy has been
converted into the electron’s kinetic energy. We can determine the electron’s final speed from

1

2
mv2 = 1.6×10−15 J (25.10)

v =
√

2×1.6×10−15

9.1×10−31
= 5.9×107 m s−1 (25.11)

The electron’s final speed is 5.9×107 m s−1.
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25.7 The Heart and ECG

In this section we will give a very brief introduction to the electrical system of the heart
and discuss how this system produces the signals seen in an electrocardiogram (ECG).

Figure 25.15 The heart vector at various times during
the cardiac cycle.

When the heart is beating normally, an
electrical signal is generated at the sino-
atrial (SA) node of the heart which travels
through the heart muscle (myocardium).
The electrical signal causes the contrac-
tion of the heart muscle cells in sequence,
and is ultimately responsible for the syn-
chronised beating of the heart (see Fig-
ure 25.15). For efficient pumping of the
blood without backflow, the muscle fibres
in the atria contract first, and after a delay,
the ventricles contract. The delay is intro-
duced in the electrical signal by the atri-
oventricular (AV) node. The ‘pacemaking’
signal from the SA node occurs at a rate of
60–100 beats per minute. This is known as
normal sinus rhythm. When the impulse
occurs at a lower rate, this is called sinus
bradycardia, and when it happens more
rapidly, this is known as sinus tachycardia.

Figure 25.16 (a) Polarised cell. (b) The cell de-
polarises from one end. (c) The charge distribu-
tion in (b) can be thought of as the sum of (c) and
(d).

A typical heart muscle cell (Figure 25.16)
is about 100 µm long, and 15 µm wide.
The outer membrane around the cell is 8–
10 nm thick, and in its resting state, a po-
tential difference of around 90 mV exists
between the inside and outside of the cell
membrane, with the outside of the cell be-
ing positive. This is called the ‘resting po-
tential’, and a cell with this potential differ-
ence is called ‘polarised’. When the trans-
port of ions from one side of the mem-
brane to the other changes the sign of this
potential difference, the cell membrane becomes ‘depolarised’ and the cell contracts.

Figure 25.17 The depolarisation wave sweeps
down the heart.

Before the wave of electrical activity (Figure 25.17) that causes atrial contraction,
all the heart muscle cells are polarised. When the nearby nerve cells send a signal, this
causes the muscle cell membrane to become permeable to the charges that are sitting
on the surfaces. The charge distribution that results as this depolarisation sweeps along
the cell (see Figure 25.16 (b)) can be thought of as the sum of a similar charge distribu-
tion to the original one, but truncated (c), and an extra bit that is like a flat membrane
with a reversed charge distribution (d). The net result is that the charge distribution
looks like a line of separated positive and negative charges that sweep down the heart
as in Figure 25.17.

The travelling electrical signal can be modelled as an electric dipole (a separation of
positive and negative charge) that changes strength and size with time. This dipole cre-
ates an electrical potential throughout the body cavity, and causes a pattern of equipo-
tential lines on the surface of the body. By using a series of electrodes placed on the
skin, the potential differences can be measured, and the evolution of the dipole mo-
ment (the ‘heart vector’) can be measured.

The electrical potential differences that are seen on the surface of the skin are of the
order of a few millivolts. Voltages of this size are easily detected. The measurement of
these voltages by the placing of electrodes on the skin is called an electrocardiogram

www.wiley.com/go/biological_physics 251



25 · ELECTRICAL POTENTIAL AND ENERGY

Figure 25.18 A ECG trace showing a complete cycle with the P, Q, R, S and T peaks.

or ECG, and is the primary tool used for detecting abnormal heart rhythms. The more
common ECG machines in use measure the potential at the end of the arms and left
leg, and in six locations across the chest, mostly on the left side. These signals can
be plotted separately, but are usually combined in a single trace, as shown below on a
‘normal’ ECG. The first bump (the P wave) is caused by the depolarisation of the atria.
The sharper feature in the middle (the QRS complex) shows the depolarisation of the
ventricles (and masks the repolarisation of the atria). The last bump is the T wave,
caused by the repolarisation of the ventricles (see Figures 25.19 and 25.20).

Figure 25.19 The individual voltage traces from a six-lead ECG machine.

Figure 25.20 The combined trace from a normal ECG.

25.8 Summary

Key Concepts

electrical potential (V ) The potential energy per unit charge at each point in space. The elec-
trical potential is a scalar field. The SI unit of electrical potential is the volt, symbol V. One
volt is equivalent to one joule per coulomb.

electrical potential difference (∆V ) The difference in electrical potential between two points.
The potential difference is measured in volts (V). The electrical potential energy is often
just referred to as the ‘voltage’.

electrical potential energy (U ) The potential energy stored in a system of charges. The elec-
trical potential energy may be thought of as the energy required to bring the charges to
positions they occupy. The electrical potential energy is also the maximum amount of
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work that a system of charges may do if unconstrained. It is usually given the symbol U
and is measured in joules (J).

equipotential lines Lines of equal electrical potential. Equipotential lines are perpendicular to
the direction of the electric field.

Equations

KEf +Uf = KEi +Ui +Wapplied

∆U =−Welec

∆V = ∆U

q

E =−∆V

∆x
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25.9 Problems

25.1 A 20000 N C−1 uniform electric field does +5000 J of work on
a +0.20 C charged object.

(a) Did the charged object move in the direction of the electric
field or against it?

(b) How far did the object move?

(c) What was the change in electrical potential through which
the object moved?

(d) If the object was initially at at point with an electrical po-
tential of −2000 V, what was the electrical potential its end
point?

25.2 A proton is moved at a constant velocity from a position at
which the electrical potential is 100 V to one at which the electri-
cal potential is −50 V.

(a) How much work was done on the proton by the electric field?

(b) How much work was done on the proton by the external
force?

25.3 In a region of space there is a uniform 6000 N C−1 electric field
like that shown in Figure 25.21.

Figure 25.21 Three points in a region of uniform electric field.

(a) What is the potential difference between points A and B?
Which point is at the lower electrical potential?

(b) What is the potential difference between points A and C?
Which point is at the lower electrical potential?

(c) What is the potential difference between points B and C?
Which point is at the lower electrical potential?

25.4 A charge of +0.1 µC is placed at point A in Figure 25.21.

(a) How much work is done on the charge by the electric field
when moving the charge from point A to point B?

(b) How much work is done on the charge by the electric field
when moving the charge from point B to point A?

(c) How much work is done on the charge by the electric field
when moving the charge from point B to point C?

(d) How much work is done on the charge by the electric field
when moving the charge from point C to point B?

25.5 What is the potential difference between points A and D in
Figure 24.14?

25.6 Use Figure 25.22 to answer the following questions.

Figure 25.22 The electric field and some equipotentials in the region around two
positive charges.

(a) What is the potential difference between points A and B?

(b) How much work does the electric field do on a −0.5 C charge
that is moved from A to C?

(c) If a −5 C charge is released from point D which path would
it take?

(d) If a +6 C charge is released from point E which path would it
take?

25.7 A charge Q0 = −0.5 µC is placed in a region of space far
from any other charges and is fixed so that it cannot move. Some
equipotential lines around this charge are shown in Figure 25.23.
A small object with a mass of mobj = 5 mg and a charge Qobj =
−0.8 nC is placed at point A (VA = −800 V) and released. The re-
pulsive force between the two charges causes Qobj to accelerate
along the path shown towards point B. What is the velocity of the
object when it reaches point B (VB =+100 V)?

Figure 25.23 Equipotentials around an isolated point charge.
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25.8 At rest, the potential inside a nerve cell is lower than
that of the extracellular fluid. The membrane potential, the
potential difference between the inside and outside of the
cell membrane, is 70 mV.

(a) What is the change in electrical potential energy of the
sodium ion when moving from inside the cell to out-
side the cell?

(b) How much work must be done on a sodium ion (Na+)

to move it from inside the cell to outside the cell?

25.9 An electron at an initial electrical potential of 0 V
is fired towards a second electron which is held fixed in
space. The moving electron was fired at an initial speed of
1 × 104 m s−1. When the moving electron is 5.11 × 10−6 m
from the fixed electron it’s speed has been reduced to 1×
103 m s−1. What is the electrical potential 5.11× 10−6 m at
the point 5.11×10−6 m away from an isolated electron?
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26CAPACITANCE

26.1 Introduction

26.2 The Capacitor

26.3 Energy Stored in a Capacitor

26.4 Capacitors in Series and Parallel

26.5 The Dielectric in a Capacitor

26.6 Summary

26.7 Problems

26.1 Introduction

Picture charged plates carrying the same magnitude charge but with opposite signs
separated by some distance. There is energy stored in this charge configuration, and
there exists an electric field and a potential difference between the plates. We can de-
fine a quantity associated with such a charge configuration that is the ratio of the mag-
nitude of the charge on each plate to the potential difference between the plates. We
call this ratio the capacitance. With this definition, the smaller the potential differ-
ence created for a given magnitude of charge, the larger the capacitance of the pair of
plates. In this way, the capacitance is a measure of the capacity of the circuit element to
store charge. Circuit elements may be designed specifically to store charge, and these
are called capacitors. In this chapter we will develop these ideas and show how to use
them to calculate the capacitance of capacitors and the energy stored in them.

Key Objectives

• To understand the nature of electrical capacitance.

• To be able to describe the relationship between the stored charge, potential dif-
ference and capacitance of a capacitor.

• To be able to calculate the energy stored in a capacitor.

• To be able to understand how capacitors in circuits can be combined in series
and parallel.

26.2 The Capacitor

Figure 26.1 A simple capacitor.A capacitor is a device which stores electrical potential energy in the form of a sepa-
ration of some charge. The simplest devices have two metal plates, separated so that
charge cannot flow between them. The conductors can be any shape, but are still re-
ferred to as plates. When a battery is connected to the plates, as shown in Figure 26.1,
electrons are removed from one plate leaving it positive, and added to the other plate
leaving it negative. A capacitor in such a state is said to be ‘charged’. It is easy to see
that connecting the charged plates together will allow the charges to move from one
plate to the other until the plates are neutral again, so a capacitor is storing energy by
separating charges.

The region of space between the plates has an electric field present (see Figure 26.2),
and hence there is a potential difference between the plates. The derivation of the
exact form of the electric field between the plates is outside the scope of the book. We
therefore will state the result without derivation. For the case of plates separated by a
vacuum

Figure 26.2 A capacitor is formed by two con-
ducting plates are separated by a distance d ,
and having equal magnitude |Q|, but opposite
sign charge on each plate.

E = 1

ε0

Q

A
(26.1)

where E is the electric field strength, A is the area of each plate, Q is the magnitude
of the charge on each plate and ε0 is a constant known as the permittivity of free space

Introduction to Biological Physics for the Health and Life Sciences Franklin, Muir, Scott, Wilcocks and Yates
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(ε0 = 8.854× 10−12 F m−1). The field between two charged parallel plates is uniform;
this is one way to generate the uniform fields discussed in the chapter on electrical
potential energy and work.

Because the field is uniform, finding the potential difference between the plates is
straightforward and was discussed in the previous chapter. If the plates are separated
by distance d , the potential difference, V , is

V = E d (26.2)

so that

E = V

d
(26.3)

(Note that ∆V would probably be more correct here, but it is customary to use V for
the potential difference in capacitor equations.)

Equating this expression (Eq. (26.3)) with the expression for the electric field be-
tween the plates of a capacitor (Eq. (26.1)), gives

1

ε0

Q

A
= V

d
(26.4)

We can then rearrange this expression to give

Q

V
= ε0

A

d
(26.5)

For a particular arrangement of plates, the values of A and d don’t change. Thus
there is some fixed quantity that we can associate with a particular arrangement of
plates, and this relates the amount of charge that is stored on the plates to the potential
difference between them. This is the capacitance, C , which we define

C = |Q|
|V | (26.6)

Figure 26.3 Two concentric conducting spheri-
cal shells can act as a capacitor. Provided the
plate separation is much smaller than the radius
of the sphere, we can even treat it as an approx-
imate parallel-plate capacitor.

The SI unit of capacitance is the farad, symbol F. Most capacitors found in circuits
have only small fractions of a farad capacitance, and so typically have values in the
range from picofarads (pF, meaning 10−12 F) to microfarads (µF, meaning 10−6 F). For a
parallel-plate capacitor

C = ε
A

d
= εr ε0

A

d
(26.7)

where A is the area of each plate, d is the separation distance and ε is permittivity of
the material between the plates (ε0 for a vacuum). The ratio of the permittivity of the
material (ε) to the permittivity of free space (ε0) is known as the relative permittivity,
εr

εr =
ε

ε0
(26.8)

As mentioned earlier, a capacitor need not be constructed from parallel plates (see
Figure 26.3). However, regardless of the shape of the capacitor, the capacitance is al-
ways Q/V .

In a biological cell, the intracellular fluid and the extracellular fluid are both con-
ducting electrolytes, separated by the cell membrane which maintains across itself a
potential difference of around 100 mV. The cell membrane is not a perfect insulator,
but is still a much poorer conductor than the other media, so the cell membrane acts
like a leaky capacitor.
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Problem: A simple parallel plate capacitor with a plate area of 0.5 m2 is constructed and charged such that it holds

+8 µC of charge on one plate and –8 µC on the other. The gap between the plates is filled with air.

(a) What is the magnitude of the electric field between the plates of this capacitor?

(b) What is the potential difference between the plates of this capacitor if they are 0.05 m apart?

(c) What is the capacitance of this capacitor if the plates are 0.05 m apart?

Example 26.1 Electric field between plates of a capacitor

Solution: (a) We can find the electric field by using Equation (26.1). The charge on a capacitor is defined as the magni-
tude of the charge on each plate, so Q = 8 µC. In this case with air filling the gap between the plates, εr = 1

E = 1

ε0

Q

A
= 1

8.854×10−12 F m−1

8×10−6 C

0.5 m2

= 1.8×106 V m−1

(b) With d = 0.05 m, the potential difference between the plates will be

∆V = E∆x = 1.8×106 V m−1 ×0.05 m = 90×103 V

(c) The capacitance can be found using the Equation 26.1

C = εrε0
A

d
= 1×8.854×10−12 F m−1 0.5 m2

0.05 m
= 8.9×10−11 F

As we have calculated the potential difference between the plates we could also have used C = Q
V to answer this ques-

tion.

26.3 Energy Stored in a Capacitor

In order to charge a capacitor, work needs to be done to separate the charges. Let’s
examine the charging process in more detail.

To begin with, the plates have no charge, and there is no potential difference. At a
later time, the plates carry charge Q ′ and the potential difference V ′ =Q ′/C . Now that
the plates have charge, it is going to be more difficult than before to force more charge
onto each plate, as the charge already there is repelling the new charge (see Figure 26.4).
Recall that the work done moving a charge Q across a potential difference of V is

|W | = |∆U | = |V Q| (26.9)

So to add charge ∆Q to the charge Q1 will take work input

∆W =V ′
∆Q = Q ′

C
∆Q (26.10)

provided that ∆Q is sufficiently small that V ′ is essentially unchanging while the new
charge is added to the plates. The total work done to get a final charge of Q onto each
plate will be the sum of all the little bits of work required to add on each little bundle of
charge, which is the area under the plot of the voltage versus charge

Figure 26.4 When charging a capacitor, each
additional electron requires slightly more work to
add or remove than the previous electron. Each
time an electron is added or removed the charge
on each plate increases, which increases the po-
tential difference between the plates, which in-
creases the work required to move the next elec-
tron.

Wtotal =
n∑

i=1

∆Wi =
1

2

Q2

C
(26.11)

We can see the origin of this result graphically in Figure 26.5. Because the capaci-
tance is constant, the graph of Q versus V is a straight line, starting at the origin. The
increment of work to transfer ∆Q at a particular voltage is equal to the area of the little
rectangle shown with area W = V ∆Q. The total work is the area of all the rectangles,
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i. e. the area under the line. This is a triangle with base length Q and height V =Q/C .
Using area equals half base times height, we get the same result as above.

The energy stored in the capacitor is the same as the work done in charging it. Be-
cause it is a form of potential energy, U is the symbol typically used to represent the
energy stored in a capacitor. Using Q =CV ,

U = 1

2

Q2

C
= 1

2
QV = 1

2
CV 2 (26.12)

Figure 26.5 The energy stored in a 10 µF ca-
pacitor can be found from the area under the QV
plot. As the capacitance is a constant, this plot is
a straight line and the area is given by U = 1

2 QV .

26.4 Capacitors in Series and Parallel

Figure 26.6 (Left) Adding capacitors together in parallel is like using single larger capacitor, increasing the total
capacitance. (Right) Adding capacitors together in series reduces the total capacitance.

Just like with resistors, which we will come to in the next chapter, we often need
to evaluate the overall capacitance of a number of capacitors grouped together. There
are two basic ways this can be done, which we call series and parallel. Two capacitors
are in series if they are placed consecutively in a circuit, so that any current flowing
in the circuit will pass through each capacitor in turn. Two capacitors are in parallel
if they are placed so that current must split and pass through either one capacitor or
the other before rejoining and that the potential difference across each capacitor is the
same. In diagrams, a capacitor is usually represented by two parallel lines, as shown
in the summary in the next chapter (Figure 27.3), though sometimes one of the lines is
drawn curved.

In the parallel case, the wire connecting all the positive plates together ensures that
they are at the same potential, and the same is true of the negatively charged plates.
In effect, it is like adding all the plates together to make one big pair of plates with the
combined area of all the individual capacitors (see Figure 26.6). Because the capaci-
tance is directly proportional to the plate area, it follows that the total capacitance is

Ctotal, parallel =C1 +C2 +C3 + . . . (26.13)

When capacitors are wired in series, things are different. Imagine that the wire
that connects the two middle plates in the diagram is made shorter until the plates
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are touching. In effect, we just have a piece of uncharged metal in the middle of two
charged plates with a separation equal to the sum of the separations of the original two
capacitors. As capacitance is inversely proportional to separation distance d , adding
capacitors in series decreases the capacitance and the result is that

1

Ctotal, series
= 1

C1
+ 1

C2
+ 1

C3
+ . . . (26.14)

To see this for the case of two capacitors in series, take a look at Figure 26.6. The
diagram shows two capacitors. Before any voltage difference is applied between points
A and B, the two middle plates and the wire connecting them are neutral. When a
potential difference is created between A and B, the outer plates gather charge, and
so the charge migrates between the two inner plates also. This means that whatever
charge is left on the positive plate of the right-hand capacitor must be equal to the
amount of negative charge that has moved to the negative plate of the left-hand one.
In other words, Q1 =Q2 =Q. Clearly

C1 =
Q1

V1
= Q

V1
and C2 =

Q2

V1
= Q

V2

To find the effective capacitance between A and B, we need the potential difference
and the amount of charge separated. The charge on the outer plates is Q and the po-
tential difference between A and B is V1 +V2. So

Ctotal =
Q

V1 +V2
(26.15)

Using V1 =Q/C1 etc.

Ctotal =
Q

Q/C1 +Q/C2

= 1

1/C1 +1/C2

1

Ctotal
= 1

C1
+ 1

C2

Problem: A capacitor of capacitance 50 mF is to be charged to a potential of 12 V.

(a) How much energy does this capacitor store when fully charged?

(b) How many electrons need to be moved from one plate to the other to charge this capacitor to a potential of

12 V?

(c) How much work is required to move the 10th electron from one plate to the other?

(d) How much work is required to move the 1018th electron from one plate to the other?

Example 26.2 Energy in capacitors

Solution: (a) The energy stored in a capacitor is given by Equation (26.12)

U = 1

2
CV 2 = 1

2
×50×10−3 F× (12 V)2 = 3.6 J
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(b) We can find the number of electrons that need to be moved by first finding the charge on each plate of the capacitor

Q =CV = 50×10−3 F×12 V = 0.6 C

As each electron carries a charge of 1.6×10−19 C, 0.6 C corresponds to 0.6 C
1.6×10−19 C per e

= 3.75×1018 electrons.

(c) We can use Equation (26.12) to find the amount of work done as the 10th electron is moved from one plate to the
other. The charge already on the capacitor is Q0 = 9×1.6×10−19 C = 1.44×10−18 C

W = Q0

C
∆Q = 1.44×10−18 C

50×10−3 F
×1.6×10−19 C = 4.61×10−36 J

A very small amount of energy indeed!

(d) For the 1018th electron, Q0 = 1×1018 ×1.6×10−19 C = 0.16 C

W = Q0

C
∆Q = 0.16 C

50×10−3 F
×1.6×10−19 C = 5.1×10−19 J

This is still a very small amount of energy but is 1017× larger than the case in (c).

26.5 The Dielectric in a Capacitor

When Michael Faraday (1791–1867), after whom the farad is named, was investigating
capacitance, he realised that filling the space between the capacitor’s plates with some
material increased the value of the capacitance. A material that is put between the con-
ductors for this purpose is called a dielectric. The factor by which the capacitance is
increased relative to the value for a vacuum is known as the dielectric constant. Be-
cause the capacitance is higher, this means that for a particular potential difference,
the presence of a dielectric increases the amount of charge that the plates carry. The
dielectric also affects the electric field between the plates. The presence of the applied
field causes the dielectric to become polarised (see Section 23.5). The extra electric
field created by the polarised medium is in the opposite direction to the applied field
(see Figure 26.7), and so the net field is smaller.

Figure 26.7 (Top) A capacitor without a dielec-
tric. (Bottom) Inserting a dielectric into this ca-
pacitor reduces the electric field between the
plates thereby increasing the capacitance.

In a practical sense, the dielectric also helps by stopping the plates from touching,
reducing the separation that can be used.

When choosing an appropriate dielectric, in addition to the dielectric constant, a
major consideration is the dielectric strength. This is a measure of the maximum ap-
plied field the material can withstand before it breaks down and becomes conducting,
measured in V m−1. In recent years, good dielectric materials have been developed,
leading to ‘super capacitors’. Their ability to store electrical energy has many applica-
tions in the electricity generation sector.

Problem: A capacitor is constructed using an air gap of 1 mm between parallel plates.

(a) What is the capacitance per square metre for such a capacitor?

(b) If the capacitor had an area of 0.75 m2, what would it’s capacitance be?

The space between the plates of our capacitor is now filled with water (εr = 80).

(c) What is the capacitance per square metre now?

(d) If the capacitor had an area of 0.02 m2, what would it’s capacitance be?

Example 26.3 Dielectric materials in capacitors
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Solution: (a) We can see from Equation (26.1) that the capacitance of a capacitor is directly proportional to the area of
its plates. Because of this we can say that if a capacitor of x m2 has a capacitance of Cx , then an otherwise identical
capacitor of 2x m2 will have a capacitance of 2Cx and so forth. For the capacitor in this question, the capacitance per
square metre is

Cper m2 = εrε0
1 m2

d
= 1×8.854×10−12 F m−1 1 m2

0.001 m
= 8.9×10−9 F

(b) So if the capacitor had an area of 0.75 m2, it would have a capacitance of 0.75 m2 ×8.9×10−9 F m−2 = 6.6×10−9 F.

(c) Inserting a dielectric will increase the capacitance per square metre of the capacitor:

C = εrε0
A

d
= εrC0 = 80×8.9×10−9 F m−2 = 712×10−9 F m−2

(d) C = 0.02 m2 ×712×10−9 F m−2 = 14×10−9 F

Problem:

(a) A large capacitor used to store energy in a physics lab is made of two concentric spheres spaced 1 mm apart.

The radius of the capacitor is 0.75 m. If the space between the plates of the capacitor is filled with air (εr = 1)

how much energy does this capacitor store when charged to the maximum 3000 V?

(b) A dielectric which has a relative permittivity of εr = 1.2 but a reduced ‘breakdown potential’ of

2.5 × 106 V m−1 is inserted into the space between the plates of the capacitor. How much energy is stored in

the capacitor now?

Example 26.4 Breakdown potential

Solution: (a) The maximum potential difference that can be maintained between the plates of the capacitor depends
upon the ‘breakdown potential’ (which is expressed in volts per meter, V m−1) of the dielectric between them. Too
large a potential difference between the plates can ionise the dielectric between them and result in a spark or electrical
arc leaping from one plate to the other. This spark or arc will transfer charge from one plate to the other. This maximum
potential difference is due to the breakdown potential of air. Air is capable of supporting a potential difference of
3×106 V per meter and so its ‘breakdown potential’ is 3×106 V m−1.

The energy stored is given by Eq. (26.12)

U = 1

2
CV 2

We know that V = 3000 V, but we do not yet know the capacitance. We can find this by calculating the area of each plate
(which will be approximately the same as r >> d) and using Eq. 26.7.

Asphere = 4πr 2 = 4×π× (0.75 m)2 = 7.07 m2

C = εrε0
A

d
= 1×8.854×10−12 F m−1 7.07 m2

0.001 m
= 6.26×10−8 F

The energy stored is thus

U = 1

2
CV 2 = 1

2
×6.26×10−8 F× (3000 V)2 = 0.28 J
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(b) With the dielectric inserted, the capacitance of the capacitor changes to 1.2×6.26×10−8 F = 7.51×10−8 F. This is not
the only effect of the dielectric, however, as it also has reduced breakdown potential of 2.5×106 V m−1. With the 1 mm
gap between the plates this corresponds to a maximum potential of 1×10−3 m×2.5×106 V m−1 = 2500 V. The energy
stored is now

U = 1

2
CV 2 = 1

2
×7.51×10−8 F× (2500 V)2 = 0.23 J

26.6 Summary

Key Concepts

capacitor A device which stores energy by separating charge. One kind is the parallel plate ca-
pacitor which stores charge +Q and −Q on two parallel metal plates separated by air or a
dielectric material.

capacitance (C ) A measure of the amount of charge on each plate of a capacitor for a given
electrical potential across that device. The SI unit of capacitance is the farad, symbol F.

dielectric An insulating material used in a capacitor, usually one which does not break down at
large voltages. The dielectric material becomes polarised, causing the capacitor to have a
larger charge accumulation for a given potential difference.

permittivity A quantity that describes how a material changes an electric field. The higher the
permittivity of a material, the more the electric field within it is reduced. The permittiv-
ity is usually given the symbol ε. The relative permittivity, εr , gives the permittivity as a
fraction of the permittivity of free space, ε0 ≈ 8.854×10−12 F m−1.

dielectric constant Another term for the relative permittivity.

Equations

C = |Q|
|V |

C = ε
A

d
= εr ε0

A

d

U = CV 2

2
= Q2

2C
= QV

2
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26.7 Problems

26.1 A 9 V battery is connected to a capacitor which subsequently
has a magnitude of 0.5 µC of charge on each plate, with the charge
on each plate having an opposite sign. What is the capacitance of
this capacitor?

26.2 You have some metal shelving with two shelves, each of which
measures 0.5 m× 0.2 m and the shelves are 0.3 m apart. (assume
the shelves are electrically insulated from each other and any other
objects)

(a) What is the capacitance of your shelves?

(b) How much charge would they hold if you connected each
terminal of the shelves to a 1.25 V battery?

26.3 You wish to construct a capacitor which has a capacitance
of 1 F. You intend to construct your capacitor using two parallel
sheets of tinfoil held 1 mm apart by placing plastic wrap between
them (the plastic wrap fills the space between the tinfoil). Both tin-
foil and plastic wrap come in rolls which measure 30 cm by 10 m.
The relative permittivity of the plastic wrap is εr = 2.9.

(a) How many rolls of tinfoil and plastic wrap would you need?
Is your plan feasible?

(b) How much charge could you store on this capacitor if you
connect it to a standard 9 V battery?

26.4 A large industrial capacitor with an air gap between the plates
stores 140 kJ of energy at a potential difference of 1200 V. A dielec-
tric is inserted into the space between the plates of this capacitor
and it can now store 11200 kJ of energy at 600 V. What is the rela-
tive permittivity of the dielectric inserted between the plates of the
capacitor?

26.5 A particular capacitor stores 1 J of energy when charged to a
potential difference of 12 V.

(a) What is the capacitance of this capacitor?

(b) What is the charge stored on this capacitor?

26.6 You measure the electric field between the plates of a 5 nC ca-
pacitor to be 2000 N C−1. If the charge on this capacitor is 2 µC,
how far apart are the plates?

26.7 You place books in the shelving described in Problem 26.2.
The relative permittivity of paper is 2.4. How much charge does
each of your bookshelves hold when connected to the same bat-
tery as before?

26.8 You have a sheet of paper which measures 15 cm×20 cm and
a piece of nylon sheeting which has the same dimensions. You
charge these objects by rubbing them together and when you sep-
arate them and hold them parallel to each other and 1 cm apart
you find that there is an electric field of magnitude 1500 V m−1 be-
tween them (you can assume that εr = 1 for air).

(a) What is the potential difference between the paper and ny-
lon sheets?

(b) What is the capacitance of these sheets in this position?

(c) What is the magnitude of the charge on each sheet?

(d) How much electrical energy is stored in the sheets?

The two sheets are now moved further apart to a separation of
5 cm.

(e) What is the capacitance of the sheets now?

(f) What is the potential difference between the sheets now?

(g) What is the magnitude of the electric field between the
sheets now?

(h) How much electrical energy is stored in the sheets now?

26.9 Nerve cells maintain a charge separation across their cell
membrane. The cell membrane of a particular cell is 10 nm thick
and the cell can be modeled as a cylinder with a diameter of 12 µm
and a length of 80 µm. If the potential difference across the cell
membrane is 90 mV, what is the charge stored on the cell? (you
can assume that εr = 1 for the cell membrane)

26.10 How much energy is stored in the form of charge separation
in the cell in Problem 26.9?
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27.15 Electricity in Cells

27.16 Summary

27.17 Problems

27.1 Introduction

Electrical forces may be used to transfer energy and information between two points.
The analysis of these processes using Coulomb’s law is extremely complex. The theory
of electrical circuits has been developed specifically to simplify these calculations. In
this chapter we will introduce the basics of circuit theory.

Key Objectives

• To understand the nature of electric circuits.

• To understand the nature of the electrical current.

• To understand the idea of electrical resistance.

• To be able to use Ohm’s law to calculate currents through and potential differ-
ences across a resistor.

• To be able to apply Kirchhoff’s laws to analyse circuits.

• To be able to combine resistors in series and parallel into a single equivalent re-
sistor.

27.2 Electric Current

Most of the common uses of electricity involve charges moving through conductors.
The flow of charge is known as an electric current, symbol I . The electric current is a
measure of the rate at which charge moves across a given crosssectional area

I = ∆Q

∆t
(27.1)

where ∆Q is the net charge crossing the area in time ∆t .
Figure 27.1 Current is a flow of charge, either
positive charges (top), negative charges (bot-
tom), or a combination of both. The ‘conventional
current’ is in the same direction as a flow of pos-
itive charge, or in the opposite direction to a flow
of negative charge.

The SI unit of current is the ampere, symbol A, which corresponds to a flow of one
coulomb of charge per second. The ampere is one of the base units of the SI system, so
the size of coulomb is actually defined in terms of the ampere. One ampere is defined
as the steady current that, when flowing in straight parallel wires of infinite length and
negligible cross-section, separated by a distance of 1 m in free space, produces a force
between the wires of 2×10−7 N per metre of length.

The direction of the current is defined to be the direction that positive charges
would flow (see Figure 27.1). Often, the only charges that are actually moving are the
negative electrons, so the direction of the so-called ‘conventional current’ is opposite
to the way the electrons are moving.

Introduction to Biological Physics for the Health and Life Sciences Franklin, Muir, Scott, Wilcocks and Yates
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27.3 Current Flow and Drift Velocity

Consider a small segment of metal wire, with length l and cross-sectional area A. The
volume of the segment is V = Al . If the density of conduction electrons is n, then in
the volume V there are nV electrons. Note here that most often when we talk about
density, we mean the mass density or mass per unit volume, but in this case we mean
the number density, the number of electrons per unit volume.

The total amount of mobile charge in the segment is equal to the number of charge
carriers times the charge on each charge carrier, so

∆Q = qnV (27.2)

Suppose each charged particle travels at velocity v . The time it would take for all
the charge in this volume to cross the area at the end of the segment is the length of
time it would take to travel a distance l at v .

∆t = l

v
(27.3)

and the current is therefore

I = ∆Q

∆t
= |q|nV

l/v
= |q|n Av (27.4)

This expression shows how the current is related to the number density of charge
carriers, and how fast they travel on average (see Figure 27.2). To give some idea of
scale, for a 1 mm-radius copper wire carrying 10 A, the average velocity of the electrons
in the wire is 2.4×10−4 m s−1. This is very slow. The slow speed of the charge carrier
movement is emphasised by referring to it as the drift velocity.

Figure 27.2 The average (or drift) velocity of the
moving charges that constitute a current is much
lower than the instantaneous velocity of these
charges. This is due to the many collisions with
atoms/molecules that occur as the charge moves
along its path.

Given that this velocity is so low, why does a light bulb turn on as soon as we flick the
switch? If the electrons that made the light glow had to travel all the way from the power
station, it would take a rather long time for the bulb to begin to glow. This is not what
happens. Nearly as soon as the light switch is closed, a potential difference is created
across the light bulb; at close to the speed of light, an electric field is produced through-
out the circuit. All the electrons in the bulb begin to move almost instantaneously at
once under the influence of this electric field and cause the light bulb to glow. Whether
the source of power is a local battery or a power station kilometres away, what is sup-
plied by such a source is not electrons – the power supply gives the electrons inside the
light the energy to move. Electric power companies sell energy, not electrons.

Problem: A cylinder of fluid contains 4×1024 sodium ions, which are the only charge carriers, i.e., the only charged

particles which are free to move. The dimensions of the cylinder are 20 cm long, with a circular crosssection of

radius 5 mm. If a 5 A current flows along the length of the cylinder, what is the drift velocity of the sodium ions?

Example 27.1 Current and drift velocity

Solution:

I = nqv A

n is the charge carrier density, which is the number of charge carriers per unit volume

n = N

V

The volume of the cylinder is given by

V = l ×πr 2 = 0.2 m×π× (5×10−3 m)2 = 1.57×10−5 m3
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The volume of the cylinder is 1.57×10−5 m3, so the charge carrier density is:

n = 4×1024

1.57×10−5
= 2.55×1029 m−3

Rearranging gives:

v = I

nq A
= 5

2.55×1029 ×1.6×10−19 ×π× (5×10−3)2
= 1.56×10−6 m s−1

The drift velocity of the sodium ions is 1.56×10−6 m s−1.

Problem: A copper wire of radius 2 mm carries a 10 A current. There is one conduction electron per copper atom.

The density of copper is 8.94×103 kg m–3. The molar mass of copper is 64 g mol–1. What is the drift velocity of the

conduction electrons in the copper wire?

Example 27.2 Current and charge carriers

Solution:

v = I

nq A

To determine n, we need to consider the charge carriers in copper. The charge carriers are electrons. In most metals
there is one electron per atom which is free to move, so the charge carrier density is the same as the number of copper
atoms per cubic metre. We can determine the number of copper atoms per cubic metre from the density and the molar
mass of copper.

The number of moles of copper per cubic metre is equal to the mass of copper per cubic metre divided by the mass
of a mole of copper.

moles of copper per cubic metre = ρ

M
= 8.94×103

0.064
= 140×103

The number of copper atoms per cubic metre is equal to the number of moles of copper per cubic metre times
Avogadro’s number

140×103 ×6.02×1023 = 8.43×1028copper atoms per cubic metre

The charge carrier density, n is the same as the number of copper atoms per cubic metre = 8.43× 1028. The drift
velocity is then

v = 10

8.43×1028 ×1.6×10−19 ×π× (2×10−3)2
m s−1 = 5.9×10−5m s−1

The drift velocity of the conduction electrons in the copper wire is 5.9×10−5 m s−1.

27.4 Direct Versus Alternating Current

We are not going to cover the details of alternating current (AC) in this book, but for the
sake of interest, it is worth pointing out a few things. The electricity that is available
from the wall plugs in your home is AC, even though you have probably noticed that
a lot of appliances you own run on direct current (DC), and you need a special power
converter to plug them into the wall. In the early days of domestic electricity, there
was fierce debate about whether the supply should be AC or DC, but AC has a very
distinct advantage over DC – the use of transformers. A transformer is a device which
can change the voltage of an AC power supply (with accompanying change in current).
This makes it straightforward to transmit the power at high voltage (with lower current
and hence less heating and energy loss) and to then transform the voltage down to
something less hazardous at the user’s end. An exception is the cable that transmits
power from the South Island hydro lakes to New Zealand’s North Island, which uses
DC for economic reasons.
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27.5 Circuits and Circuit Diagrams

Figure 27.3 A (very) simple circuit containing
just one battery and one resistor. Current is de-
fined as flowing from the positive terminal of the
battery to the negative terminal and (assuming
zero resistance in the wires) the potential differ-
ence across the resistor is the same as the po-
tential difference across the battery (E ). (Note:
the ‘actual’ current of course is made up of elec-
trons moving from the negative terminal to the
positive terminal.)

Figure 27.4 The usual schematic representa-
tion for common circuit elements.

Generally, when we talk about an electric circuit, we are talking about some closed
path through which charge may flow (see Figure 27.3). This path is composed of some
combination of conductors and components such as resistors, capacitors, or batteries
(see Figure 27.4). In this chapter we will represent circuits using circuit diagrams. These
are diagrams which show the circuit elements being used and the order in which they
are wired together to allow current flow.

We will begin our discussion of circuit diagrams by looking at simple combinations
of power sources and resistors. In the next chapter we will expand this discussion to
include capacitors.

27.6 Power Sources

Imagine for a moment a capacitor consisting of two parallel plates carrying charges +Q
and −Q. In the region of space between the plates there is an electric field, and a poten-
tial difference exists between the plates. If the plates were connected by a conducting
wire, the charges would move from one plate to the other. This is a circuit, of sorts.
However, in this case, the charges would eventually stop moving as the electric field
got smaller and smaller. In most electric circuits, a device exists to maintain a potential
difference between two places, so the flow of charges can be continuous. This is the
role of a battery in a circuit. The battery in a circuit diagram is an idealised battery that
maintains a specified potential difference between two points. Note that a particular
battery may supply different amounts of current or electrical power depending on the
circuit it is in, but it will maintain a certain fixed potential difference between the two
points specified.

We have already seen that charged particles can move about under the influence of
an electric field. The field does work on the charges, so some external energy source is
needed to maintain this field. A non-electrical energy source that provides such energy
is known as a source of emf or electromotive force. This emf is defined as the work
done per unit charge by non-electrical forces. It is usually given the symbol E . It is
measured in volts, so it is not actually a force, but the historical name has stuck. For a
particular device, the net emf is the energy gained per unit charge (U /Q) when a charge
Q passes through that device and gains an energy U . The source of the energy may be
electrochemical reactions (in the common battery), radiant energy (in the case of a
solar cell) or thermal energy (in a thermocouple).

The purpose of a power source like a battery is to provide the energy to move charges.
It produces a potential difference between two points in a circuit which causes the
charges to move. This is why batteries are labelled with a voltage, not a current. A
battery is not a source of charge; it does not store up electrons and then release them
like water from a dam! It is more like a pump that takes in water as its input and raises
the water up to greater height so that it can flow around a set of pipes back to the input.

A real battery of the type a consumer would buy at a supermarket has a fixed amount
of energy that it may supply over its lifetime (or per charge if it is rechargeable). If you
look at a battery (particularly a rechargeable one) you may see a rating in milliamp
hours (mAh), which is a measure of the total charge (as current times time gives charge)
and thus energy they can supply over their lifetime. If the current drawn from the bat-
tery is high, the length of time this can be kept up is reduced.

In circuit diagrams, a voltage source such as a battery is represented by two parallel
lines of different length. The longer line is the positive terminal, that is, the terminal
that is at the higher potential. The other is the negative terminal.

27.7 Resistance and Ohm’s Law

It has been observed that for many materials there is a linear relationship between the
potential difference across the material and the current flow through an object made
of that material. That is, V ∝ I . This relationship is known as Ohm’s law. To turn this
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relationship into a useful equation, we associate a property known as resistance with
the object. This electrical resistance, R, is defined as

R = potential difference between the ends of the object

current flowing through the object
= V

I
(27.5)

This resistance is the opposition to the flow of electrical current through an object,
which causes electrical energy to be converted to heat; an object which does this is
called, not surprisingly, a resistor. Resistance is measured in ohms, symbol Ω.

Conductance

Resistance (R) a measure of the opposition to

electrical current. The reciprocal property is

conductance (G), the ease with which electric

charges can flow. G = 1/R.

Figure 27.5 The linear relationship between cur-
rent and potential difference for many materials
is called Ohm’s law. The plot shown is for a re-
sistor with a resistance of 15 Ω. Also shown is
the relationship between I and V for a material
that is non-ohmic. A non-ohmic material is any
material which does not obey Ohm’s law.

Not all circuit elements obey Ohm’s law (see Figure 27.5), and those for which I
is not proportional to V are known as non-ohmic. One example is the diode, which
is circuit element that has a resistance that depends on the direction of current flow,
being very high in one direction and very low in the other. The graphite you would find
in a pencil also shows non-ohmic behaviour.

27.8 Resistors and Resistivity

A resistor is a circuit device that has resistance. The symbol used in circuit diagrams is
a zig-zag line as shown in Figure 27.6.

When a potential difference is established between the ends of a resistor, current
flows through it, with the relationship between them being given by Ohm’s law

V = I R (27.6)

For simple resistors, the value of the resistance R depends on the material the resis-
tor is made from, and the shape into which it is made. It should be readily apparent that
if two identical resistors are placed end on end (i.e., in series), to maintain the original
current flow would require that the same potential difference be applied across each
resistor, and hence the total potential difference would be twice that through each of
individual resistor. So the total resistance of this arrangement is twice the resistance of
each resistor, suggesting that the resistance is proportional to length.

Resistivity in µΩ cm at 20 °C
Metal Resistivity

Aluminium 2.824
Brass 7

Copper 1.771
Gold 2.44

Iron (99.98% pure) 10
Lead 22
Silver 1.59
Zinc 5.8

Table 27.1 Resistivity of selected metals

Now imagine two identical resistors side by side (i.e., in parallel), with the same po-
tential difference across each. In this situation, the same current will flow through each
resistor, just as it would if the other wasn’t there. This means that the total current flow
is twice that which flows through each single resistor. For the same potential differ-
ence, twice the current flows, so the total resistance is in effect halved. This indicates
that doubling the cross-sectional area of a resistor halves the resistance, i.e., resistance
is inversely proportional to cross-sectional area.

The resistance can therefore be expressed in terms of material and shape properties
by

R = ρ
l

A
(27.7)

where A is the cross-sectional area, l is the length of the resistor and ρ is called the
resistivity which is a property of the material. Resistivity is measured in Ω m. Good
conductors have low resistivity (about 10−8

Ω m) and good insulators have very high
values (more like 1014 or 1015

Ω m). Table 27.1 gives some values of the electrical resis-
tivity for various metals.

Most materials have a resistivity that has some dependence on temperature. This
is the basis of the thermistor for measuring temperature that was mentioned in Sec-
tion 17.3.

Figure 27.6 There is a potential difference of ∆V
across a resistor of resistance R resulting in a
flow of current of magnitude I through the resis-
tor. (Note: The current is flowing from point A to
point B, this implies that the electrical potential at
point A is higher than that at point B.)

When examining circuit behaviour, we often need to determine the net effect of a
certain configuration of resistors. We’d like to know what single resistor could replace
the ones that are there such that nothing else would change, that is, the voltages and
currents in the rest of the circuit would be unaffected. As for capacitors, there are only
two ways that a pair of resistors may be wired together – in series and in parallel. From
the discussion above, it can be seen that putting resistors in series will increase the
resistance, as it is much like increasing the length of a resistor. Putting resistors in par-
allel will decrease the overall resistance, as it is like increasing the area through which
current can flow.
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To examine the effect of a combination of resistors in detail, it will help to know the
basic principles of DC circuits, known as Kirchhoff’s laws. We will return to resistor
combinations in series and parallel in Section 27.11.

27.9 Wires

In a circuit, the elements such as batteries, resistors, light bulbs, etc. are connected
with wires. These may be plastic-coated pieces of copper, or printed silver tracks on a
circuit board, but the purpose is to connect together two points in a circuit with as little
resistance to current flow as possible, so low-resistivity materials are used. Half of the
world’s copper is used in the electrical industry, and something like 6000 million US
dollars worth of gold is used each year in electronics. Of the 45% of the world’s silver
production that is used by industry, a large amount is used for electrical contacts.

In an ideal situation, the wires connecting circuit elements would have no resis-
tance. In this case we can see that Ohm’s law suggests that no resistance implies no
potential difference between the wires ends. In other words, all the parts of a circuit
that are connected by only wire are at the same potential. Because adding or remov-
ing some wire from a circuit diagram doesn’t have any significant effect, as long as the
correct arrangement of series and parallel elements is maintained, it can be useful to
redraw a circuit to clarify things.

Figure 27.7 Both of these circuits, (i) and (ii),
are identical. When making the assumption that
wires have zero resistance you may redraw a cir-
cuit however you wish provided you maintain the
relative positions of circuit elements (series, par-
allel etc.) which maintains the electrical potential
at each point.

An example of how re-drawing a circuit can make it easier to interpret is shown in
Figure 27.7. The diagrams show circuits that are drawn differently, but have identical
behaviour in terms of currents and voltages through the resistors. Some ways of draw-
ing diagrams can make it more clear for the purpose of analysis, so it is important to
understand how these circuits are essentially the same circuit. A circuit diagram may be
redrawn however you like, so long as the circuit elements are still connected together
in the same way. Notice that in this example, the left side of the capacitor is connected
to the left side of the lower resistor and the and the bottom of the top-left resistor both
times. If the capacitor was to be connected by a wire directly to the battery, say, the
circuit would not be the same.

In the real world, wires do have a small amount of resistance, and so there is some
potential drop along them, and some energy lost in the form of heat.

Problem:

Figure 27.8 A simple circuit.

The current at point A in the circuit shown in Figure 27.8 is 3 A.

(a) In five minutes, how much charge passes point A?

(b) If the charge carriers are electrons, how many electrons pass point A in

5 min?

(c) What is the current at point B?

Example 27.3 Current and charge

Solution: Current is the amount of charge passing a point in a given time, in other words

Q = I ×∆t = 3 A×5 min×60 s min−1 = 900 C

In 5 min (300 s), 900 C of charge pass point A. The number of electrons passing point A in 5 min is the number of
coulombs of charge passing point A in 5 min divided by the charge on one electron.
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N = Q

qe
= 900 C

1.6×10−19 C
= 5.6×1021

The current at B is the same as the current at A, as each charge carrier that passes A must also pass point B. This is the
case whenever two points are in series.

27.10 Kirchhoff’s Laws

Kirchhoff’s Law of Voltages

This rule is essentially the law of energy conservation applied to a circuit. It can be
stated:

Key concept:

The sum of the directed potential differences around any closed loop is zero.

By directed potential differences, we mean that a direction around the closed loop
must be chosen, and all the potential differences must be evaluated with respect to the
direction chosen.

Resistance rule: Moving through a resistor in the direction of the current, the change
in potential is −I R. In the opposite direction to the current the change in potential is
+I R.

Internal resistance

The voltage difference between the battery ter-

minals and the emf may not be the same.

When current is flowing, a voltage drop will oc-

cur across any internal resistance in the bat-

tery. If we treat the battery as ideal, we can

use E or V for the battery voltage.

EMF rule: Moving through a source of emf, the change in potential is +E if going
from the negative terminal to the positive, or −E if going positive to negative.

Kirchhoff’s Law of Currents

This rule is the law of charge conservation applied to a circuit. It says:

Key concept:

In any electrical circuit where no build up of charge is occurring, the sum of electric
currents flowing into a point equals the sum of the electric currents flowing away.

The application of these rules can be seen in the end-of-chapter worked examples.
We will now show how they can be applied to simple resistor configurations to derive
rules for resistance in series and parallel.

Figure 27.9 Kirchhoff’s laws. Potential changes around a closed loop sum to zero, and the current into a junction
equals the current out.
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27.11 Resistors in Series and Parallel

Resistors in Series

Consider a simple series circuit with resistors R1, R2 and R3 and an emf source, E (Fig-
ure 27.10). The current flowing around this loop is I . An equivalent circuit exists that
has a single resistor RS, but has the same emf and current flowing – this is the effective
resistance that we are trying to find. For our series circuit, we can apply Kirchhoff’s law
of voltages

Figure 27.10 The three resistors R1, R1 and R1 are in series. They can be replaced by a single resistor of resistance
RS such that the same current is drawn from the battery. The rule used to add resistors in series is RS = R1 + R2 +
R3.

E − I R1 − I R2 − I R3 = 0

E = I (R1 +R2 +R3)

For the equivalent circuit with one resistor,

E = I RS

so by comparison
RS = R1 +R2 +R3

and in general, for any number of series resistors we have

RS = R1 +R2 +R3 + . . . (27.8)

Resistors in Parallel

Let’s look now at three resistors in parallel (Figure 27.11). Applying Kirchhoff’s current
law to the junction point

I = I1 + I2 + I3

The three resistors share a common potential difference, V = E . Applying Ohm’s
law

I1 =
E

R1
and I2 =

E

R2
and I3 =

E

R3

I = E

R1
+ E

R2
+ E

R3
= E

(
1

R1
+ 1

R2
+ 1

R3

)

If the three resistors were replaced with a single resistor, RP, Ohm’s law gives us

I = E

RP
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so
1

RP
= 1

R1
+ 1

R2
+ 1

R3

and generalising to any number of resistors in parallel

1

RP
= 1

R1
+ 1

R2
+ 1

R3
+ . . . (27.9)

Figure 27.11 The three resistors R1, R2 and R3 are in parallel. They can be replaced by a single resistor of
resistance RP such that the same current is drawn from the battery. The rule used to add resistors in parallel is

1
RP

= 1
R1

+ 1
R2

+ 1
R3

.

Problem: In the circuit shown is Figure 27.12, an 18 V battery is connected in series with three resistors: a 3 Ω

resistor, a 6 Ω resistor and a 9 Ω resistor. Calculate the following quantities:

(a) The total resistance of the circuit.

(b) The current drawn from the battery.

(c) The current through the 3 Ω resistor, the 6 Ω resistor and the 9 Ω resistor.

(d) The voltage across the 3 Ω resistor, the 6 Ω resistor and the 9 Ω resistor.

(e) How is the voltage across the 3 Ω resistor related to the voltage across the 6 Ω resistor?

Example 27.4 Circuits

Solution:

Figure 27.12 A simple circuit

(a) For resistors in series, the total resistance is the sum of the resistances in the
circuit

Rtotal = R1 +R2 +R3 = 3+6+9 = 18Ω

(b) The current drawn from the battery is given by Ohm’s law as the battery voltage
divided by the total resistance

Ibattery =
V

Rtotal
= 18

18
= 1 A

(c) Resistors in series have the same current through them so the current through
all the resistors is the same as that through the battery, or 1.0 A.

(d) The voltage across a given resistor is determined from Ohm’s law, V = I R. The voltage across the 3 Ω resistor is
1 A×3 Ω= 3 V. The voltage across the 6 Ω resistor is 1 A×6 Ω= 6 V. The voltage across the 9 Ω resistor is 1 A×9 Ω= 9 V.
The sum of the voltages across the three batteries is 18 V.
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(e) In series the same current flows through each resistor, so the voltage is shared between the resistors based on their
size. The 6 Ω resistor has twice the resistance of the 6 Ω resistor so the voltage across it is twice the voltage across the
3 Ω resistor. Similarly the voltage across the 9 Ω resistor is three times the voltage across the 3 Ω resistor. The sum of
the voltage drops across each of the resistors is the same as the voltage rise across the battery.

27.12 Power Dissipation

In an electrical circuit, energy is transferred from some source, such as a battery or gen-
erator, and is used by other devices such as resistors (the ‘load’). Load devices change
electrical energy into other forms like heat, light and movement. In most situations
however, it is the rate at which the energy is moved about that is of most interest, more
than the total amount. The rate at which energy is produced or consumed in circuits is
called the power (symbol P ).

Power = ∆E

∆t
= Work done on charges

Time
= Energy dissipated by load

Time

Power is measured in units of watts, symbol W, where 1 W = 1 J s−1.

There is a straightforward relationship between power lost or gained, current and
potential difference. The current flowing between two points in a circuit is a measure
of how much charge passes a given point each second, that is

I = Q

t

The difference in electrical potential energy between these points is

∆U =QV

where Q is the charge that moved from one point to the next, and V is the potential dif-
ference between the two points. With the exception of a simple circuit, this is generally
not the same as the potential difference across the battery. So, if power is the change in
energy per unit time

P = QV

t
=V I

The power dissipated by a resistor is

P =V I = V 2

R
= I 2R (27.10)

Here we have used Ohm’s law to find several alternate ways of expressing the relation-
ship.

Problem: In the circuit shown in Figure 27.12:

(a) What is the power dissipated in the 3 Ω resistor?

(b) What is the power dissipated in the 6 Ω resistor?

(c) What is the power dissipated in the 9 Ω resistor?

(d) What is the power supplied by the battery?

Example 27.5 Power
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Solution: The power dissipated in a resistor is given by

P =V I

(a) The power dissipated in the 3 Ω resistor is: P = 3 V×1.0 A = 3 W

(b) The power dissipated in the 6 Ω resistor is: P = 6 V×1.0 A = 6 W

(b) The power dissipated in the 9 Ω resistor is: P = 9 V×1.0 A = 9 W

The power supplied by the battery is the sum of the power dissipated (or stored if the circuit contains capacitors) in
each of the circuit elements = 3 W + 6 W + 9 W = 18 W.

Alternatively, the power supplied by the battery is equal to the battery voltage times the current drawn from the battery
= 18 V×1.0 A = 18 W.

27.13 Alternate Energy Units

Normally, energy is measured in joules, but for convenience, some other units are in
use when talking about electricity. A commonly used unit found on bills for domestic
power supply is the kilowatt-hour. This is the amount of energy used by a 1 kW load in
one hour:

1 kW h = 1000 J s−1 ×3600 s = 3 600 000 J

Clearly, if you want to know how much energy a 100 W light bulb uses in four hours,
the kilowatt-hour is a unit of energy which greatly simplifies things.

27.14 Electric Shock Hazards

Electric current passing through the human body can produce a variety of effects. Low
currents may be detected as merely a mild tingling sensation, whereas higher cur-
rents can cause fatalities. The most important factors in determining the effect are
the amount of current passing through the body, the path taken and the duration of
the current flow. If the shock is produced by an alternating current (AC) source (like a
wall socket), then the frequency of the current can be important as well.

Bird on a wire

A small bird can sit on a high voltage power

line without harm because both its feet are at

the same potential. As long as there is no path

to ground through the bird, everything is fine.

Things are not so rosy for large birds like ea-

gles – if they touch two wires the results are

often fatal.

The amount of current passing through the body is determined (through Ohm’s
law) by the voltage of the source and the resistance of the body. This resistance can
vary greatly – dry skin is a good insulator whereas skin wet with sweat is a much better
conductor. The resistance of the skin surface can vary from 103

Ω to 105
Ω or more. It

is important to understand that a voltage source which may be safe under some con-
ditions may be deadly under others. Table 27.2 summarises the effects of different cur-
rents, and lists the potentials which will produce these currents for the lower and upper
possible values of the resistance of human skin.

When an electric current passes through any material with resistance to the flow of
current, energy is dissipated in the form of heat. If current passes through the body,
this can cause severe burns, which may appear on the skin, or may be internal.

Often a more important effect of a significant current is the disruption of the func-
tioning of the central nervous system. Nerve cells in the body transmit electrical sig-
nals throughout the body to regulate a wide variety of body systems and functions. An
electric current passing through the body can override these neural signals and cause
involuntary muscle contractions. In the muscles, this involuntary contraction is called
tetanus. Involuntary muscular contraction is particularly dangerous when the conduc-
tor supplying the current to the person is held in the hand. Since the muscles which
close the hand into a fist are much stronger than the ones which open the hand, invol-
untary muscular contraction can make a person grip the current source harder, mak-
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Electric current Physiological effect Voltage required
Resistance Resistance
10 000 Ω 1 000 Ω

1 mA Threshold of feeling 10 V 1 V
5 mA Maximum harmless current 50 V 5 V

10 - 20 mA Start of sustained muscular con-
traction

100-200 V 10-20 V

50 mA Ventricular interference 500 V 50 V
100-300 mA Ventricular fibrillation, possibly

fatal
1000-3000 V 100-300 V

6 A Sustained ventricular contraction
followed by normal beat rhythm.
Operating parameters for a defib-
rillator

60 000 V 6 000 V

Table 27.2 Physiological effects of electric shock

ing it very difficult to break the connection. The loss of control over motor function can
persist for some time after the current has ceased – this is how stun guns or tasers work.

Even worse is the effect that the current can have if the path through the body is
through the heart muscles. In the case of sufficient direct current, the heart can be
forced into a sustained contraction which will cease blood flow around the body. Even
if the shock current is not strong enough to cause sustained contraction, the effect on
the nerve cells around the heart can still send the heart into a state of ventricular fib-
rillation. The heart flutters rather than beating properly and blood flow becomes inef-
fective. The risk of fibrillation is higher with alternating currents than direct currents.
The defibrillating equipment used in hospitals utilises direct current. This is meant to
temporarily cease fibrillation and give the heart a chance to resume a normal rhythm.

It is worth noting that most electrocutions (electric shocks that cause death) are
due to ventricular fibrillation and that this condition is caused by quite a narrow range
of current flows, around 50–200 mA. Higher currents, i.e., more than 300 mA generally
cause burns and heat damage rather than electrocution.

27.15 Electricity in Cells

Cell Membranes

The functioning of cells, the building blocks of life, relies on the establishment and
maintenance of potential differences across the membranes that surround the interior
of the cell. In addition, signals sent along nerve cells are electrical; while the signals
between cells are chemical. In a clinical setting, human life is often defined by the
presence of electrical activity in the cells of the brain. We will describe here some of the
basic functioning of the cell membrane, mostly focussing on the mechanisms of most
importance to nerve cells.

Signal speed

When researchers began trying to measure

the speed of electrical signals through the

body, they found that they did not move any-

where close to that they achieved down copper

wire. Signals in the body travelled at a posi-

tively sedate pace – more like the speed of a

pretty fast car – compared to the million times

quicker that they could move through copper.

The speed of transmission down nerve de-

pends on its size, with larger meaning faster,

so to find nerves large enough to study prop-

erly, pioneering physiologists needed to find a

creature that was both long and with super-fast

reflexes (and thus with nerve cells big enough

to study). They found what the needed in the

squid. Alan Lloyd Hodgkin and Andrew Huxley

earned a Nobel Prize for their pioneering work

on squid nerve cells.

The cell membrane itself consists of a phospholipid bilayer, that is a two-molecule
thick membrane formed from a phosphate group and a hydrocarbon chain, i.e., a lipid.
The lipid ends of the molecules are hydrophobic and the phosphate groups hydrophilic,
and so a membrane is formed from two layers of phospholipid molecules, where the
hydrocarbon ends of each molecule are in the middle of the layer, and the phosphate
ends of each molecule are on the outside. Pure phosolipid bilayers are good insulators,
having no free ions in the membrane, and the conductance per unit area is around
1×10−13

Ω
−1m−2. Real cell membranes have much higher conductances, having pores

and ion channels that allow the transport of charge across the membrane in complex
ways.

Because the cell membrane can maintain a separation of positive and negative
charges, it has a capacitance. This capacitance is on the order of 1×10−2 F m−2. This
capacitance is not much influenced by the various biological processes occurring in
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a cell, and is close to what would be found for a simple lipid layer of the appropriate
thickness.

When a nerve cell is inactive, an electrical potential gradient exists across the mem-
brane, and this is called the resting membrane potential. When a nerve cell becomes
active, the polarity of the charge across the membrane changes, and this is the action

potential. The resting membrane potential is on the order of 70–90 mV, and the outside
of the cell is positive with respect to the interior.

Figure 27.13 As the cell membrane becomes
permeable to sodium allowing charge to flow
across the membrane, the potential changes.
This is known as the action potential.

The cell is essentially a small bag of saline solution in a pool of saline solution,
where the solutions inside (intracellular) and outside (extracellular) differ slightly in
their chemical constituents, specifically in the relative abundance of various ions. In its
normal resting state, the extracellular fluid is high in sodium (Na+) and low in potas-
sium (K+), while the intracellular fluid is high in potassium, low in sodium. The ex-
change of substances between the cell interior and the environment is regulated by the
cell membrane. If the cell membrane were made permeable to sodium, diffusion due
to a concentration difference would provide a means to push sodium into the cell. The
electrostatic potential across the membrane would also push the positive sodium ions
into the cell. In the case of potassium, the concentration gradient would drive it out of
the cell, while the electrostatic forces would drive it in.

The establishment of this separation of electrical charge and corresponding electri-
cal potential difference requires energy, and it is created and maintained by the action
of a pump – sodium and potassium ions are actively pumped across the membrane,
with sodium pumped out and potassium in.

Puffer fish

One of the most deadly toxins encountered

in the animal kingdom – tetrodotoxin, pro-

duced by the Japanese puffer fish – causes

the sodium pumps in the cell membrane to

stop working. Without a means to create a

potential difference between the interior and

exterior of the cell, nerve cells are unable to

perform their vital function, and death by suf-

foccation results.

The cell membrane has many channels formed by proteins, known as ion channels,
that can selectively allow the passage of ions through the cell membrane. In the rest-
ing state, these channels are closed and the membrane is impermeable to the flow of
ions. Even though the chemical concentration gradient and electrical potential gradi-
ent would drive sodium into the cell, sodium cannot cross the membrane.

The action potential is a 1 ms long increase in the cell membrane’s permeability
to sodium. The sudden increase in permeability of the cell allows positively-charged
sodium ions to flood into the cell, making the interior of the cell briefly more positive.
This is followed by an increase in the cell membrane’s permeability to potassium, and
these ions subsequently move out of the cell. This cycle of changing potential is shown
in Figure 27.13.

Circuit Models of the Cell and The Cell Membrane

The cell membrane itself can be modelled as a combination of driving potentials, resis-
tors and a capacitor. The current is a combination of the movement of sodium, potas-
sium and chlorine ions, and membrane potential Vm is the potential difference this
creates between the interior and exterior of the cell. A commonly used model is shown
in Figure 27.14.

Figure 27.14 A Hodgkin-Huxley-style circuit
model of the cell membrane. The arrows through
the resistors indicate that they have variable re-
sistances/conductances.

In discussion the properties of cell membranes, conductance (G) is more often used
that resistance. Conductance is the reciprocal of resistance, so Ohm’s law becomes

I =GV (27.11)

The force on an ion will depend on the equilibrium potential for the ion (Eion) and
the membrane potential and so

Iion =Gion × (Vm −Eion) (27.12)

The electrical properties of the axon of a nerve fibre can also be modelled by a
resistor-capacitor network, as shown in Figure 27.15. We will state without proof there
that the velocity at which a signal can move along such a cell depends on the relation-
ship between the resistance across the membrane and the axial resistance along the
nerve fibre, as well as the capacitance.
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Figure 27.15 The transmission of a signal along a nerve axon depends on the relationship between axial resistance
(along) and transmembrane resistance. It can be modelled like a network of resistors and capacitors.

Higher resistance across the membrane and lower capacitance are associated with
higher speed. To allow fast signal conduction, either a reduced resistance along the
axon or an increased membrane resistance is desirable. Lower axial resistance can be
achieved with larger diameter axons, like those in squid. In complex organisms, rather
than increased size, increased trans-membrane resistance and decreased capacitance
increase the speed of signal transmission. Layers of insulating myelin play a crucial
role in altering the resistance and capacitance in human nerve cells.

27.16 Summary

Key Concepts

electromotive force or emf (E ) The work done per unit charge by non-electrical forces. It is
given the symbol E and is measured in volts. The source of the energy can be electro-
chemical reactions (as in the lead–acid battery), magnetic, thermal or radiant energy (as
in a solar cell).

earth/ground (With reference to electricity) In electrical circuits, voltages are typically mea-
sured relative to a point that is considered to have zero potential, known as the ground
or earth. This is often a direct physical connection to the Earth.

circuit Generally, a closed path through which current can flow, is composed of some combina-
tion of conductors and other components such as resistors, capacitors or batteries.

circuit element A single component of an electrical circuit, such as a resistor or a capacitor.

direct current (DC) Electric current that flows in one direction only.

alternating current (AC) Electric current that reverses direction periodically, usually many times
a second. (Alternating currents are outside the scope of this book.)

charge carrier A particle carrying an electric charge which is free to move in response to an
electric field, such as an electron or ion.

drift velocity The average velocity of charge carriers moving through a conductor under the in-
fluence of an electric field.

electrical resistance (R) The opposition to the flow of electric current through a material. Elec-
trical resistance causes electrical energy to be converted to other forms such as thermal
energy. Resistance is measured in units of ohms (symbol Ω).

Ohm’s law The relationship between direct current, electrical resistance and applied voltage
across a circuit element. The flow of direct current through a circuit element is propor-
tional to the applied voltage. The constant of proportionality is called the resistance.

resistivity (ρ) A tendency of a material to oppose the flow of electrical current. The resistivity
has the symbol ρ and is measured in Ω m.

Kirchhoff’s law of currents In any electrical circuit where no build up of charge is occurring,
the sum of electric currents flowing into a point equals the sum of the electric currents
flowing away. This is a consequence of charge conservation.

Kirchhoff’s law of voltages The sum of the directed potential differences around any closed loop
is zero. This is a consequence of the conservation of energy.

electrical power (P ) The rate at which energy is transferred, dissipated or absorbed by a circuit
element.

resistors in series Two or more resistors are in series if electrical current goes through them se-
quentially.
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resistors in parallel Two resistors are in parallel if the circuit branches splitting the current such
that each resistor has the same potential difference across it and the circuit subsequently
rejoins so the current recombines also.

Equations

R = ρ
l

A
V = I R

I = |q|n Av

P =V I = I 2R = V 2

R
RS = R1 +R2 +R3 + . . .

1

RP
= 1

R1
+ 1

R2
+ 1

R3
+ . . .
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27.17 Problems

27.1 Sodium ions (Na+) are flowing through a cylindrical ion chan-
nel which has a diameter of 0.85 µm and is 5 µm long. There is
a potential difference of 225 mV between the ends of the chan-
nel. The sodium ions have a drift velocity through the channel of
0.015 m s−1 and in a period of 1 ms a total of 15×106 ions exit the
channel.

(a) What total charge exits the channel in a time period of 1 ms?

(b) What is the current in the ion channel?

(c) What is the ‘resistance’ of the channel to the flow of sodium
ions?

(d) What is the number density, n, of ions in the channel?

(e) How many sodium ions are in the channel at any one time?

27.2 Given that the potential is +18 V at the point shown, what is
the electrical potential at the points A, B, C, and D in the circuit
shown in Figure 27.16?

Figure 27.16 A circuit with 5 resistors and a single battery.

27.3 A simple circuit is constructed in which a 1 Ω resistor is con-
nected across a 1 V battery and so draws a 1 A current. What is the
current drawn from the battery if:

(a) an extra 1 Ω resistor is connected in series with the existing
one?

(b) four extra 1 Ω resistors are connected in series with the ex-
isting one?

27.4 A simple circuit is constructed in which a 1 Ω resistor is con-
nected across a 1 V battery and so draws a 1 A current. What is the
current drawn from the battery if:

(a) an extra 1 Ω resistor is connected in parallel with the existing
one?

(b) four extra 1 Ω resistors are connected parallel with the exist-
ing one?

27.5 Circuit A shown in Figure 27.17 consists of a single light bulb
(R = 288 Ω) and a 12 V battery.

(a) What current is drawn from the battery?

(b) What is the power dissipated in the light bulb?

An identical light bulb is now added to Circuit A in series with the
first (see Circuit B in Figure 27.17).

(c) What is the current drawn from the battery in this case?

(d) What is the current passing through each light bulb?

(e) What is the potential difference across each light bulb?

(f) What is the power dissipated in each light bulb?

(g) What is the total power supplied by the battery?

An identical light bulb is added to Circuit A in parallel with the first
(see Circuit C in Figure 27.17).

(h) What is the current drawn from the battery in this case?

(i) What is the current passing through each light bulb?

(j) What is the potential difference across each light bulb?

(k) What is the power dissipated in each light bulb?

(l) What is the total power supplied by the battery?

Figure 27.17 Three circuits showing different arrangements of light bulbs.

27.6 Five resistors are connected to a 24 V resistor as shown in Fig-
ure 27.18.

(a) What is the total resistance of the circuit?

(b) How much current flows from the battery?

(c) How much power is supplied by the battery?

(d) What is the potential difference across each resistor?

(e) What is the current through each resistor?

(f) What is the power dissipated in each resistor?

Figure 27.18 A circuit with 5 resistors in both series and parallel.
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CIRCUITS
28.1 Introduction

28.2 The RC Circuit

28.3 Discharging RC Circuit

28.4 Charging RC Circuit

28.5 Summary

28.6 Problems28.1 Introduction

An electrical circuit containing resistors and capacitors displays characteristic charg-
ing and discharging behaviour. This behaviour is seen in such biological systems as
the changing potential across a cell membrane during neural activation and the dis-
charging of the energy stored in a defibrillator through the resistance of the human
body. In this chapter we will introduce the concepts and techniques needed to analyse
this time-dependent behaviour.

Key Objectives

• To understand the time dependence of the charging and discharging of a capac-
itor.

• To be able to calculate the time constant of an RC circuit.

• To be able to calculate the time dependence of the charge, voltage and current in
an RC circuit.

28.2 The RC Circuit

Figure 28.1 (i) A simple RC circuit before the switch has been closed. There is no current flowing, and the capacitor
is uncharged (so there is zero potential difference between its plates). (ii) The switch is closed and after some time
the capacitor is fully charged such that the potential difference across it is the same as the battery voltage. At this
point in time there is also (approximately) zero current flowing.

The simple resistor circuits we’ve looked at so far have been ones with no time vari-
ation. The only values of current and voltage we were concerned with were the steady-
state values. In many cases, such as biological cells, there is important variation of
these values with time. This is often due to the presence of capacitance in these sys-
tems. Circuits that contain combinations of resistors and capacitors are known as RC

circuits.

Introduction to Biological Physics for the Health and Life Sciences Franklin, Muir, Scott, Wilcocks and Yates
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Consider a simple example with a resistor and a capacitor in series with a battery
as shown in Figure 28.1. Suppose that the capacitor is initially completely uncharged.
When the switch in the circuit is closed so that the capacitor and resistor are connected
to the battery, charge builds up on the plates of the capacitor until the potential dif-
ference across it reaches the maximum value possible, E , and the capacitor is fully
charged. This charging doesn’t happen instantly; we will find that it takes a greater
or lesser time depending on both the capacitance of the capacitor and the resistance
of the resistor. Similarly, when the capacitor is already fully charged and is connected
in series with just a resistor, the charge flows off the capacitor over a time period that
depends on the size of R and C .

28.3 Discharging RC Circuit

Figure 28.2 (i) The potential difference across the charged capacitor will cause a current to flow around the circuit.
The current is proportional to the potential difference across the resistor (which is the same as that across the
capacitor at all times). As current flows it reduces the potential difference across this resistor, which reduces the
current and so on. (ii) After some time all of the charge on the capacitor is gone (there is zero potential difference
across the capacitor) and there is no longer a current flowing around the circuit.

Consider the circuit shown in Figure 28.2, with the switch open with a capacitor
that has been fully charged and then disconnected from the battery. What happens to
the charge which is accumulated on the capacitor’s plates? There is no net charge to
this circuit; there are equal and opposite amounts of charge on the capacitor plates.
When the switch closes, a current will flow around the circuit to neutralise the charge
on the capacitor plates. That is, electrons will flow from the negative plate, through the
resistor, to neutralise the positive charge on the other plate. Figure 28.3 shows how the
charge on the capacitor, the potential difference across the capacitor and the current
through the circuit change over time.

The speed with which this happens will be limited by the size of the current that
can flow in the circuit. The size of the current that flows can be determined using
Kirchhoff’s laws, and will depend on the resistance of the resistor and the potential
difference across this resistor.

The potential difference across the resistor will depend on the electric field due to
the charge built up on the capacitor plates. This will change as the capacitor discharges,
which means that the current will change over time. The greatest current will flow when
the capacitor is fully charged (and the potential difference is highest). This current will
decrease as the capacitor discharges.

We can use Kirchhoff’s laws to determine the time dependence of the discharging
current in this circuit. To begin with, we add up the potential drops around the circuit
with the switch closed. The voltage loop rule tells us that the sum of these potential
drops will be zero

Figure 28.3 The charge on the capacitor, the
electrical potential difference across the capac-
itor and the current in the RC circuit as a function
of time for a discharging capacitor.

∆Vcapacitor +∆Vresistor = 0 (28.1)

At any given instant, the current I flowing through the resistor is going to be

I = ∆Vresistor

R
(28.2)
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The potential difference across the capacitor is related to the capacitance C and the
charge q by

q =C∆Vcapacitor (28.3)

Putting this into Eq. (28.1) gives

Time constant of the cell membrane

The capacitance per unit area of a typical cell

membrane is 1 µF cm−2. The membrane

resistance is more varied, in the range 1–

100 kΩ cm−2. This puts the time constant for

the cell membrane on the order of 1–100 ms.

q

C
− I R = 0

The current I at any instant in time is related to the change in the amount of charge
leaving the capacitor. Over a time interval ∆t , the charge changes by ∆q , and

I = ∆q

∆t

Putting this all together
∆q

∆t
= q

RC
(28.4)

This equation fits a well-known form. In any situation where the rate of change of
a value is proportional to the value, the quantity in question is changing exponentially
with time. The result is an equation for the time-dependent charge, q(t )

q(t ) = q0e−t/τ (28.5)

where the characteristic timescale is determined by

τ= RC (28.6)

After the characteristic time, τ, has passed, we can see that

e−t/τ = e−1 ≈ 0.37 (28.7)

and after 2τ
e−2t/τ = e−2 ≈ (0.37)2

After any time interval equal to τ, the amount of charge on the capacitor plates
decreases to about 37% of its previous value. The current and voltage follow a similar
relationship. Because the voltage across the capacitor is V = q/C , we have

V (t ) =V0e−t/τ (28.8)

In this circuit, the voltage across the capacitor is the same as the voltage across the
resistor (by Kirchhoff’s voltage law), so using V = I R it is also true that

I (t ) = I0e−t/τ (28.9)

To summarise, for a discharging capacitor, the voltage, current and charge are all
exponentially decaying with time, and the voltage across the resistor in series with the
capacitor is also decaying.

28.4 Charging RC Circuit

Figure 28.4 The charge on the capacitor, the
electrical potential difference across the capaci-
tor, and the current in the RC circuit as a function
of time for a charging capacitor.

For charging a capacitor, the situation is similar, but with some notable differences.
Suppose now that the capacitor in the circuit is completely discharged, so there is no
charge on the capacitor plates at all. At some time we call t = 0, the switch in the circuit
is closed so that the resistor and capacitor are connected to the battery. The voltage
loop law still applies and tells us that the sum of the potential changes around the cir-
cuit sum to zero, but now there is a new potential change to include – the increase in
potential as we go through the battery. PLots of the charge on the capacitor, the voltage
across the capacitor and the current in the circuit are shown in Figure 28.4.

The sum now becomes

∆Vbattery +∆Vresistor +∆Vcapacitor = 0
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E − I R − q

C
= 0 (28.10)

Proceeding in a similar fashion to the discharging RC circuit, the change in the
charge on the capacitor plates is determined by the current flowing onto the capaci-
tor plates

EC − ∆q

∆t
RC −q = 0

⇒ ∆q

∆t
= 1

RC

(
EC −q

)
(28.11)

Applying a bit of calculus gives the result

q(t ) = qf
(
1−e−t/τ) (28.12)

where again τ = RC and the final amount of charge is q f = CE . In other words, with
time, the charge on the plates gets closer and closer to a final value. It now takes a
constant time, τ= RC , to get to 63% of the final value, since

1− (e)−1 = 1−0.37 = 0.63

The voltage across the capacitor follows a similar pattern. The current flowing
around the circuit, however, must drop off to zero again when the capacitor is charged.
As this happens, the voltage across the resistor gets less and less. As before

I (t ) = I0e−t/τ (28.13)

Problem: A capacitor of capacitance C and a resistor of resistance R are in series with a battery of voltage E and

a switch. The capacitor is initially completely discharged and the switch is open. Describe each of the following

quantities at this point:

(a) Current through the circuit.

(b) Voltage across the resistor.

(c) Charge on the capacitor.

(d) Voltage across the capacitor.

(e) Energy stored in the capacitor.

Example 28.1 Charging a capacitor (initial state)

Solution: While the switch is open, no current can flow through the circuit and so (by Ohm’s law) there can be no
potential difference across the resistor. This indicates that the answers to parts (a) and (b) are 0 A and 0 V respectively.

The question also states that the capacitor is uncharged, i.e., the answer to part (c) must be 0 C. Given that there is
no (excess) charge stored on the capacitor, and hence no charge separation across the plates, there can be no potential
difference between them and so part (d) is 0 V.

If there are no excess charges on either plate of the capacitor and there is no difference in potential between the
plates there can be no work done by this capacitor, and so the answer to part (e) must be 0 J.
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Problem: The switch in the circuit from Example 28.1 is now closed. Describe each of the following quantities the

instant after the switch has been closed:

(a) Current through the resistor

(b) Voltage across the resistor.

(c) Charge on the capacitor.

(d) Voltage across the capacitor.

(e) Energy stored in the capacitor.

Example 28.2 Charging a capacitor (initial stages)

Solution: Immediately after the switch has closed current is free to flow through the circuit onto one plate of the capac-
itor and off the opposite plate. As it does so the capacitor is charged.

Initially there is no charge on the capacitor and the instant after the switch has been closed there is still no charge
on the capacitor ((c) 0 C).

Given this the potential difference across the capacitor and the energy stored in the capacitor must also be zero just
after the switch has been thrown ((d) 0 V and (e) 0 J).The potential difference across the resistor must be the same as the
potential difference across the battery ((b) E V ) and so the current through the resistor is I = E

R ((a)).

Problem: It has now been some time since the switch in the circuit from Example 28.1 has been closed. Describe the

same quantities as the previous examples a long time after the switch has been closed.

Example 28.3 Charging a capacitor (final state)

Solution: After the switch was closed current started flowing through the circuit and charging the capacitor. As the
capacitor charged, the potential difference across the capacitor increased, thus reducing the potential difference across
the resistor. This has the effect of reducing the current over time, and so reducing the rate of increase of the charge on
the capacitor (see Section 28.4).

After a long time the potential difference across the capacitor approaches that of the battery ((d) ε V), which means
that the potential difference across, and hence current through, the resistor must approach zero ((a) 0 A (b) 0 V).

The charge on the capacitor ((c)) is given by Q =CV =Cε and the energy stored ((e)) by U = 1
2CV 2 = 1

2Cε2.

Problem: A 3 µF capacitor and a 4 kΩ resistor are in series with a 12 V battery. The capacitor is initially uncharged.

(a) What is the time constant of this circuit?

(b) What is the voltage across the capacitor after one time constant?

(c) What is the voltage across the capacitor after two time constants?

(d) What is the voltage across the capacitor after four time constants?

Example 28.4 Charging and discharging a capacitor

Solution: The time constant, τ is given by

τ= RC = 3×10−6 ×4×103 s = 12×10−3 s

The voltage across the capacitor after one time constant is 0.632 of the maximum voltage. The maximum voltage
across the capacitor occurs when there is no current flowing, hence no voltage drop across the resistor, and is equal to
the battery voltage, 12 V.
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After one time constant the voltage across the capacitor = (1−0.368)×12 V = 0.632×12 V = 7.59 V.

After two time constants the voltage across the capacitor is (1−0.3682)×12 V = 10.38 V.

After four time constants, the voltage across the capacitor is (1−0.3684)×12 V = 11.78 V.

Problem: A circuit contains an unknown capacitor, initially uncharged and in series with a 3 kΩ resistor and a 12 V

battery. If after 16 ms, the current flowing in the circuit is 0.541 mA, what is the capacitance of the capacitor?

Example 28.5 Capacitance

Solution: The initial current is 12 V
3×103 = 4×10−3 A = 4 mA.

After one time constant the current will have dropped to 4 mA×0.368 = 1.472 mA.

After two time constants the current will have dropped to 4 mA×0.3682 = 0.541 mA.

This is the same as the current after 16 ms so we now know that the time constant of the circuit is 8 ms

C = τ

R
= 8×10−3

3×103
= 2.67×10−6 F

28.5 Summary

Key Concepts

RC circuit A circuit containing a combination of resistors (R) and capacitors (C ).

RC time constant (τ) The characteristic time of an RC circuit. In a time equal to one time con-
stant, an initially uncharged capacitor will charge to 63% of its maximum charge and volt-
age and the current flowing through the capacitor will drop to 37% of its initial value.

Equations

I (t ) = I0e−t/τ

q(t ) = q0e−t/τ

q(t ) = qf
(
1−e−t/τ)

τ= RC
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28.6 Problems

28.1 An 18 µF capacitor has been charged to 100 V. A 15 kΩ resistor
and a 5 kΩ resistor, are connected in series with the capacitor.

(a) What is the time constant of this circuit?

(b) Approximately how long (in terms of τ) will it take for the
charge stored on the resistor to drop to 0.1% of its original
charge?

Once the capacitor is fully discharged the 5 kΩ resistor is removed
and replaced with a 12 V battery.

(c) What is the time constant of the circuit now?

(d) Approximately how long will it take for the charge stored on
the resistor to rise to 95% of its maximum charge (in terms
of τ)?

28.2 The circuit shown in Figure 28.5 is constructed using a 6 V
battery, a 3 kΩ resistor, and a 6 kΩ resistor. Initially both switches
are open and the capacitor is uncharged.

Figure 28.5 An RC circuit

Switch A is closed and the capacitor begins to charge.

(a) After 1
2 second the potential difference across the capacitor

is 3.78 V. What is the capacitance of the capacitor?

After several minutes switch A is opened.

(b) What is the approximate potential difference across the ca-
pacitor?

Switch B is now closed and the capacitor begins to discharge.

(c) What is the characteristic time for discharging this capaci-
tor?

(d) What will the current through the 6 kΩ resistor be after 2 sec-
onds?

(e) What will the charge on the capacitor be after 3 seconds?

28.3 A defibrillator can be modelled as a capacitor which dis-
charges through the patient, inducing an electrical current in the
chest. The resistance of the path which the electrical current takes
through the chest of a typical adult is 50 kΩ. A particular defibril-
lator has a capacitance of 16.67 nF and is designed to be charged
to an electrical potential of 900 V before discharging. The defib-
rillator includes a ‘ballast’ resistor of 40 kΩ which is connected in
series with the patient.

(a) What is the maximum current Imax that will pass through
the typical adult patient’s chest?

(b) How long will it take the current passing through the typical
adult patient’s chest to drop below 1.37 mA?

You wish to redesign this defibrillator so it can be used on a child.
The resistance of the typical child’s chest is around 40 kΩ and the
maximum current that be allowed through the chest is 8 mA. The
current must drop to 0.15 mA in 4 ms. If the defibrillator is charged
to a maximum potential of 900 V as before, then

(c) What is the required resistance that must be connected in
series to the child patient’s chest?

(d) What is the required capacitance of the defibrillator?

28.4 A 10 µF capacitor has been charged to a potential difference
of 12 V. A 100 kΩ resistor is connected in series with the capacitor.

(a) What are the potential difference across the resistor, current
through the resistor, and charge on the capacitor just after
the circuit has been closed?

(b) What are the potential difference across the resistor, current
through the resistor, and charge on the capacitor 1 second
after the circuit has been closed?

(c) What are the potential difference across the resistor, current
through the resistor, and charge on the capacitor 5 minutes
after the circuit has been closed?

28.5

(a) How much energy does the defibrillator in Problem 28.3 de-
posit in the patient (before it has been redesigned)?

(b) What fraction of this total energy does this defibrillator de-
posit in the patient before the current drops below 1.37 mA?

28.6 The circuit shown in Figure 28.6 is used to charge a capacitor
from a potential of 0 V to a potential of 95 V in a period of 1 s. Fur-
thermore I1, the current through resistor R1, and I2, the current
through resistor R2 satisfy the relation I2 = 3I1 at all times. What
is the capacitance of the capacitor?

Figure 28.6 An RC circuit featuring a pair of resistors in parallel.
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V

Optics

Introduction

Though we experience the world through many senses, perhaps the most evocative is
vision. Vision is our long-range sense; we are able to perceive the world at far greater
distances with sight than with any of our other senses. Vision is also the primary sense
through which we measure the world. Optics is the study of light and its interaction
with matter. It is light that allows vision, and an understanding of light and its be-
haviour is essential to an understanding of vision.

In this topic we will gain an understanding of what light is, how optical components
such as lenses and mirrors interact with light, and how the human eye makes use of the
properties of light to allow us to see. We will also study the eye as an optical instrument
and come to an understanding of both the normal functioning of the eye and what
happens when this function is disrupted.

The topic begins with a discussion of light as an electromagnetic wave. This first
section will focus on the fundamental characteristics of light like wavelength, frequency
and the speed of light. We will also discuss the scattering and absorption of light by
matter and how these processes allow us to see the world around us. An understand-
ing of the scattering and reflection of light will also allow us to understand how the
world comes to be coloured. We will introduce the law of reflection, Snell’s law of re-
fraction and the phenomenon of dispersion. These last properties of light will allow us
to understand the behaviour of mirrors and lenses, the subject of the next section.

The next section covers geometric optics. Geometric optics is a method for analysing
optical systems that takes advantage of the fact that light propagates in straight lines
under a wide range of conditions. Geometric optics will provide us with the tools we
need to understand the way in which microscopes magnify objects so that they may be
observed and measured by the human eye. Geometric optics also allows us to explain
the functioning of the human eye.

The physics of human vision is the subject of the next chapter. Here we will come to
an understanding of the normal function of the eye and some of the ways that defects in
the eye may be corrected. We will discuss in particular how the eye’s lens system allows
the focussing of light onto the retina, and some of the limitations that this system places
on eyesight.

In the final section of this topic, wave optics, we will investigate those situations
where the straight-line approach to light propagation is insufficient. In these situations
light must be treated as a wave and wave phenomena like interference and diffraction
become important. An understanding of the wave properties of light is important for
the understanding of the limitations both of optical instruments such as the micro-
scope and the telescope, and of the human eye. These limitations are due to the limi-
tations on the resolving power of optical systems due to diffraction by apertures.
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29THE NATURE OF LIGHT

29.1 Introduction

29.2 Electromagnetic Waves

29.3 Reflection

29.4 Refraction

29.5 Dispersion

29.6 Summary

29.7 Problems

29.1 Introduction

The study of light has been central to the development of physics for centuries. It was
through a thought experiment involving the propagation of light that Albert Einstein
first came to an understanding of special relativity. It was the analysis of the photoelec-
tric effect, in which light ejects electrons from the surface of metals, that led Einstein to
suggest the quantisation of energy and to postulate the existence of the photon. Light
is the locus of much of the strangeness of modern physics. This can most clearly be
seen in the dual nature of light; it is a wave and at the same time it is a particle. This
is true of all matter, but it is particularly clear in experiments involving light. As such,
optical experiments have always been at the forefront of the investigation of quantum
mechanics. Light is also key to the strangeness in special relativity. Because the speed
of light does not vary with the velocity of observers, some arcane behaviour can result
from relativistic situations.

In this chapter we will discuss the nature of light. It will be identified as a wave, and
the propagation of light will be seen as an example of wave propagation. However, we
will emphasis that light is a wave unlike the other waves of our common experience.
It is an electromagnetic wave, and some of the oddness of light will be shown to be a
consequence of this.

Key Objectives

• To understand the basic nature of light.

• To understand the place of visible light in the electromagnetic spectrum.

• To understand how the change of light speed in different materials leads to re-
fraction and dispersion.

29.2 Electromagnetic Waves

In the everyday world, there seem to be just two ways in which energy can be trans-
mitted from place to place. Either an object physically moves from one place to an-
other (transmission by particle) or energy can be sent as a disturbance through some
medium (transmission by wave). Once the questions of how we see and what light re-
ally is began to be addressed by scientists, these two alternate models seemed to be
the only sensible competing frameworks, and over the last few centuries the results of
experiments were variously used to support one or other of the two views. The modern

Radiation

The terms ‘electromagnetic waves’ and ‘elec-

tromagnetic radiation’ are used more or less

interchangeably. Although the word radiation

has acquired a somewhat negative connota-

tion, the term electromagnetic radiation can

be applied to harmless forms, such as radio

waves or visible light, as well as gamma ra-

diation (which falls in the dangerous ‘ionising

radiation’ category).

view is that both the wave and particle views are necessary for a full description of the
behaviour of light, and this has resulted in the photon model of light, where we regard
it as a stream of particle-like units which have wave properties.

For the purposes of understanding most common optical phenomena, however,
a wave model is sufficient. Light is an electromagnetic wave, that is, light is a self-
propagating combination of oscillating electric and magnetic fields. It can be shown
that a changing electric field causes a changing magnetic field, and vice-versa. A ‘wav-
ing’ electric field causes a similarly waving magnetic field at right angles to it, and these

Introduction to Biological Physics for the Health and Life Sciences Franklin, Muir, Scott, Wilcocks and Yates
©2010 John Wiley & Sons, Ltd
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(sinusoidally) oscillating fields travel through space at a fixed speed, known as c, the
speed of light.

The existence of electromagnetic waves was predicted by a set of equations de-
veloped by James Clerk Maxwell in 1861 and extended in 1865. The equations were
largely the work of previous scientists (notably Ampère and Faraday), but Maxwell’s
new derivation and additions enabled him to predict the speed of these waves and to
show that light was an electromagnetic wave.

The Constant Speed of Light

In other types of wave motion, some medium is required in which the waves are able
to propagate. To understand exactly what the wave medium does that allows the wave
to propagate, take as an example the propagation of water waves. In a water wave,
the up-and-down oscillations at one point in the wave cause neighbouring parts of
the wave to oscillate up and down as well. The connection between these spatially
separate parts of the wave is provided by the wave medium, in this case water. As one
set of molecules moves up or down, the bonds between adjacent molecules drag the
neighbouring molecules along as well. Clearly, the medium is required for this type of
wave to propagate.

Light, on the other hand, is self-propagating, and this is due to the fact that it is
an electromagnetic wave. The oscillation of the electric field in this wave causes the
oscillations of the magnetic field, even when travelling through empty space. In turn,
the oscillations of the magnetic field cause the oscillations of the electric field. It is
this relationship between the magnetic and electric fields which connect spatially sep-
arate parts of the wave. Thus light is unlike other wave phenomena in that it is not a
disturbance of a medium, like waves travelling through water, or sound waves passing
through air.

This self-supporting process is only possible when the electromagnetic wave prop-
agates at a certain speed, 299 792 458 m s−1 (in a vacuum). If the electric wave prop-
agated at any other speed, it would not produce a magnetic wave which would allow
the combination of the electric and magnetic fields to be self-supporting. Similarly,
if the magnetic wave propagated at any other speed, it would not produce an electric
wave which allowed the combination to be self-supporting. This means that the speed
of light is an extremely strange quantity; the measured speed of light does not change
when the velocity of the emitter, or the device we use to measure it, changes.

For this reason, the speed of light (or any electromagnetic wave) is of fundamen-
tal importance in physics. It is the same for all observers, regardless of their direc-
tion or speed. As an example, consider two cars travelling along a straight stretch of
road. Suppose they are travelling toward each other, and they are both travelling at a
speed of 50 km h−1. The driver of each car would see the other car approaching them
at 100 km h−1 (i.e., about 28 m s−1). Now suppose that each driver turns on their head-
lights. It may seem reasonable to presume that each driver would measure the speed
of light from the headlights of the oncoming car as being (299 792 458+28) m s−1. This
does not happen. In an enormous number of experimental tests it has been found that
the speed of light is unchanged by changes to either the velocity of the observer or the
velocity of the light source, and remains exactly 299 792 458 m s−1. This strange fact
of nature is described by the special theory of relativity, which, while fascinating, is
outside the scope of this book.

Because of its importance and invariance, the speed of light is defined as exactly
c = 2.99792458×108 m s−1, and the metre is defined in terms of this speed. In many
cases, approximating the speed of light as 3×108 m s−1 is sufficiently accurate.

Wavelength and Frequency

The rate of the oscillations is the frequency of a wave, f . As for any wave, the frequency
is related to the wavelength, λ, by v = f λ, where v is the wave speed. For light in a
vacuum, this gives us

c = f λ (29.1)
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Figure 29.1 The electromagnetic spectrum.

where λ and f are the vacuum wavelength and frequency, respectively.

The Electromagnetic Spectrum

Electromagnetic waves can have a large range of wavelengths, and what humans regard
as visible light occupies only a small piece of the electromagnetic spectrum, lying be-
tween about 380 nm and 750 nm. The spectrum itself stretches over a vast range of
wavelengths/frequencies. Different frequency ranges in the spectrum are usually gen-
erated by different physical processes, and interact differently with matter, so are given
different labels (such as X-rays, or radio waves), but they are all still electromagnetic
waves. The names given to the different spectral regions are shown in Figure 29.1.

Figure 29.2 Light reflects off a surface. The inci-
dent angle (as measured from the normal to the
surface in the plane of reflection) is the same as
the angle of reflection.29.3 Reflection

Rays

In maths, a ray is a line that starts at a point

and travels off in one direction to infinity. In

optics, we use lines called rays to show the

path and direction of travel of a light wave.

When light hits the surface of almost any material, some of that light ‘bounces back’ off
the surface. This is called reflection and is a very familiar phenomenon to the sighted
– it is how we are able to see objects. For highly polished metallic surfaces, the amount
of light that bounces off is very high. At the other extreme, an object that appears black
under white light does so because it absorbs nearly all the light, reflecting very little
back.

When light falls on a smooth surface from a particular direction, the reflected light
also travels in a particular direction away from the surface. The reflected light leaves
the surface at the same angle that the incident light falls on it. This is called the law of

reflection.

Key concept:

The law of reflection: the angle of incidence is equal to the angle of reflection.

The angles are always measured from the normal to the surface. The normal is a
line drawn perpendicular to the surface at the exact point where the light ray meets the
surface. The normal, the incident ray and the reflected ray are all coplanar, that is, in
three dimensions, they all lie in a single plane, as shown in Figure 29.2.

Figure 29.3 Specular reflection is when parallel
light rays remain parallel after reflection. Smooth
surfaces reflect in this manner. Diffuse reflection
results is when parallel light rays are reflected
at different, usually random, angles. Rough sur-
faces reflect in this manner.

Reflection can be described as specular or diffuse (see Figure 29.3). Specular reflec-
tion is what happens when light hits a very flat, reflective surface, such as a mirror. All
light coming from a single direction is reflected in a single direction. This occurs when
the surface is smooth on a scale comparable with about quarter of the wavelength of
the light. When the surface is rougher, as in the case of white paper such as that on
which this text is printed, the light is reflected in a wide range of directions – this is
called diffuse reflection. The law of reflection still applies in both cases, but when the
surface is rough, the normals to different areas of the surface point in many directions,
and so the reflections are fairly randomly oriented. It is this scattered light that allows
us to see most objects.
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29.4 Refraction

Refraction is the change in direction of a light ray at the interface between two me-
dia, which occurs when there is a change in wave speed. The frequency of the wave
(how many cycles every second) stays the same, but the distance between successive
peaks (i.e., the wavelength) changes. The wavelength decreases if the speed reduces
and increases if it gets faster.

If the ray meets the interface along the normal, there is no change in direction.
At any other angle, the ray is either bent, or does not travel into the next medium at
all – this last case is called total internal reflection. In more complex cases where the
change in speed is continuous rather than sudden, there is also a continuous change in
ray direction. Materials that are uniform and have the same wave propagation speed
everywhere are called isotropic media, and we will mostly restrict our discussions to
these.

Material n-value
Air (0 °C, 1 atm) 1.000293
Liquids at 20 °C:
Benzene 1.501
Ethanol 1.361
Water 1.333
Solids at 20 °C:
Diamond 2.419
Glass, crown 1.52
Glass, flint 1.66
Quartz, fused 1.458
Zircon 1.923

Table 29.1 Refractive index values of some se-
lected solids, liquids and air. [Reprinted with per-
mission from College Physics, Paul Peter Urone,
Copyright (1990) Brookes/Cole.]

Instead of listing the speed of light in a particular material, data sheets will usually
give the refractive index, n, of the material instead. This is the ratio of the speed of
light in a vacuum, which is very close to the speed of light in air, to the speed of light in
the material.

n = c

v
(29.2)

where c is the speed of light in a vacuum and v is the speed of the light wave in the
material. Table 29.1 contains the refractive index of a selection of materials.

Problem: When yellow light of wavelength 580 nm passes from air (n = 1.00) into water (n = 1.33), how do each of

the following change (i.e., do they increase, decrease or not change), and what are their values in water?:

• Speed of light.

• Wavelength of light.

• Frequency of light.

Example 29.1 Refractive index

Solution: The speed of light decreases, the wavelength of the light decreases, and the frequency is unchanged

vwater =
vairnair

nwater
= 2.25×108 m s−1

λwater =
λairnair

nwater
= 435 nm

The frequency is unchanged

f = vair

λair
= vwater

λwater
= 5.17×1014 Hz

Snell’s Law

Snell’s law relates the angle of incidence and angle of refraction for wave propagation
at the boundary between isotropic media (see Figure 29.4). The ratio of the sines of the
angles is the same as the ratio the wave speed in the two media, and is inversely related
to the refractive indices. (See Section 32.3 for a mathematical explanation of why this
is so.)

sinθ1

sinθ2
= v1

v2
= n2

n1
(29.3)

where θ1 and θ2 are the angles the ray makes with the normal to the boundary in the
two media, v1 and v2 are the wave speeds, and n1 and n2 are the refractive indices. This

296 www.wiley.com/go/biological_physics



29.4 REFRACTION

is more often seen in a simplified form

n1 sinθ1 = n2 sinθ2 (29.4)

Figure 29.4 (Left) When light passes from a region of lower refractive index (such as a vacuum or air) to a region of
higher refractive index (such as water or glass) so that n1 < n2, the light is bent towards the normal to the surface
and θ1 > θ2. (Right) When light passes from a region of higher refractive index to one of lower refractive index so
that n1 > n2, the light is bent away from the normal, and θ1 < θ2.

Problem: Light is incident on a water surface at an angle of 30° to the normal. What is the angle of the light to the

normal in the water? The refractive index of air is 1.00. The refractive index of water is 1.33.

Example 29.2 Snell’s law

Solution: We use Snell’s law to solve this problem

nair sinθair = nwater sinθwater

So

θwater = sin−1
(

nair sinθair

nwater

)
= sin−1

(
1.00× sin30°

1.33

)
= 22°

Light travels through the water at an angle of 22° to the normal.

Total Internal Reflection

Total internal reflection is the complete reflection of an incident light ray at a bound-
ary, with no transmission. The phenomenon of total internal reflection occurs only for
waves incident on a boundary with a medium where the refractive index is reduced. If
we label the media in the order the wave encounters them as 1 and 2, then if n1 > n2,
we can specify a critical angle, θc, given by

sinθc = n2/n1 (29.5)

If the angle of incidence is larger than this critical angle, then none of the wave is trans-
mitted through the boundary, and only reflection occurs (see Figure 29.5). In the case
of a water–air boundary, the critical angle is 48.6°.

Total internal reflection is utilised in many optical devices. Optical fibres use total
internal reflection to confine light to a narrow glass rod, allowing the light to be trans-
mitted very long distances. The main source of loss is absorption in the glass, rather
than loss through light leaving the fibre. Total internal reflection can hamper efforts to
see into parts of the eye, as seen in Figure 29.6.

www.wiley.com/go/biological_physics 297



29 · THE NATURE OF LIGHT

Figure 29.5 (Left) When passing from a region of higher refractive index to one of lower refractive index there is
some critical incident angle θc for which the refracted angle θ2 = 90°. (Right) When the incident angle θ1 is greater
than θc , there are no (real) solutions to Snell’s law (Eq. 29.4) and all of the incident light is reflected.

Figure 29.6 To diagnose and classify glaucoma, the ophthalmologist needs to view the angle between the iris and
the cornea. Normally this angle cannot be directly viewed, as light originating in this part of the eye is totally internally
reflected. In order to view the area, a prism called a gonioscope or a special contact lens is placed against the eye.

Problem: What is the critical angle for total internal reflection when light of wavelength 550 nm travels through

plastic with a refractive index of 1.2 to air with a refractive index of 1.0?

Example 29.3 Critical angle and total internal reflection

Solution:

nair sin90° = nplastic sinθc (29.6)

θc = sin−1 nair

nplastic
= sin−1 1

1.2
= 56° (29.7)

The critical angle is 56°.

Problem: Red light of wavelength 700 nm is travelling through water and is incident at an angle of 75° on a water–air

interface. Describe what happens to this light.

Example 29.4 Critical angle and total internal reflection

Solution: To determine the critical angle we have

nair sin90° = nwater sinθc

θc = sin−1 nair

nwater
= sin−1 1

1.33
= 49°

It gets totally internally reflected because it is incident at an angle greater than the critical angle.

29.5 Dispersion

Although when we defined the refractive index there was no mention of any depen-
dence on wavelength, in real materials the refractive index is not a constant for all
colours and wavelengths of light. Figure 29.7 shows the variation of refractive index
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for a specific kind of glass – each type of glass has its own characteristics.

For a material to be transparent, visible wavelengths of electromagnetic radiation
must pass through without being absorbed. This transparency in the visible wave-
lengths is not very common for solids, which is why we can see most objects in our
environment easily enough. Materials transparent to visible light will generally absorb
in the wavelength bands on either side, in the infrared and ultraviolet. The refractive
index of a material varies in a characteristic way around these wavelength bands where
absorption occurs, being higher on the shorter wavelength side and lower on the long
wavelength side. This increases the refractive index at the blue end of the spectrum,
and the red end of the visible spectrum has a lower refractive index. When the wave
speed is dependent on frequency, this is known as dispersion. Materials with this prop-
erty are called dispersive media.

Glass

Glass is not a substance with a specific chem-

ical composition, but rather a type of material

with an amorphous, non-crystalline structure.

The simplest recipe combines silica (SiO2),

soda (Na2CO3) and lime (CaC03). Other

chemicals, such as boric oxide and lead oxide

may be added, and these change the colour

and refractive index. Hence glass does not

have a single refractive index, but in the case

of common, inexpensive glasses, a refractive

index of about 1.5 is likely. Some glasses may

have refractive indices of 2 or more.

Figure 29.7 The refractive index variation with wavelength a type of glass used in lenses.

Problem: When white light passes through a prism, blue light is bent more than red light. What does this tell us

about how the refractive index of glass depends on the wavelength of light?

Example 29.5 Dispersion

Solution: A larger change in angle indicates a larger difference in refractive index between the glass and air at the blue
end of the spectrum. As the refractive index of glass is higher than that of air, this means that the refractive index of
glass is higher for blue light than red light.

Examples of Dispersion

Chromatic aberration

Figure 29.8 shows how dispersion spreads out the different wavelengths passing through
a prism. Light passing through lenses can be similarly affected, causing the focal length
of lenses to differ for different wavelengths. This can make the images formed on film
or a screen fuzzy. If the lens–screen distance is correct for the image to be sharply in
focus for blue, parts of the image with red colour will tend to be out of focus.

Figure 29.8 Dispersion in a prism separates
white light into the visible spectrum. Blue light
is refracted more than red light.Optical fibres

Dispersion is a problem in optical communications. The varying speeds of the different
wavelengths causes temporal spreading of a light pulse travelling through a transparent
material such as an optical fibre. No light pulse is ever fully monochromatic (i.e., sin-
gle coloured and therefore single frequency), so some wavelengths travel down a fibre

www.wiley.com/go/biological_physics 299



29 · THE NATURE OF LIGHT

Figure 29.9 A rainbow is formed by light that is first refracted at the air–water boundary, then reflected at the opposite
surface, and refracted a second time. Many of the rays entering near the top of the droplet end up coming out close
together and nearly parallel after being refracted at the air–water boundary, then reflected at the opposite surface,
and refracted a second time at the water–air boundary. It is this ‘bunching’ of rays in combination with dispersion
that is responsible for the bright arc of reflected light we call a rainbow.

faster than others. This causes the sharp on–off pulses required for digital communi-
cations to become spread out and information to be lost. Due to dispersion and loss of
signal strength, it was previously necessary to put repeaters on optical fibres to collect
and re-transmit the signals. Some of the materials now being used are able to trans-
mit light pulses with minimal dispersion, and can even amplify the signal periodically,
reducing the need for repeaters.

Gemstones

Diamond is valued for several reasons: it has a high refractive index (∼2.4), it is the
hardest substance, and it has high dispersion. It is the high dispersion that gives dia-
monds their ‘fire’, the flashes of colour that make them so pretty, so high dispersion is
valued in gemstones.

Figure 29.10 White light is separated into its
component colours when it leaves the water
droplet. Only the extreme ends of the spectrum,
red and blue light, are shown here. Blue light
is refracted more than red light and so ends up
‘above’ the red light exiting the droplet.

Rainbows

For the primary rainbow, the light from the Sun enters the water droplets (and is re-
fracted), a portion is reflected off the back surface, and then it exits again through the
front surface (being refracted a second time). If the paths of a great many rays of light
incident upon a spherical water droplet are plotted as in Figure 29.9, it can be seen that
there are many approximately parallel and co-incident rays exiting the droplet at an
angle of around 40–42° to the incident angle. It is this phenomenon, in combination
with dispersion, that forms a rainbow.

Upon each refraction, the different wavelengths are bent varying amounts, with
blue changing path more than red. As a result, the exact angle at which the refracted–
reflected–refracted light is most intense is different for different wavelengths of light (it
is 40° for blue light and 42° for red light). Figure 29.10 shows how the refraction and
reflection off a curved surface in a water droplet cause white light to be split into its
component colours. Figure 29.11 shows how this forms a rainbow.

Figure 29.11 At first glance, Figure. 29.10
makes it look as though rainbows should be blue
at the top, which is not what happens. The red
light from those droplets higher up and further
away hits the eye at a higher angle than the blue
light from lower and closer droplets. This gives
the familiar appearance of a rainbow.

Lightning

Some interesting dispersive effects can be observed in the radio waves that are gen-
erated by lightning strikes. Because a lightning strike is rapid, the radio waves are all
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broadcast at the same time, and so sound like a loud ‘click’ when played through a ra-
dio receiver. Some of the radio-wave energy escapes into space, and is guided by the
Earth’s magnetic field back to another part of the Earth’s surface. The lower-frequency
radio waves arrive a long time after the higher-frequency ones; what started out as a
radio-wave burst lasting less than a thousandth of a second is dispersed into a sig-
nal which lasts one or two seconds. When played through a receiver and converted
to sound waves, these sound like someone whistling a sliding scale from high to low
frequencies, so they are called ‘whistlers’.

29.6 Summary

Key Concepts

light Electromagnetic radiation in and around the wavelength range visible to humans, which is
from around 380 nm to 750 nm. Even though they are not visible, the term ‘light’ is often
also applied to the ultraviolet and infrared parts of the electromagnetic spectrum.

electromagnetic waves As a time-varying electric field generates a magnetic field and vice–versa,
these oscillating fields together form an electromagnetic wave. All electromagnetic waves
travel at the same speed in a vacuum, c, whatever their wavelength and frequency.

electromagnetic spectrum The range of possible frequencies of electromagnetic waves.

photon A discrete packet of electromagnetic radiation.

speed of light (c) All electromagnetic radiation travels at the same speed in a vacuum. This
speed is denoted by the symbol c, and equals 299 792 458 m s−1 exactly.

wavelength (λ) The distance between two consecutive points on a wave that are in phase, mea-
sured in the direction of propagation.

frequency ( f ) The number of repetitions of a complete waveform per unit time. Measured in
cycles per second, or hertz (symbol Hz).

reflection A change in the direction of light when it hits and is turned back from a surface or
boundary. The angle of incidence is equal to the angle of reflection.

refraction The change in propagation direction of a wave due to a change in the wave speed as
the wave passes from one transparent medium into another.

specular reflection When radiation is reflected from a surface that is flat compared with the
wavelength of the radiation, and light coming in from a single direction is reflected in a
single direction.

diffuse reflection When a surface is rough compared to the wavelength of the radiation, light
coming from a single direction is scattered in many directions.

total internal reflection When the angle of incidence at a boundary from one medium (refrac-
tive index n1) to a medium with a lower refractive index, n2, is greater than a critical angle
θc given by sinθc = n2/n1, none of the wave is transmitted through the boundary, and
only reflection occurs.

dispersion Spreading. In optics, dispersion refers to the spreading of light due to different wave-
lengths travelling at different speeds, and having different refractive indices. This can
cause angular separation of light by wavelength under refraction, and temporal spread-
ing of a light pulse travelling through a transparent material.

monochromatic ‘Single coloured’. Light which is monochromatic contains electromagnetic ra-
diation with only a single wavelength. In the real world, no light is truly monochromatic,
and a small spread of wavelengths is always present.

Equations

c = f λ

n = c

v
θincidence = θreflection

n1 sinθ1 = n2 sinθ2

sinθc =
n2

n1
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29.1 A diagnostic device uses a bright red laser light to illuminate
structures just under the surface of the skin. Light from the laser
passes first through the air, and then the skin, to scatter off the
subcutaneous structures that are to be imaged. The scattered light
passes back through the skin and into an optical device which
forms an image of the scattered light on a CCD array. The laser
light used has a wavelength of 633.0 nm in a vacuum. The refrac-
tive indices of air, the glass used in the imaging optics, and skin are
1.008, 1.700, and 1.381 respectively (use c = 2.998×108 m s−1 for
this question).

(a) What is the frequency of the red light when it passes through
each material?

(b) What is the wavelength of the red light as it passes through
each material?

(c) How fast does the red light travel through each material?

29.2 It is not possible to make images of, and therefore see, ar-
bitrarily small objects using visible light. The minimum size of
an object that can be ‘seen’ by light using conventional optics is
roughly equal to a few times the wavelength of the light used. If
a bacterium that is 1.2 µm across can just be seen using a particu-
lar optical system when the bacteria is floating in a watery solution
(nsolution = 1.35), what will be the minimum size of bacterium that
this optical system could ‘see’ in air (nair = 1.0)?

29.3 Light strikes a mirror as shown in Figure 29.12. This mirror
has another mirror placed at right angles to it. Such an arrange-
ment of mirrors is known as a corner reflector. At what angle does
the light get reflected back (i.e., what angle is the outgoing light at
when it crosses the dotted line)?

Figure 29.12 Two mirrors are placed a right angles to one and other. This ar-
rangement of mirrors reflects light in a particular fashion, making them useful for
a range of purposes.

29.4 The glass half-cylinder prism shown in Figure 29.13 is used
to measure the critical angle for light of various wavelengths. For
red light the critical angle measured was 36.78°. For blue light the
critical angle was 36.28° (The refractive index of air is n = 1.0).

(a) What is the refractive index of the glass for red light?

(b) What is the refractive index of the glass for blue light?

Figure 29.13 A glass half-cylinder prism is constructed from a section of a glass
half cylinder. A beam of light aimed towards the center of the apparatus will
not be refracted at the first air-light interface as the incident angle will be 0° and
sin0° = 0.

29.5 A beam of white light passes through a 1.5 cm thick pane of
glass at an angle of 45° as shown in Figure 29.15. The refractive
index of the glass for light of wavelength 470 nm (deep blue) is
1.66 while the refractive index of the glass for light of wavelength
630 nm (bright red) is 1.60.

(a) What is the spacing, S, between the red and blue compo-
nents of a narrow beam after they have passed through the
pane of glass?

(b) Use your answer in (a) to explain why we do we not ordi-
narily see the effects of dispersion when looking through flat
panes of glass.

(c) How thick would the pane of glass need to be for the separa-
tion of the red and blue rays to be 1 cm?



29.6 A beam of light of wavelength 550 nm strikes a water droplet
as show in Figure 29.14. What are the angles θA and θB at which
the reflected and refracted beams travel?

Figure 29.14 A beam of light hits a spherical water droplet.

29.7 A fish in a pond looks up and sees the light from a street lamp
at an angle of 35° to the vertical. If the street light is 5.5 m tall and
the fish is 30 cm below the surface of the pond and 3 m from its
edge, how far from the edge of the pond is the street lamp? (nair = 1,
and nwater = 1.33)

29.8 Two divers jump out of their boat and swim straight down
to a depth of 10 m. The water surface becomes calm again very
quickly after the divers jump in. Once the divers reach their fi-
nal depth they begin to swim in opposite directions at the same
rate while periodically stopping to shine a flashlight back at the
surface of the water where they had jumped in. After the divers
have swum far enough apart they begin to notice a strong reflec-
tion from the other diver’s flashlight that was not present before.
How far apart are divers when this starts to happen? (nair = 1.0,
and nwater = 1.33)

Figure 29.15 A beam of white light passes through a glass pane. Dispersion
causes the red and blue components of the light to be bent at different angles.
After passing through the pane of glass the red and blue components are slightly
offset.

29.9 By what angle (θcornea) is the beam of light shown in Fig-
ure 29.16 deviated as it passes from air to the cornea if the inci-
dent angle is θi = 23.6°? The refractive index of air is nair = 1.00,
the refractive index of the cornea is ncornea = 1.38. Ignore further
deviation of light as it passes from the cornea into the aqueous hu-
mour, etc.

Figure 29.16 Most of the bending of light in the eye is done at the air-cornea
interface. The lens is responsible for only a small amount of the bending, but of
course is adjustable.

29.10 The ability of your eyes to focus is impaired when you at-
tempt to look around underwater (if you are not wearing a pair of
swimming goggles). Recalculate your answer for Problem 29.9 for
the case in which the eye is submerged in water (nwater = 1.33).
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30.4 Spherical Mirrors

30.5 Magnification

30.6 Lenses

30.7 Summary

30.8 Problems

30.1 Introduction

Geometric optics is one of the two branches of classical optics, and in it a ray treatment
of light is used to predict the path of light waves through an optical system. When light
interacts with objects larger than a few times the wavelength, its path is straight enough
for a ray approximation. Geometric optics fails to explain some optical behaviour, such
as polarisation and diffraction, for a which a wave optics treatment is needed, and this
will be covered in Chapter 32.

In order for the words in this document to be seen by the eye, light must travel from
each point on the page to the eye. This remains true if the page is tilted, so light is
travelling out in all directions from each point on the page, and it is doing so in straight
lines. Each of these straight-line paths through space is a ray.

Most of the basic behaviour of light was covered in the previous chapter: light can
travel unimpeded through space; it can travel through some medium other than free
space, such as air or glass, changing speed and direction at any interfaces; it can bounce
off a surface; it can also be absorbed. At the boundary between two materials, a com-
bination of these things happens. For example, when sunlight shines on a window,
about 4% of the visible light bounces back off each surface, most of the visible light
travels through the glass but has its path bent, and large proportions of infrared and
ultraviolet light are absorbed.

It this chapter we are most concerned with applying the rules of reflection and re-
fraction to systems of mirrors and lenses to see how these can be used to manipulate
light.

Key Objectives

• To understand how to draw ray diagrams for mirrors and lenses.

• To be able to use the thin lens equation to calculate the type and position of an
image.

• To be able to calculate the magnification of an image.

30.2 Ray Diagrams

Ray diagrams are a useful tool to figure out what kind of image will be formed, and
roughly where. They show an object (simplified) at the correct location, the kind of
mirror or lens being used, and the path that rays of light take on leaving the object from
one or two representative locations on the object. The place where rays from one point
of the object cross after leaving the mirror or lens is the location of the image point
that corresponds to the object point chosen. If the rays never cross (as for a diverging
mirror), the image location is the place where the rays appear to have a common origin.

It is common to use an arrow with its base on the optical axis as a representation
of the object. The advantage of this is that all the rays originating from a point at the
base and travelling along the optical axis will be reflected back along this line, so the
image must also have its base on this line. All that remains is to locate the image point

Introduction to Biological Physics for the Health and Life Sciences Franklin, Muir, Scott, Wilcocks and Yates
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Figure 30.1 (i) A typical ray diagram showing the object (heavy arrow on left), a converging lens of focal length f ,
three principal rays refracted through the lens, and an image (light arrow on right), which in this case is a real image.
The lens is assumed to be thin in comparison to all other distances (do, di and f ) and the ray diagram is drawn so
that the rays refract in one plane (the dotted line) rather than at the drawn surface of the lens. (ii) An equivalent ray
diagram for a diverging mirror. In this case the mirror reflects light and forms a virtual image.

that corresponds to the top of the arrow. This can be done by drawing in three appro-
priate rays and seeing where they meet. Using an arrow makes it easy to see at a glance
whether the image is upright or inverted. Figure 30.1 shows some sample ray diagrams,
illustrating the various distances

Figure 30.2 A plane mirror forms an unmagni-
fied virtual image the same distance behind the
mirror as the object is in front of it.

There are a number of terms (specific to spherical mirrors and lenses) that we will
need to use in this chapter:

Optical axis The line connecting the centres of curvature of the lens surfaces, or the
centre of curvature to the middle of the mirror.

Centre of curvature The point that forms the centre of the sphere that the mirror or
lens surface lies on.

Radius of curvature (R) The distance from the lens or mirror surface to the centre of
curvature.

Focal point The point(s) on the optical axis halfway between the centre of curvature
and the mirror or lens. Rays coming into a concave mirror parallel to the opti-
cal axis are reflected towards the focal point. This is often indicated on the ray
diagram with an F .

Focal length ( f ) The distance from the lens or mirror to the focal point.

Object distance (do) The distance from the lens or mirror to the object.

Image distance (di) The distance from the lens or mirror to the image . (Sign con-
ventions for when these distances are considered to be negative will be covered
later.)

Principal rays The rays with easy to predict paths that are usually drawn in a ray dia-
gram: parallel to the optical axis, through the focal point and through the centre
of the mirror or lens.

30.3 Plane Mirrors

A plane mirror is a flat, specularly-reflecting surface. Plane mirrors form upright, vir-
tual images of objects in front of them, with the image formed the same distance be-
hind the mirror as the object is in front. By image, what we mean is an artifact that
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Figure 30.3 Light rays scattering off a person’s foot hit the surface of a plane mirror and are reflected off it. Some of
these rays will hit the persons eye and contribute to the image of the person’s foot formed in the mirror.

resembles a real object. To an observer looking into the mirror, it appears that there
is an object resembling them that seems to be located behind the mirror’s surface (see
Figure 30.2). This is what we term a virtual image, because the light rays that are travel-
ling from the object only appear to have come from the image location, but never truly
passed through that location. The light didn’t pass through the mirror and come back,
so it could never have been where the virtual person appears to be (see Figure 30.3).

Problem: How tall must a mirror be , in order for a person to be able to see their own feet and the top of their head

within it?

Example 30.1 Plane mirror

Solution: About half their height.

30.4 Spherical Mirrors

Figure 30.4 Converging and diverging mirrors
with spherical surfaces of radius R showing the
centre of curvature C and focal point f . A ray
parallel to the optical axis is incident on, and re-
flected off, each of the mirrors.

Concave and Convex Mirrors

A spherical mirror is one in which the reflecting surface forms part of the surface of a
sphere. In other words, it has a crosssection that forms part of a circle, and the radius of
that circle is called the radius of curvature of the mirror. The point that would be the
centre of the sphere is called the centre of curvature. Spherical mirrors can be either
concave or convex. A concave mirror reflects light rays parallel to the optical axis inaa
the direction of the focal point; a convex mirror reflects light rays parallel to the optical
axis away from the focal point (see Figures 30.4 and 30.5). These types of mirrors are
also known as converging (for the concave) and diverging (for the convex).

Image Formation By a Concave Mirror

There are some basic rules for drawing ray diagrams to show what kind of image is
formed and where:
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Figure 30.7 A virtual image formed by a diverging mirror. Notice that the rays leaving the mirror are diverging as if
coming from a point ‘behind’ the mirror. This image cannot be seen on a screen because at no point do the rays
actually pass through that position.

• Rays coming in parallel to the optical axis go out though the focal point (Fig-
ure 30.8 (i)).

• Rays coming from the centre of curvature are reflected back along their path.

• Rays hitting the centre of the mirror act as though they are hitting a plane mirror
(as in Figure 30.8 (ii)).

• Rays coming in through (or as though they passed through) the focal point are
reflected parallel to the optical axis (Figure 30.8 (iii)).

Figure 30.5 Converging (concave) and diverging (convex) mirrors with spherical surfaces. Parallel light rays incident
on a converging mirror converge to a single point after being reflection. Parallel light rays incident on a diverging
mirror appear to diverge from a point after reflection.

Image Formation By a Convex Mirror

The same basic rules that apply to concave mirrors apply also to convex mirrors. A dis-
tinction is that the focal point of a convex mirror is on the opposite side of the mirror
surface to the object (see Figure 30.7). Figure 30.6 shows the three rays used to con-
struct a ray diagram for a convex mirror.

Figure 30.6 The three principal rays for drawing
a ray diagram, shown here for a convex mirror.

Light from an object that is reflected from a convex mirror is always diverging and
so this kind of mirror will always form a virtual image.

Types of Image—Real and Virtual

There are two kinds of image that can be formed, which are illustrated in Figure 30.9
and Figure 30.10. These are called real and virtual. A real image is one through which
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light rays actually pass, and which could therefore be seen on a screen placed at that
position. An example of a real image is the image formed on the film in a camera, or
on the sensors inside a digital camera – the light really reaches the film, and a repre-
sentation of some real object is formed. A virtual image is one which can’t be seen on a
screen, as the light rays never pass through the location where the image sits. An exam-
ple is the image seen in a plane mirror. When you look in the mirror, you see something
that resembles yourself on the other side of the mirror surface, but the light never went
through that location.

The Mirror Equation

The mathematical relationship between the location of a point on the object and the
corresponding point on the image is

1

do
+ 1

di
= 1

f
(30.1)

This mirror equation has exactly the same form as the thin lens equation which we
will meet soon.

Sign Convention for Mirrors

• All figures are drawn with light initially travelling from left to right, so the object
is to the left of the mirror.

• The distance from the object to the mirror is positive.

• The distance from the mirror to a real image is positive. (Image is located to the
left of the mirror.)

• The distance from a virtual image to the mirror is negative. (Image is located to
the right of the mirror.)

• For a concave (converging) mirror, f is positive.

• For a convex mirror (diverging) mirror, f is negative.

The image distance is positive if it is in the same direction as the outgoing light, and
negative if in the other direction (see Figure 30.11).

Problem: Determine whether each of the following statements are true or false:

(a) A concave mirror causes light to diverge.

(b) A convex mirror always forms virtual images.

(c) A concave mirror has a positive focal length.

(d) A concave mirror can form both real and virtual images depending on the position of the object.

Example 30.2 Mirrors

Solution:

(a) False, a concave mirror causes light to converge.

(b) True, a convex mirror causes light to diverge so always forms a virtual image.

(c) True, a concave mirror has a positive focal length, as by convention a mirror or lens which causes light to converge
has a positive focal length.

(d) True, a concave mirror forms a real image when the object distance is greater than the focal length and forms a
virtual image when the object distance is smaller than the focal length (see Figures 30.9 and 30.10).
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Figure 30.8 Three rays used to construct ray diagrams for a converging mirror. The object is placed outside the focal
plane of the mirror in the example on the left and inside it on the example on the right. The rules are the same in
each case however.

Figure 30.9 A real image formed by a converging mirror. Notice that the rays leaving the mirror are converging
towards a point. The image could be viewed on a screen at that point.

Figure 30.10 A virtual image formed by a converging mirror. Notice that the rays leaving the mirror are diverging as
if coming from a point ‘behind’ the mirror. This image cannot be seen on a screen because at no point do the rays
actually pass through that position.
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Figure 30.11 The sign convention for use with image formation by mirrors. While a converging mirror is shown here,
the same sign conventions for di and do apply for diverging mirrors, with f negative.

30.5 Magnification

The image formed by a converging or diverging mirror will, in general, be of a different
size to the object. The single factor which sets the relative sizes of the object and the
image is the placement of the object with reference to the focal plane of the mirror.
Figure 30.12 shows the images formed by a converging mirror when an object is placed
at three different positions, do > 2 f , do = 2 f and f < do < 2 f . All three images are real
images, and so are inverted, and their relative size varies.

The magnification, M , of an image tells us the relative size of the image with respect
to the object. In other words, the magnification is equal to the ratio of the image and
object heights. A negative number indicates that the image is inverted with respect to
the object. M is expressed as

M = image height

object height
= hi

ho

Close inspection of Figure 30.12 will show that the ratio of the image and object dis-
tances is the same as the ratio of the image and object heights, but when both distances
are positive, the image is inverted, so we need to include a negative sign

M =− image distance

object distance
=− di

do

We can express the magnification in terms of either the object and image heights,
or the object and image distances

M = hi

ho
=− di

do
(30.2)

A magnification of M = 2.5 means that the image is upright, 2.5 times larger than
the object, and 2.5 times farther away from the mirror than the object. A magnification
of M = −0.333 means that the image is inverted, only 1

3 as tall as the object, and one
third the distance to mirror that the object is. The sign tells us whether the image is real
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Figure 30.12 The same object is placed at three different positions with respect to a converging mirror. When
2 f > do > f , the object is enlarged (|M | > 1), whereas when do > 2 f , the object is reduced (|M | < 1). A special
case exists when do = 2 f . In this case M =−1.

or virtual. A negative sign indicates that the image is inverted, and so is a real image,
while a positive sign indicates the image is upright, which must be a virtual image.

Using the magnification equation, Eq. (30.2), and the mirror equation, Eq. (30.1),
we can develop a general expression for the magnification of an image given do and f .
The mirror equation may be rewritten as

1

di
= 1

f
− 1

do

and from Eq. (30.2)

1

M
=−do

di

=−do
1

di

=−do

(
1

f
− 1

do

)

=−do

f
+1

This gives us a useful result:

M = 1

1− do
f

(30.3)

30.6 Lenses

Lenses use refraction to bend light rays. Lenses designed to work with visible wave-
lengths of light are typically made with types of glass or plastic – materials that have
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Figure 30.13 Parallel light passing through a converging lens converges to a point on the opposite focal plane of the
lens. Parallel light passing through a diverging lens appears to diverge from a point on the focal plane of the lens
that is on the side the light entered.

a higher refractive index than air. As shown in Figure 30.13, a lens that causes parallel
rays to become convergent is called a converging lens, and one that causes them to
be divergent is called a diverging lens. Rays that are convergent will eventually cross,
whereas rays that diverge will never cross as they continue to propagate through space.

The simplest lenses have both sides with the same kind of curvature. A lens with
both sides curving so that the middle is thicker than the edges is called a convex lens.
Convex lenses are converging. A lens with the sides curving so that the edges are thicker
than the middle is called a concave lens, and is diverging. (This is easy to remember –
a concave lens has surfaces shaped like caves.)

Image Formation By Lenses

Lenses can form images in a similar manner to mirrors. Of course, a lens forms an
image by refracting light instead of reflecting it.

The set of rules for drawing rays is very similar to that used for mirrors and is as
follows:

• Rays coming in parallel to the optical axis are refracted such that they exit head-
ing towards (or away from) the focal point.

• Rays hitting the centre of the lens act as though they are passing through a flat
piece of glass.

• Rays coming in through (or as though they passed through) the focal point are
refracted so that they exit parallel to the optical axis.

Image Formation by a Converging Lens

A converging lens has convex surfaces which bulge outwards. A converging lens bends
light towards the optical axis and so will focus parallel light to a point on the focal plane
(the plane perpendicular to the optical axis and which intersects the optical axis at the
focal point) as shown in Figure 30.13. The distance between the focal plane and the
centre of the lens is the focal length of the lens.

Because light passes through the lens there is a focal plane on either side of the lens,
unlike mirrors for which there is only one focal plane.
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Figure 30.14 A real image formed by a converging lens. Notice that the rays leaving the lens are converging towards
a point. If a screen were placed here, an image of the object could be seen on it.

Figure 30.15 A virtual image formed by a converging lens. Notice that the rays leaving the lens are diverging.
Because of this, the image formed cannot be seen on a screen at the image position, as could be done with the real
image in Figure 30.14.

Figure 30.16 Three principal rays used to construct ray diagrams for a converging lens. The object is placed outside
the focal plane of the lens in the example on the left and inside it in the example on the right. The rules are the same
in each case, however.
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Figure 30.17 The image formed by a diverging lens. A diverging lens always produces a virtual image when a ‘real’
object is used. Figure 30.19 shows the principal rays used to construct this ray diagram.

Figure 30.18 The sign convention for use with image formation by lenses. While a converging lens is shown here,
the same sign conventions for di and do apply for diverging lenses, with f negative.

Figure 30.14 shows the formation of a real image by a converging lens and Fig-
ure 30.15 shows the formation of a virtual image. Just as for a converging mirror, placing
the object so that do > f will result in a real image whereas placing the object so that
do < f will result in a virtual image.

Figure 30.16 shows the three principal rays used to construct a ray diagram when
the object is placed such that either do < f or do > f .

Image Formation by a Diverging Lens

Figure 30.19 The principal rays used when con-
structing a ray diagram for a diverging lens.

A diverging lens has concave surfaces. A diverging lens bends light away from the op-
tical axis and will focus parallel light to a point on the focal plane as shown in Fig-
ure 30.13. A diverging lens will create a virtual image for all (real) object positions. Fig-
ure 30.17 shows a ray diagram for a diverging lens and Figure 30.19 shows the principal
rays used to construct such a ray diagram. There are a few subtle differences in the cor-
rect use of the principal rays for a diverging lens that relate to the fact that a diverging
lens has a negative focal length.

Sign Convention for Lenses

Figure 30.18 shows the sign convention used for lenses. The convention is the same for
both converging and diverging lenses.
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Figure 30.20 The same object is placed at three different positions with respect to a converging lens. When 2 f >
do > f the object is enlarged (|M | > 1) whereas when do > 2 f the object is reduced (|M | < 1). A special case exists
when do = 2 f . In this case M =−1.

• All figures are drawn with light initially travelling from left to right, so the object
is to the left of the lens.

• The distance from the object to a lens is positive.

• The distance from a lens to a real image is positive. (Image is located to the right
of the lens.)

• The distance from a lens to a virtual image is negative. (Image is located to the
left of the lens.)

• For a convex (converging) lens, f is positive.

• For a concave (diverging) lens, f is negative.

Magnification and Lens Power

The image produced by a lens is magnified in the same way as the image produced by
a mirror. The arguments and equations given in Section 30.5 hold for lenses as well.
That is, the magnification, M , of the image produced by a lens is given by

M = hi

ho
=− di

do
(30.4)

and

M = 1

1− do
f

(30.5)

Figure 30.20 shows how the placement of the object can affect the size of the image
produced by a converging lens. Notice that when do = 2 f then M =−1 and that moving
the object closer to the lens results in a more magnified image, just as for a converging
mirror.
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Figure 30.21 Three lenses of different optical power are shown. The most powerful lens (iii) bends the light to a
greater degree than the weakest lens (i).

The power of a lens is a measure of how ‘strong’ it is, or more formally how much
it bends the light passing through it. In Figure 30.21, three lenses are shown focussing
parallel light to a point. It makes intuitive sense to call lens (i) the weakest lens and
lens (iii) the strongest lens. Lens (i) has a long focal length and bends each ray less than
lens (iii), which has a much shorter focal length.

Given that a ‘long’ focal length means that the lens is ‘weak’, then there is an in-
verse relationship between optical power and focal length. The equation expressing
the relationship between optical power, P , and focal length, f , is

P = 1

f
(30.6)

The units of optical power as defined above are dioptres (D). When using Eq. (30.6)
the focal length should always be expressed in the correct S.I. unit of metres. A lens
with a power of P = 20 D would have a focal length of f = 1

20D = 0.05 m, and a lens
with a focal length of f = −0.25 m (a diverging lens) would have an optical power of
P = 1

−0.25m = −4 D. Just as a negative focal length indicates a diverging lens/mirror, so
does a negative optical power.

Problem: Determine whether each of the following statements is true or false for images formed by a single lens or

mirror:

(a) Real images can be seen on a screen at the image position because different light rays from a point on the

object meet at the image point.

(b) All virtual images are upright.

(c) All real images are inverted.

(d) Mirrors (of all types) can only form virtual images.

Example 30.3 Image formation

Solution:

(a) True, to form an image on a screen light rays from a single point on the object must converge to a single point at
the screen location. This is the case for a real image.

(b) True, virtual images are always upright.

(c) True, real images are always inverted.

(d) False, concave mirrors can form real images when the object distance is greater than the focal length.
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Problem: How could you experimentally determine the approximate focal length of a converging lens? Would your

method work for a diverging lens? How could you adapt your method to work for a diverging lens?

Example 30.4 Lenses

Solution: The approximate focal length can be found by measuring how far from the lens (parallel) light from a distant
object is focussed. You could, for example, focus a landscape on the wall).

This does not work for a diverging lens, as this method is reliant on forming a real image of the distant object. To
determine the focal length of a diverging lens one could combine it with a stronger converging lens (higher dioptre,
shorter focal length) and determine the focal length of the combination lens (which will be converging). The power of
the diverging lens can be inferred from this and the power of the converging lens.

30.7 Summary

Key Concepts

geometric optics One of the two branches of classical optics, where a ray treatment of light is
used to predict the path of light waves through an optical system. Geometric optics fails
to explain some optical behaviour such as polarisation and diffraction, for a which a wave
optics treatment is needed.

image (from the latin imago, likeness) An artifact (usually two-dimensional) that resembles a
real object.

lens A transparent object with axial symmetry which refracts light, converging or diverging light
rays.

converging lens A lens which causes light rays passing through it to converge. Any lens that is
thicker in the centre than the edges will act as a converging lens.

diverging lens A lens which causes light rays passing through it to diverge. Any lens that is thin-
ner in the centre than the edges will act as a diverging lens.

concave lens A lens in which both surfaces are curved and are depressed into the lens. More
correctly called biconcave. A lens that has one flat surface and one concave surface is
called plano-concave. Both sorts of concave lens are diverging.

convex lens A lens in which both sides are curved and bulge out. More correctly called biconvex.
A lens that has one flat surface and one convex surface is called plano-convex. Both sorts
of convex lens are converging.

focal point Rays of light entering the lens parallel to the optical axis will be converged to a point,
or diverge from a point, known as the focal point.

focal length ( f ) The distance along the optical axis from the centre of the lens or mirror to the
focal point.

optical axis The line that passes through the centres of curvature of a lens or mirror. Light pass-
ing along this axis is not refracted.

optical power (P ) The amount that a lens converges or diverges light. It is the inverse of the
focal length, 1

f , and is measured diopters, which are inverse metres. Specifying the power

rather than the focal length is useful because when thin lenses are placed close together,
their powers approximately add.

real image An image in which the light rays actually pass through the image. A real image can
be seen on a screen placed at the image position.

virtual image An image in which the light rays originating at a point on the object never re-
converge at another point, but appear to have had a common origin at the image location.

thin lens equation This equation shows the relationship between object distance, image dis-
tance and focal length for thin lenses.

magnification A measure of the size of an image relative to the original object. The magnifi-
cation is negative if the image is inverted, and has magnitude less than 1 if the image is
smaller than the object.

mirror A surface with good specular reflection, so that an image can be formed. The surface
may be flat (a plane mirror) or curved.

radius of curvature (spherical mirror or lens) The distance from the surface to the centre of
the sphere that the curved surface forms a part of.
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Equations

1

do
+ 1

di
= 1

f

P = 1

f

M = hi

ho
=− di

do

M = 1

1− do
f
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30.8 Problems

30.1 Is it possible for a converging lens to form a virtual image? If
so, under what conditions is the image virtual? If not, why not?

30.2 Is it possible for a diverging lens to form a real image of a phys-
ical object? If so, under what conditions is the image real? If not,
why not?

30.3 An object is placed 0.25 m away from a lens. The lens forms
an image that is 0.167 m away from the lens, upright, and on the
same side of the lens as the object.

(a) What is the focal length of the lens?
(b) What kind of lens is used?

30.4 You wish to produce inverted real images of an object with
the given magnifications using a converging mirror. How far from
the mirror must you place the object in each case (express your
answer in terms of the focal length of the mirror)?

(a) M =−0.5
(b) M =−1
(c) M =−2
(d) M =−4

30.5 You wish to produce upright virtual images of an object with
the given magnifications using a diverging lens. Where must you
place the object in each case (express your answer in terms of the
focal length of the lens)?

(a) M = 0.1
(b) M = 0.25
(c) M = 0.5
(d) M = 0.75

30.6 What is the largest magnification attainable when imaging a
real physical object using a diverging mirror, and how far from the
mirror must the object be placed to attain this magnification?

30.7 You are standing 5 m from the edge of a very large, 150 m di-
ameter hemispherical building which is coated in a reflective ma-
terial. You are carrying a small laser pointer which you hold 1.5 m
above the ground.

(a) You point the laser pointer at the building and the reflected
beam travels straight back at the pointer. At what angle below the
horizontal are you holding the pointer?

(b) You point the laser pointer at the building and the reflected
beam is traveling parallel to the ground. At What angle below the
horizontal are you holding the pointer?

30.8 Light from a distant source enters a 0.5 dioptre lens parallel to
the optical axis.

(a) How far from the first lens must a second, 1.2 D lens be
placed such that the light leaving the second lens is also parallel
to the optical axis?

(b) How far from the first lens must a second, −1.5 D lens be
placed such that the light leaving the second lens is also parallel to
the optical axis?

(c) A second 1.2 D lens is placed 1.2 m behind the first. Is the
light leaving this lens, converging, diverging, or parallel to the op-
tical axis?

30.9 A converging lens with a focal length of 30 cm is used to create
an image of a 2 mm long ant.

(a) If the lens is placed so that the image of the ant is 8 mm
long, upright, and viewed by looking through the lens, how far
away from the ant was the lens placed?

(b) If the lens is placed so that the image of the ant is 8 mm
long, inverted, and viewed on a screen held some unspecified dis-
tance on the other side of the lens to the ant, how far away from
the ant was the lens placed?

30.10 When you look at the back of a spoon you see an upright
image of yourself. This is because the reflective curved surface of
the metal acts as a diverging mirror. This image does tend to be
distorted because spoons seldom have the spherical or parabolic
curvature required for an undistorted image. Ignore these distor-
tions when answering the following questions.

(a) If the image of your head is 3 cm tall, your head is 22 cm tall,
and you are holding the spoon 16 cm away from your head,
what is the focal length of the back of the spoon?

(b) When you flip the spoon around it now acts like a converg-
ing mirror and you see an inverted image. Assuming that the
curvature of the inside of the spoon is the same as the cur-
vature of the outside of the spoon how large is the image of
your head?
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31.1 Introduction

Anyone reading this text on the page knows already how important our vision is to us;
it is the most important of our senses, when it is intact. In this chapter we will cover the
basic structure of the human eye, and apply what we have learned about converging
lenses to show how images are formed on the retina. We will then take a look at how
refractive defects can be corrected with different types of lenses. As humans are one
species that has colour vision, we will also see how it is that we distinguish between
different colours, and how we can define colours – a challenge, as colour perception
varies from individual to individual.

The human eye is very good at what it does. Our eyes are able to not only detect
the presence or absence of light, but are able to detect light that varies in intensity a
great deal. We can see in bright sunlight, or spot a lone candle flame kilometres away.
We can see movement, as vision is a continuous process, unlike exposing the film in a
camera. We can see shapes and colours, due to the number and type of detector cells
we have at the back of our eyes. Using our binocular vision, and a sense of the state of
focus of our eyes, we can estimate distance. We also have the brain power to interpret
the images we see, and compare them to ones we have seen previously.

Our eyes, as good as they are at their job, are not the best around. There are exam-
ples of better eyesight in other animals, particularly birds. There are also many other
types of eye out there, and nearly every imaginable example of a way in which an image
could be formed is used by some species. We will give a few examples of other eye types
and focussing methods to show how these differ from the human eye.

Key Objectives

• Learn the parts of the eye and their functions.

• Understand image formation by the human eye.

• Understand the causes of vision defects and how they may be corrected.

31.2 The Parts of the Eye

Figure 31.1 shows a crosssection through the human eye, with the main parts labelled.
The key parts for image formation are the lens and cornea, which together act like a
thin lens to focus incoming light onto the retina. The clear cornea is a specialised part
of the outer eyeball, and is made mainly of collagen. This collagen is arranged in criss-
crossing sheets, which makes it tough. If removed, sliced open and immersed in water,
the cornea will swell to many times its normal size, and will become slightly opaque.
There are membranes on the inner and outer surfaces that prevent this happening in
our eyes. The rest of the outer surface of the eye (the fibrous, white part) is the sclera.
Its thickness varies from 0.3 mm to 1 mm, and it is to the sclera that the outside muscles
attach.

Immediately behind the cornea is a chamber (the anterior chamber) filled with a
watery salt solution, called the aqueous humour. This liquid is being constantly re-
placed, and is important for supplying nourishment to the cornea and the lens, neither
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Figure 31.1 The human eye. [Public domain picture courtesy of Wikipedia.].

of which are equipped with a blood supply. The aqueous humour contains many of the
substances found in the blood, including glucose and dissolved oxygen. The aqueous
humour also plays a role in regulating the pressure in the eye. It normally drains from
the anterior chamber through a channel in the angle between the cornea and the iris.
If this becomes blocked, the pressure may increase, and glaucoma can result.

The lens (see Figure 31.2) is a collection of transparent cells suspended in place by
suspensory ligaments connected to the ciliary muscle. When the eye is relaxed, the
lens is flattened slightly by the tension in the ligaments (caused by pressure from the
vitreous humour). The ciliary muscle allows focussing of the eye. When it contracts, it
reduces the tension in the fibres, making the lens more spherical.

Slightly in front of the lens is the iris, which connects to the sclera and ciliary body
at its outer edge, and is made up of a pigmented, fibrous part known as the stroma, and
muscles which constrict and dilate the pupil, the gap in the iris through which light
passes. The pupil appears bigger than it really is, due to magnification by the cornea.
The back of the iris is strongly pigmented and is nearly black. The colour as seen from
the front depends on the amount of the pigment melanin present. There is no blue pig-
ment in the eyes of people with blue eyes, but this colour results from selective absorp-
tion and scattering in the blood vessels (from haemoglobin in the blood and collagen
in the vessel walls, for example). Other eye colours are the result of the deposition of
melanin in the front layer of the iris. This pigmentation is not always present at birth
in Caucasian babies, so they may be born with blue eyes that later change colour. The
pattern of pigmentation in the iris is fixed by one year of age. (This suggests that the
alternative medicine technique of diagnosing illness from the pattern of the iris (iridol-
ogy or iridodiagnosis) may have limited practical use.)

The pupil

The name ‘pupil’ comes from the latin pupilla,

meaning ‘little doll’, which refers to the tiny re-

flection of oneself that can be seen in another

person’s eye.
The expansion and contraction of the pupil is involuntary in humans, and occurs

in response to changing light levels. The diameter of the pupil is typically around 3–
4 mm, but varies from about 1.5 mm to 8 mm. There is some cross-over in the sensory
pathways from both eyes, so light entering one eye causes both pupils to change. The
narrowing of the pupil not only stops too much light from entering the eye, but also
changes the depth of field, the range of object distances over which the image is still
acceptably well in focus. In animals which need to be able to see well in the daytime
as well as hunt at night, the pupils may be slit-shaped instead of round to block more
light.

Filling the bulk of the centre of a eye is a gelatinous, transparent material called
the vitreous humour. It is mostly water, but contains some salts, sugars, collagen and
hyaluronic acid. Its refractive index is 1.336, which is close to that of water. Before
birth, an artery (the hyaloid artery) supplies blood to the developing lens. This usually
disappears, leaving a clear zone through the vitreous called the hyaloid canal. Some-
times, though, clumps of cells from these blood vessels are left behind, which we can
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Figure 31.2 Schematic of the front of the human eye. [Reprinted from www.bartleby.com. Copyright 2010.]

see occasionally in our eyes as ‘floaters’.

The back surface of the eye is covered by a tissue-thin membrane called the retina.
This contains the light-sensitive cells that allow us to see. The retina has a mixture of
two types of these light-sensitive cells, one type that responds slowly to most of the
visible wavelengths (the rods), and another that responds faster, but only selectively
to regions of the visible spectrum (the cones). The macula is a small (about 1.5 mm
across) spot on the retina that appears yellow, and contains the fovea, a small pit with
the highest concentration of cone cells. This is the area responsible for central vision.
The fovea makes up only 1% of the area of the retina, but half the visual cortex of the
brain is devoted to processing its signals.

Between the retina and the sclera lies a layer that supplies blood, known as the
choroid. It is darkly pigmented by melanin in humans.

Eyeshine

In some animals, such as cats, the pigmen-

tation of the choroid is absent in places, and

there is a reflective layer that improves night vi-

sion, called the tapetum lucidum. This is what

makes some eyes so strongly reflecting at

night – an effect called eyeshine. In the case of

cats, their eyes appear green; the colour varies

in other animals. In humans, a similar effect

may be seen in the case of very bright illumi-

nation (‘red-eye’ from camera flashes) and in

the case of abnormalities like cataracts (which

can appear like white eyeshine).

The majority of the refractive power of the eye is provided by the cornea. For a
relaxed eye, it is responsible for about 2/3 of the power. The refractive index of the
stroma, the thickest part of the cornea, is about 1.376. (This similarity between the
refractive index of water and of the cornea is why we see so poorly under water. The
lens alone is not powerful enough to do all the focussing.)

31.3 Emmetropia (Normal Vision)

By treating the cornea and lens of an eye as a single idealised converging thin lens, and
the curved retina as a planar screen, we can produce a model of the eye sufficiently sim-
ple to be understood using only those aspects of optics covered so far, yet sufficiently
accurate to be useful.

While the human visual system is considerably more complicated than a single ide-
alised thin lens, such an approximation allows a good explanation of the general ge-
ometric properties of vision and an easy understanding of some aspects of physical
visual defects/errors such myopia and hypermetropia.

By modelling the eye as an idealised thin lens the image distance becomes fixed.
The eye must form an image on the retina or else the object cannot be viewed clearly
unaided. From the content of the preceding chapters, it could be taken that the eye
would only view objects clearly (form an image on the retina) if the object was placed a
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certain distance away from the eye. We know from everyday experience that this is not
true. An aspect of the eye that is quite different to the simple lenses covered so far is
that the optical power of the eye is variable. This is what allows the eye to clearly view
objects over a range of different distances. This variation in the optical power (focal
length) of the eye is achieved by distortion of the eye lens by a ring muscle called the
ciliary muscle and is called accommodation.

When the ciliary muscles are relaxed, the tension in the suspensory ligaments (see
Figure 31.2) that hold the lens in place keeps the lens more flattened. As the ciliary
muscle tightens, the ligaments relax, increasing the curvature of the lens, and its power.

As shown in Figure 31.3, a more curved lens is suited to viewing nearby objects as it
has a higher optical power (shorter focal length) and thus bends incoming light more. A
lens under tension (which, remember, happens when the ciliary muscle is relaxed) has
reduced curvature, and hence lower optical power (a longer focal length) and bends
incoming light less to form a clear image of objects further away.

The eye does not have an infinite range of accommodation, but instead has both
minimum and maximum optical powers (maximum and minimum focal lengths re-
spectively). This imposes limits on the ability of the eye to form a clear image of an
object at any arbitrary position. The terms near point and far point describe these lim-
its.

Near Point The closest point an object can be placed at such that the eye can form a
clear image of it on the retina.

Far Point The furthest point at which an object can be placed such that the eye can
form a clear image of it on the retina.

When viewing an object at the near point, the ciliary muscle is tensed, and so the
ligaments place the minimum tension on the lens, and the eye is at its maximum at-
tainable optical power (it is at its most curved). The light scattered from objects closer
than this point is not focussed on the retina, but instead at a point behind the retina.
This results in a blurred image. The near point will vary from person to person and
will likely be significantly shorter for younger readers than for older readers, but for the
purposes of this text we will base calculations on a ‘normal’ near point of 25 cm.

For people with normal vision, the far point lies at infinity. In other words, for a
normal eye, the fibres stretching the lens are capable of creating sufficient flattening
of the lens to focus parallel light, like that from a distant star, onto the retina. In cases
where the far point is closer than infinity, the minimum optical power of the eye is too
great and the image of an object beyond the far point will be formed in front of the
retina, resulting in a blurred image.

While the size of the human eye varies from person to person, we can model a ‘nor-
mal’ human eye as having a lens-to-retina distance of around 20 mm. Using the thin
lens equation we can then calculate the ‘normal’ maximum and minimum power of
the eye. The accommodation range is about 4 D.

Pmax =
1

near-point distance
+ 1

lens–retina distance

= 1

0.25 m
+ 1

0.020 m
= 54 D

Pmin = 1

far-point distance
+ 1

lens–retina distance

= 1

∞ m
+ 1

0.020 m

= 50 D
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Figure 31.3 In a person with normal vision, the optical power of the eye can change over a range such that the
person will be able to clearly view objects from as close as 25 cm all the way to infinity. An object is clearly viewed
when an in-focus image is formed on the retina. When attempting to view an object that is closer than the near point,
the cornea and lens have insufficient optical power to produce an image on the retina and an image would instead
be formed behind the retina (if it were not there). A normal relaxed eye will have a minimum optical power sufficient
to focus parallel light (such as that originating from an object at infinity) onto the retina.

31.4 Myopia

Myopia is a condition that causes objects that are far away to appear blurred, so is
often referred to as nearsightedness. It occurs when collimated light rays entering the
eye (such as rays from a distant object) are focussed to a point in front of the retina (see
Figure 31.4). We can make a distinction between the causes:

Axial myopia The eye is too long.

Refractive myopia The problem is caused by a refractive error. This could be due
to excessive curvature of one of the refractive parts of the eye, most often the
cornea. A change in the index of refraction in the refractive media, such as caused
by cataracts, can also cause myopia.

Figure 31.4 Myopia is a result of light being bent too strongly, even at the minimum optical power given by a relaxed
eye, to form an image on the retina. The image is instead formed in front of the retina. The far point of a myopic
person’s eye is less than infinity, and an object further away than the far point cannot be viewed clearly.

Both genetic and environmental factors are believed to contribute to myopia, caused
by an incorrect pairing of axial length and optical power. Some causes of myopia are
degenerative, such as posterior staphyloma, a bulging of the sclera at the rear of the
eyeball. Some pharmaceuticals can also induce myopia.

The degree of myopia is characterised by the power of the lens required to correct
the defect. Low myopia is −3 D or less. High myopia is more than −6 D. Myopia is
corrected with a diverging lens.
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Problem: A man with refractive myopia cannot see objects clearly if they are further away than 10 m. In order to be

able to drive safely and obtain his driving licence he needs to be able to clearly see objects up to 100 m away. What is

the minimum optical power of the corrective lenses he needs? (Solve this problem by finding the combined power of

his eye and the corrective lenses, and the actual minimum power of the man’s eye. You may assume that the distance

between the corrective lenses and the man’s eyes is unimportant.)

Example 31.1 Myopia

Solution: We are told to use the combined power of the corrective lenses and eye (Pcombo) and the minimum power of
the eye alone (Peye) to solve this problem.

This is a good approach, as when lenses are combined by placing them close together we can approximate the
combined optical power of the system of lenses as the sum of the individual optical powers of each lens. In this case

Pcombo = Peye +Pglasses (31.1)

Refractive myopia has been specified as the cause of the man’s vision problems. We can therefore assume that his eye
is of normal size and the lens–retina distance is 20 mm.

The man’s far point is at 10 m, which means that, even when his eye is at its minimum optical power, it is bending
incoming light too strongly. An image of any object that is 10 m or further away will form in front of the retina.

Without surgery, the minimum optical power of the man’s eye is fixed. This means that for an object further away than
his far point, a corrective lens must create a virtual image at, or closer than, his far point.

We can calculate the minimum power of the man’s eye using the thin-lens equation. We know that the image
distance is fixed by the size of the eye, di = 0.02 m. We also know that when Peye = Pmin (or alternatively feye = fmax),
do = 10 m. Using the thin lens equation we have

Peye =
1

feye,max
= 1

do
+ 1

di

= 1

10 m
+ 1

0.02 m

= 50.10 D

When using glasses, the eye ‘sees’ the virtual image created by the corrective lenses, and not the object. The image
produced by the corrective lenses becomes the ‘object’ for the eye. This makes sense, as the eye knows nothing about
the history of any rays that hit it, only that they hit the eye at a certain position and angle. So, any image created by the
corrective lens at or nearer than the far point can be treated as if it were an object.
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The combination of the corrective lenses and the man’s own eye is able to form a clear image of an object at infinity on
the retina, which is 0.02 m from the eye’s lens. The minimum combined optical power must be

Pcombo = 1

fcombo,max
= 1

do
+ 1

di

= 1

100 m
+ 1

0.02 m

= 50.01 D

We can now return to Eq. (31.1) to calculate the required optical power of the corrective lenses:

Pcombo = Peye +Pglasses

Pglasses = Pcombo −Peye

= 50.01 D−50.10 D

=−0.09 D

The required power of the corrective lenses is −0.09 D. The negative sign indicates that the lenses should be diverging
lenses and a power of −0.09 D equates to a focal length of 1

−0.09 D =−11 m.
The fact a diverging lens is required makes sense, as the man’s eye is too powerful: it bends incoming light too much.

A diverging lens will increase the divergence of incoming light, offsetting the too-large optical power of the eye itself.

31.5 Hypermetropia (or Hyperopia)

Hypermetropia is a condition that causes objects that are near to become blurry in
appearance. It is often called farsightedness, although this term is too general, as other
conditions may cause poor near vision. It occurs when light rays from an object that
would be clearly visible and focussed to a normal eye cannot be focussed strongly
enough to form a clear image on the retina. This can be because the lens and cornea
are unable to bend the light enough (refractive hypermetropia), or because the eye is
too short (axial hypermetropia).

The degree of hypermetropia is characterised by the power of the lens needed to
correct it. Mild or low hypermetropia is up to +3 D, moderate from +3 to +10 D and
high hypermetropia is more than +10 D. A converging lens is needed to correct for hy-
permetropia.
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Figure 31.5 A hypermetropic eye cannot bend light enough to form an image of a nearby object on the retina. An
image is instead formed behind the retina. The near point of a person with hypermetropia is further away than the
typical 25 cm.

31.6 Presbyopia

The term presbyopia refers to the changes to the focussing ability of the eye that oc-
cur with age, and is merely the result of the same aging process that gives us wrinkles
and grey hair. It is not due to ‘wearing out’ the eyes with use. As we age, the lens loses
elasticity, and eventually will not curve enough during accommodation to allow near
objects to be seen clearly. This is why some elderly people may need to hold the news-
paper further away to see it. For those who started with myopia, it may be possible to
see near objects without trouble even with this diminished flexibility of the lens.

Problem: As Beth has aged, she has noticed that in order to read the newspaper in the morning she must hold it

further and further away from herself. She has recently bought a cheap set of reading glasses, as in order to read the

paper without them, she must hold the newspaper at arm’s length. With her new glasses on, she can hold the paper

as close as 30 cm from her eyes and still read it clearly. If Beth’s arms are 55 cm long and she wears her glasses such

that they are 2.5 cm in front of her eyes, what is the optical power of her new reading glasses?

Example 31.2 Presbyopia/hypermetropia

Solution: The maximum optical power of Beth’s eyes is now no longer large enough to form clear images of nearby
objects. Like many people, Beth has developed presbyopia as she has aged. If Beth can just read the newspaper when
she holds it in her outstretched arms, we know that her near point is now 0.55 m. When the newspaper is closer than
this point the image formed by Beth’s unaided eyes would be behind the retina.

When she wears her new glasses, Beth’s eye is able to form an image of the newspaper on her retina when it is as close
as 0.3 m. Beth’s eye has not changed, but the corrective lenses are producing a virtual image at Beth’s near point which
is acting as a new ‘object’ for her eye. The image produced by the glasses must be virtual as a real image would be
inverted.
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We can calculate the optical power of her new glasses by using the known object and image distances as shown in the
diagram below. Beth holds the newspaper 0.3 m away from her eye to read it using her new glasses. Given that her
glasses sit 0.025 m in front of her eye, the object distance must be do = 0.275 m. Similarly the image distance must be
di =−0.525 m. The negative image distance is quite important, as this indicates the corrective lenses are producing the
required virtual image.

The thin-lens equation will enable us to calculate the optical power of Beth’s new reading glasses:

Pglasses =
1

fglasses
= 1

do
+ 1

di

= 1

0.275 m
+ 1

−0.525 m

= 1.73 D

The optical power of the corrective lenses in Beth’s new glasses is 1.73 D. The positive sign indicates that the lenses are
converging lenses and a power of 1.73 D equates to a focal length of 1

1.73 D = 0.578 m.

31.7 Astigmatism

Astigmatism occurs when the curvature of a focussing optical element differs along
different axes. Imagine that instead of the surface of the cornea or lens being like part
of a sphere, it is more ellipsoidal. This gives the eye different focal lengths in different
planes. It is usually hereditary, but may be caused by injury, surgery or keratoconus, a
disease that causes a weakening of the corneal tissue.

Mild astigmatism may not be a problem at all. In more noticeable cases, it can be
corrected with glasses and contact lenses. In the case of contact lenses, the orientation
of the lens matters, and these lenses are designed to maintain their position by having
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a thickened bottom that tends to stay in the 6 o’clock position.

31.8 Alternative Structure & Placement

Astigmatism in aquatic mammals

It has been reported that many species of seal

have severe corneal astigmatism. This is not a

problem under water, as the cornea and the

water have similar refractive indices. In the

air the orientation of the slit pupil may dimin-

ish the effects, but seals could well suffer from

myopia in low light conditions. Otters have nor-

mal vision in the air, and they compensate un-

der water by being able accommodate further

than humans are able to.

Throughout the animal kingdom, there are examples of light-sensing organs that differ
quite a bit from our own. The most interesting differences have to do with how image
formation is managed, and the placement of the eyes.

Focussing Ability

The more sophisticated visual systems incorporate some method of focussing so im-
ages can be formed of objects at differing distances. There are two main ways of achiev-
ing this: changing the power of the focussing part of the eye, or changing the distance
to the light-sensing part.

As humans, our eyes can change their focal length by changing the shape of the
lens. This is a technique we have in common with other mammals, birds and reptiles.
Some invertebrates, and the lamprey (an eel-like creature), can alter the curvature of
the cornea. Birds and lizards are able to squeeze their lenses to achieve much higher
curvature than we can, and so are able to see objects that are very close.

In most fish, the lens-to-retina distance can be varied by moving the lens. Some fish
use muscles to pull the lens backward to focus on more distant objects, and some push
the lens forward to see nearer. Frogs and snakes also use this method. These creatures
have lenses that are near spherical, rather than biconvex like ours.

Birds and eyesight

It has long been recognised that birds have

better eyesight than us. Says Gordon Walls, in

his book The Vertebrate Eye and its Adaptive

Radiation, ‘In this respect, man acknowledged

even the small birds to be his superior, cen-

turies ago – it was the habit of the medieval fal-

coner to carry a caged shrike on his saddle to

keep track of the falcon. As long as the shrike

acted fearful and excited, the hawker knew that

his proud tiercel was in sight – though not to

him!’

Having a tilted retina is another option. This would mean that altering the direction
of the eye would change where on the retina the image is and hence the image distance,
and for quite some time it was reported that horses used this method, though that idea
has now been discarded. The eyes of some rays (the fish kind) seem to have tilted retina,
though.

Another way of having vision that works for a range of distances is to have detec-
tor cells that are long, so that light is focussed somewhere onto the cells for objects at
a range of distances. This requires no active focussing, and is used by some deep-sea
fishes and geckoes. The fruit bat has a unique variation on this, with conical defor-
mations of the visual layer, which put retinal cells at a range of depths, so the image is
formed sharply on the rods at a some level on these little mountains.

Eye Placement and Field of Vision

In humans, the eyes are both forward-looking and placed at the front of the head. This
serves us well, as it allows for stereoscopic vision. Our two eyes see slightly different
views of the world, and this allows us judge distance quite well. There is a trade-off for
this; we can only see in front of us. Our field of vision covers only the 180° or so that lies
in front of the direction we face.

Many other animals have a vastly improved field of vision. Most fish and birds have
their eyes placed to the side of their heads, which means that they can see most of the
way behind and even above them. In the case of the hare, the field of vision from the
two eyes is nearly circular; your chances of sneaking up on a hare are not good!

In many species, the eye placement is an indicator of whether the species is the
hunter or the hunted. Eyes placed in front for overlapping fields and improved depth
perception indicates predator (owls, cats, etc.), while eyes to the side indicates prey
(mouse, pigeon, and so on). There are some cases where we see both. The swallow has
eyes placed so that the inner halves of the visual fields overlap, but it can also see a long
way to the side. Each of the swallow’s eyes has two maculae (areas on the retina with a
high density of cells for acute vision), one set for looking straight forward, and one set
giving a clear side view. Some birds even have their maculae spread out in bands across
the retina. If we humans had this, it would possibly be like being able to clearly see all
the books on a shelf at once, rather than having to concentrate on one at a time. Horses
also have a macular streak. The ability to keep a better eye on the horizon seems to be
a good survival trait.
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An interesting, but not well-known, fact about human vision is that the half of the
visual field interpreted by each eye is sent to the other side of the brain. Because the
image formed by the cornea and lens is inverted, the left-hand side of what we see
before us is imaged onto the right side of the retina in each eye. This is sent to the right
side of the brain from both eyes. The images from the nasal side of what we see with
each eye is sent to the other side of the brain. In the case of brain injury, this can result
in extra difficulty reading that is culturally dependent. If, like native English readers,
you are used to reading left-to-right, the inability to see the text that is coming next to
the right will slow your reading speed a lot, whereas the inability to see to the left will
not matter so much. The side of the brain that is injured can produce different degrees
of difficulty based on which direction you learned to read.

31.9 Colour Vision

Detector Types

Vitamins and vision

An important vitamin for eyesight is vitamin A.

The retinal group that is a key chemical part

of the light-sensitive molecules in our rods and

cones is produced from vitamin A, and night-

blindness is an early symptom of an insuffi-

cient supply. A good source of vitamin A is

liver, though is it wise to avoid the livers of an-

imals adapted for polar environments, as they

contain too much. Less than 100 g of polar

bear liver is enough to be fatal in humans.

Another vitamin deficiency that is linked to eye-

sight problems is lack of vitamin B1 (thiamin).

A lack of thiamin causes problems with neural

functioning, and so can interfere with proper

transmission of the signals along the optic

nerve.

Riboflavin (vitamin B2) deficiency can cause

the small blood vessels that normally stop at

the sclera–cornea junction to begin to grow

onto the cornea, and can cause some opaque

spots to form in the cornea. Riboflavin is also

needed to prevent cataracts.

The human eye has two types of light-sensing photoreceptors in the retina, known as
rods and cones. The intensity-sensing rods are far more numerous (on the order of
100 million) than the colour-sensing cones for which estimates vary, but the number is
something like 5 million. The cones are concentrated in the area of the retina known
as the macula, and in the fovea centralis, in the centre of the macula, there are no rods.

Rods are responsible for night vision and peripheral vision. They are about a thou-
sand times more sensitive to light than the cones, but take longer to adapt to changing
light conditions. Because of the presence of many rods in the regions of the retina re-
sponsible for peripheral vision, if you are having trouble seeing at night, it is a good
idea to look off to the side a little, to take advantage of the increase in light sensitiv-
ity. Interestingly, rods respond to the yellow-green area of the spectrum strongly, and
moderately to the blue end, but not the red. This is the reason for the increasing bright-
ness of green grass and trees as twilight approaches. It is also useful in situations where
good dark vision is required – red lights can be used without affecting the eyes adap-
tation to low light levels, whereas white light would spoil it for up to half an hour. The
pigment in the rods in vertebrates (called rhodopsin) which allows them to respond to
light is sometimes referred to as visual purple for this reason – it doesn’t absorb well
in the red, reflecting it instead and thus appearing purplish. Vitamin A is required to
make this pigment, and so one of the first symptoms of a deficiency in this vitamin is
night-blindness.

Figure 31.6 The eye has to change accommo-
dation to focus properly at the two ends of the vis-
ible spectrum, which can make some colour com-
binations jarring to look at when in close proxim-
ity.

The cones show some peculiarities in distribution and sensitivity. The long-wave-
length cones (designated L, and peaking in the yellow) and medium-wavelength cones
(designated M, and peaking in the green) make up by far the largest numbers (about
95% in total). The short-wavelength (S) cones are found scattered slightly further out
than the other types. These blue-sensitive cones are much more sensitive than the
others, but not enough to compensate for the reduced number. It is believed that some
compensation happens in the brain. This difference in the number of S-cones is partly
responsible for blue objects being less distinct than other colours, but the difference
in focal length for the lens–cornea system at different wavelengths also has an effect.
Graphic arts experts suggest caution when putting red and blue in close proximity, par-
ticularly for text. The difference in accommodation in the eye needed to focus on the
different colours is tiring for the viewer, as in Figure 31.6.

DNA coding for some of the proteins involved in vision are found on the X-chromo-
some, which is the reason for the sex-linked nature of many colour-vision abnormali-
ties. The proteins that are needed for red and green detection are found only on the X-
chromosome, so only one copy exists in males. If this copy contains a defect, red-green
colour blindness is the result. This occurs in something like 5% of the male population.

Camouflage

In the Second World War, objects were cam-

ouflaged by painting them the same shade

of green as grass. However, the spectrum

of wavelengths scattered from the paint and

the grass were not the same, even if they ap-

peared that way to the naked eye. By using

filters to block some wavelengths, the differ-

ences could be seen.

Colour Science

The colour-receptive cones in the retina come in three varieties, which have peak re-
sponses in different areas of the visible spectrum. When light of all wavelengths enters
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Figure 31.7 An approximation of the 1931 CIE (Commission Internationale de l’Èclairage) chromaticity diagram. The
colours that we see from single wavelengths are around the top edge. Mixtures of two wavelengths appear to lie on
the line between these points. There are many different mixtures of wavelengths in varying intensities that will have
the same appearance to the eye.

Figure 31.8 Functions used to model the response of the human eye to colour.

the eye, all the receptors are stimulated, and the brain interprets this as close to white.
If only some wavelengths are present, the receptors are stimulated different amounts
and this is interpreted as a particular colour.

For example, most of the emission for orange sodium street lamps is at a single
wavelength (589 nm) which stimulates the red and green receptors, and most people
interpret this as orange. By contrast, an orange sweater looks orange in white light be-
cause the pigments in the fibres absorb some light, reflecting a mixture of wavelengths
that stimulates the red and green cones. A chromaticity diagram, like the one

Figure 31.9 The primary (red, green and blue)
and secondary (magenta, cyan and yellow)
colours. Adding two primary colours of light
together will produce the secondary colours,
adding all three primary colours together will
produce white. Adding all three secondary
colours together will also produce white.

Figure 31.10 A combination of cyan and ma-
genta ink appears blue.

sketched in Figure 31.7, is a way of showing how any mixture of wavelengths of visible
light will appear to the eye. A nearly monochromatic (that is single wavelength) source,
like a laser, will lie on the upper border of the shaded area. Any mixture of two wave-
lengths will lie on the line between the two wavelengths, and will lie closer to the more
intense of the pair.

Figure 31.8 shows the functions used for modelling the response of the typical eye
to the visible spectrum. By multiplying these functions by the actual light spectrum
from a given object, three values can be assigned to the colour. These three numbers
are known as the tristimulus values. These values are weighted so that they add up to
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one, which is how we are able to produce a two-dimensional plot – the third value can
be found from the two that are plotted.

Figure 31.11 Subtracting two secondary colours
from white light will produce the primary colours,
subtracting all three secondary colours will pro-
duce black. Subtracting all three primary colours
will also produce black.

Because the eye responds primarily to red, green and blue light, these are known as
the primary colours. Almost any colours that the brain can differentiate between can
be produced with mixtures of monochromatic red, green and blue light. This is why if
you look very closely at your TV screen you will see that it is made up of little areas of
red, green and blue.

Three secondary colours are defined also, these being cyan, magenta and yellow.
These secondary colours can be thought of a mixtures of pairs of the primary colours
of light, or the absence of one of the colours from white light.

The usefulness of these secondary colours becomes readily apparent in the printing
process, and indeed the three secondary colours will be very familiar to anyone with a
colour printer. If yellow ink is printed onto a page, it appears yellow under white light
because red and green light are reflected by the pigment and blue light is absorbed,
hence you can think of yellow as red and green mixed, or the absence of blue. Similarly,
magenta ink looks that way because green is absorbed by it, and blue and red are re-
flected. Cyan ink absorbs red light, reflecting green and blue. This means that having
a layer of magenta ink and then cyan ink will absorb green and red light from a white
light mixture, leaving blue. In the same way, cyan and yellow mixed look green, and
yellow and magenta will look red. This ability of pairs of secondary colour pigments to
appear as any of the primary colours means they can produce almost any visible colour
when mixed in the right proportions.

31.10 Summary

Key Concepts

myopia A vision defect which causes collimated light to be focussed before the retina even with
the accommodation muscles relaxed, making distant objects appear blurred. It can be
the result of a refractive problem, or because the eye is too long. Sometimes called ‘short-
sightedness’. Myopia can be compensated for with a diverging lens.

hypermetropia (or hyperopia) A vision defect that causes light rays to be focussed behind the
retina when the accommodation muscles are in a relaxed state, either due to a refractive
error or the eye being too short. Distant objects can be brought into focus by increasing
the lens power by accommodation, so it is sometimes called ‘farsightedness’. Hyperme-
tropia can be compensated for with a converging lens.

presbyopia Age related loss of flexibility of the lens, causing blurred near vision.

emmetropia Normal vision.

astigmatism A visual defect caused by an irregularly shaped cornea or lens, causing a difference
in curvature along different axes.
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31.11 Problems

For the purposes of answering these questions you can assume

that a normal human eye has a minimum optical power of 50 D,

a maximum optical power of 54 D, and that the normal distance

between the retina and the lens is 2 cm. 31.1 A person with axial
hypermetropia has a lens-retina distance of 1.9 cm and the max-
imum optical power of their eye is the same as that for a normal
person.

(a) What is the near point of this person?
(b) What is the range of accommodation this person needs to

see objects from their near point all the way up to their far point
(which is the same as for a normal eye)?

(c) What is the optical power of the contact lenses used to treat
this person and give them a normal near point of 25 cm?

31.2 A person with a normal lens-to-retina distance wears contact
lenses with an optical power of 1.2 D in order to be able to clearly
see objects 25 cm in front of them.

(a) What kind of vision defect does this person have?
(b) What is this person’s near point (without the contact

lenses)?

31.3 A person has refractive myopia with a far point of only 5 m.
They are to be prescribed a set of glasses that will enable them to
see distant objects clearly and the person’s glasses will typically sit
2 cm in front of their eyes.

(a) What is the minimum optical power of this persons eyes?
(b) What is the optical power of the glasses required?

31.4 A person has refractive hypermetropia with a near point at
3 m. They are to be prescribed a set of glasses that will enable them
to have normal close-in vision and the person’s glasses will typi-
cally sit 2 cm in front of their eyes.

(a) What is the maximum optical power of this person’s eyes?
(b) What is the optical power of the glasses required?

31.5 A person who had normal vision when they were younger
now has age related presbyopia. They can still see distant objects
clearly but have a reduced range of accommodation of just 1.0 D.

(a) What is this person’s near point?
(b) What is the power of the contact lenses needed to correct

this presbyopia (so that person has a normal near point of 25 cm)?

31.6 When driving you need to be able to clearly see road signs and
traffic some distance ahead of you as well as the dashboard in your
car. Assume that you have a normal lens-to-retina distance.

(a) What minimum optical power of the eye is needed to
clearly see a road sign 200 m ahead?

(b) What maximum optical power is needed to clearly see the
dashboard 40 cm away?

(c) What range of accommodation is needed?
(d) If you can accommodate at a maximum rate of 1.1 dioptres

per second, how long does it take your eyes to adjust when looking
up at the road from the dashboard?

(e) If you are traveling on the open road at 100 km h−1, how
far do you travel in the time it takes your eyes to accommodate
between the dashboard and the road?

31.7 Many automated industrial engineering plants use high def-
inition cameras on the production line in order to monitor the
quality of products on the assembly line. A particular plant manu-
factures small machined products which have a maximum depth
of 5 cm. If the cameras used have a single lens which is around
3 cm from the CCD array on which the image is projected (and
captured), and are placed such that the lens is 8 cm above the con-
veyor belt on which the circuit boards rest. What is the necessary
range of accommodation of these cameras if they are required to
clearly image details over the whole range of depth of the circuit
boards? How does this compare to the accommodation range of
the human eye?

Figure 31.12 A machined product passing underneath an automated camera.
The camera needs to be able to focus on all parts of the object (although not
necessarily at the same time).

31.8 A person with refractive myopia can see objects as close as
25 cm clearly, and objects as far away as 3 m clearly.

(a) What is the maximum optical power of this person’s eye?

(b) What is the minimum optical power of this person’s eye?

(c) What is the range of accommodation of this person’s eye?

The person gets a set of contact lenses for their eyes to correct their
far vision. When they are wearing the contact lenses they can see
objects in the distance clearly.

(d) What is the optical power of the contact lenses?

(e) What is the person’s new near point?

(f) What is the range of accommodation of this person when
wearing their contact lenses?
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32.1 Introduction

32.2 Superposition and Interference

32.3 Huygens’ Principle

32.4 Diffraction

32.5 Young’s Double-Slit Experiment

32.6 Single-Slit Diffraction

32.7 Diffraction Gratings

32.8 Circular Apertures and Diffraction

32.9 Visual Acuity

32.10 Thin-Film Interference

32.11 Summary

32.12 Problems

32.1 Introduction

In some situations, it is not possible to explain the behaviour of light without using
a proper wave description. When light interacts with structures on a similar scale to
its wavelength, its wave nature can no longer be ignored. In this chapter we will look
at some diffraction and interference effects, and explain how the diffraction of waves
limits the resolution with which we detect location.

Key Objectives

• To understand how Huygens’ principle can be applied to explain wave phenom-
ena.

• To understand wave diffraction.

• To understand the pattern formed by diffraction of monochromatic light through
a single slit.

• To understand how diffraction limits resolution.

32.2 Superposition and Interference

Before we go on to look at wave effects in more detail, a quick reminder about super-
position and interference of waves.

When more than one wave propagates through a medium, the waves pass through
one another unchanged, and the resulting disturbance is the sum of the individual dis-
placements. This is called the principle of superposition.

Figure 32.1 The superposition of two waves. When the waves are nearly out of phase they add together destructively
(the sum of the two waves ≈ 0 at all points). When the waves are nearly in phase they add together constructively
(the sum of the two waves is close to its maximum at all points).

At each moment in time, the displacement of a particular point in a medium is
the sum of the displacements caused by of all the waves passing that point (see Fig-
ure 32.1). The resulting patterns of constructive and destructive addition are called
interference.

Introduction to Biological Physics for the Health and Life Sciences Franklin, Muir, Scott, Wilcocks and Yates
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32.3 Huygens’ Principle

Figure 32.2 Circular waves propagating out
from a source point. The curved lines represent
the crests of the wave. A wave front is all the
points of a wave that are in phase, such as these
crests. The rays show the direction of propa-
gation which is everywhere perpendicular to the
wave fronts.

In geometric optics, we treated light as something that travelled in straight lines (rays)
from point to point. An analysis method named after Christiaan Huygens (1629–1695)
allows us to follow the propagation of not just a simple ray, but an entire wave front.
Figure 32.2 shows a glimpse of how such wave fronts propagate out from a single point
in simple circular case, rather like the ripples spreading out in a pond when a stone is
dropped in. We can use the idea of overlapping circular wavelets like these to under-
stand the way much more complex wave fronts will move through space.

Figure 32.3 The application of Huygens’ prin-
ciple to the propagation of a plane wave in an
isotropic medium. After one time period, T =
1/ f , each wavelet has advanced radially by a
distance equal to the wavelength of the wave,
λ. Each wavelet will interfere constructively only
along the straight line representing the translated
wave front.

Key concept:

Huygens’ principle: Every point of a primary wave front serves as the source of
spherical secondary wavelets such that the primary wave front at some later time
is the envelope of these wavelets. Moreover, the wavelets advance with the speed
and the frequency equal to that of the primary wave at each point in space.

By treating every point on the wave front as a source of secondary circular wavelets,
and calculating the mathematical sum of these secondary wavelets, the position of the
wave front at a later time can be determined. Figure 32.3 shows some representative
points on the wave front, and where the secondary wave fronts from those points will
have reached at a later time. In most places, the wavelets will show some degree of
destructive interference, except at the lines, which are where the new wave front will
be at particular times. This is how we expect a plane wavefront to move forward in an
isotropic medium.

Refraction Revisited: Proof of Snell’s Law

We can use this idea of secondary wavelets to help us in the proof of Snell’s Law. Fig-
ure 32.4 shows a few selected wavelets propagating in the second medium, which has a
slower wave speed. From this, we can build up a picture of where the single wavefront
will be at various times. The direction of propagation is perpendicular to the wavefront,
so the light bends at the interface.

Figure 32.4 As a wave front advances at an angle along a boundary between two media of different refractive index,
Huygens’ wavelets are produced which propagate through the second medium at a different speed (slower in this
case as n2 > n1). The wave front of the wave in the new medium can be reconstructed from these wavelets.

Figure 32.5 shows just the wavefronts, with the distances travelled in the same time
by different parts of the wave front. The angles of incidence (i ) and refraction (r ) are
defined as the angles the light rays make with the normal. By looking at the shaded
triangles constructed, we can see that the angles i and r are the same as the interior
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angles of the triangles that have been similarly labelled. The sines of the two angles are

sin i = x

h
−→ h = x

sin i

sinr = y

h
−→ h = y

sinr
(32.1)

If t is the time taken for the wave to travel the distance labelled x, and the wave trav-
els at speed v1 in the first medium, then x = v1t . Similarly, y = v2t , as y is the distance
the wave travels in the second medium in the same time interval. By the definition of
the refractive indices,

v1 =
c

n1
and v2 =

c

n2
(32.2)

so

x = ct

n1
and y = ct

n2
(32.3)

Figure 32.5 Geometric construction that allows the derivation of Snell’s law, as given in Eq. (29.4)

Putting Eq. (32.1) together and substituting in Eq. (32.3)

x

sin i
= y

sinr
(32.4)

ct

n1 sin i
= ct

n2 sinr

This results in Snell’s Law
n1 sin i = n2 sinr (32.5)

which was presented previously in the ray optics section of the text.

32.4 Diffraction

When waves pass by an obstacle or through a gap, there is some bending into the shad-
owed region, as can be seen in Figure 32.6. This is known as diffraction. The other
properties of the wave (speed, wavelength, frequency) are not changed.

Figure 32.6 Huygens’ wavefronts ‘diffracting’
around corners. Subtraction of all the wavelets
blocked by the obstruction results in a curved
wavefront when the remaining wavelets are
added together.

The amount of bending is greatest when the gap through which the wave passes
is around the same size as the wavelength. An example of this is the way we can hear
around corners, but not see around them. The sound waves audible to humans have
wavelengths on the order of centimetres or metres, and will diffract around corners,
with the effect being stronger for bass (lower) frequencies. Light waves, with wave-
lengths less than a micron, will not bend anywhere near enough. (Sound waves also
echo off walls in a more coherent manner as the surfaces are very flat compared with
the wavelength)

The technique of using rays travelling in straight lines, which was sufficient for ex-
plaining image formation by mirrors and lenses, cannot be used to explain diffraction.

www.wiley.com/go/biological_physics 337



32 · WAVE OPTICS

Using Huygens’ principle to draw the secondary wavelets can give an explanation for
this phenomenon, though.

Diffraction confusion

Don’t confuse diffraction with dispersion. Dis-

persion in glass is caused by different

wave frequencies having different speeds.

Diffraction bends different frequencies differ-

ent amounts, but there is no change in speed.

Having said this, some definitions of disper-

sion include any effect that separates the dif-

ferent frequencies, and include diffraction as a

cause of dispersion. In this book, when we re-

fer to dispersion, we mean separation caused

by a frequency-dependent velocity.

32.5 Young’s Double-Slit Experiment

Thomas Young (1773–1829) made significant contributions to various areas of optics
(such as the investigation of colour vision) and is also widely regarded as being the first
person to decipher some of the Egyptian hieroglyphics on the Rosetta Stone. There is
one particular demonstration of the wave nature of visible light that was so significant
that his name is still nearly always added to it – the double slit experiment.

Figure 32.7 shows a version of the sketch from Thomas Young’s 1803 paper on the
experiment. The two points labelled A and B are coherent point sources of waves. By
coherent, we mean that the sources are in phase – they emit waves that go up and
down at exactly the same time. The stripes and white spaces represent the crests and
troughs of waves. Any line (such as the centre line from between A and B to between
D and E) where the crests always meet crests and the troughs always meet troughs will
have the most variation in wave height. The points labelled C, D, E and F are places
where the opposite happens, and crests always meet troughs. At these points complete
destructive interference always occurs, and there is no resulting displacement. The
points C, D, E and F are what we call nodes. The points halfway between them where
the displacement is the largest are called antinodes.

Figure 32.7 A copy of the sketch from Young’s original work.

This effect is easily seen with water waves, but to observe these areas of constructive
and destructive interference on a screen with light is a little trickier. The light must be
monochromatic – a single wavelength – otherwise the places that are nodes for one
wavelength still won’t be dark because they are not nodes for others.

Monochromatic light can be produced with spectral lamps, which produce light at
only a limited number of frequencies, and a suitable filter. Nowadays it is easy to get
monochromatic light from lasers. The two sources must also be the right spacing apart.
For visible light wavelengths the separation between sources needs to be on the order
of a few microns. The best way to do this in practice is to use a single light source and
to let this light pass through two very thin slits. If the slits are thin enough, they will act
rather like point sources of spherical wave fronts, as in Figure 32.7. This will also ensure
that the two ‘sources’ are in phase.

Figure 32.9 Close up of the slit, showing the an-
gles.

Figure 32.8 and the magnified section in Figure 32.9 will allow us to use some geom-
etry to find the criteria for constructive and destructive interference. We have squeezed
Figure 32.8 up quite a lot to show the labelling of the distances better. The equations we
are developing are for a much bigger L than that shown, which is why the two figures
show different ray directions.

For a small angle, θ, if we use the dimensionless radian to measure the angle, then

sinθ ≈ tanθ ≈ θ (in radians) (32.6)

From Figure 32.8

tanθ = y

L
(32.7)
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Figure 32.8 Light from each of the slits leaves in phase with the light from the other and hits the screen. At some
points the phase difference caused by the different paths taken causes destructive interference, at others it causes
constructive interference.

and from Figure 32.9

sinθ = ∆x

d
(32.8)

The distance ∆x is called the path difference – it is the difference in distance trav-
elled for light from the top slit and bottom slit to reach the same place on the dis-
tant screen. When the path difference ∆x is a whole number of wavelengths, that is
∆x = mλ where m is an integer, the interference will be constructive and there will be
an intensity maximum on the distant screen. To find the places where there is destruc-
tive interference, the path difference needs to be such that a wave crest meets a wave
trough, i.e., an integer-plus-a-half number of wavelengths. Assuming the angle is small
enough for the small angle approximation (Eq. (32.6)) to apply, we have the following
criteria

Constructive:

∆x = mλ= d sinθ = d y

L
, m ∈ (. . . ,−1,0,1,2. . .) (32.9)

Destructive:

∆x =
(
m + 1

2

)
λ= d sinθ = d y

L
, m ∈ (. . . ,−1,0,1,2. . .) (32.10)

We can summarise the necessary information in one equation

mλ= d sinθ (32.11)

as long as we remember what value of m corresponds to each feature of interest that we
might want to locate, such as m = 2 for the second intensity peak off the central axis.

32.6 Single-Slit Diffraction

Of much more interest for practical purposes is the pattern of light and dark created
by just one gap. This is of crucial importance for real-world applications. There is a
relationship between the aperture (gap) size that we use to collect light, and how much
information gets lost due to the wave fronts being bent.

Fresnel and Fraunhofer

Here we are concerned only with what is called

the ‘far-field’ or Fraunhofer diffraction pattern.

Close to the slits, the pattern is quite differ-

ent, and is known as the ‘near-field‘ or Fresnel

diffraction pattern.

Just as interference between waves originating from each slit forms alternating bands
of light and dark, an interference pattern is observed when light passes through just one
slit. This pattern takes the form shown in Figure 32.10.

The single-slit diffraction pattern is formed by the mutual interference of light that
passes through the slit. We can gain a qualitative understanding of this effect by con-
sidering many rays passing through the slit at different positions and different angles.
Figure 32.11 shows how the bright central peak, the first dark band and the first bright
fringe are formed.
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Figure 32.10 A single-slit diffraction pattern is characterised by a large central peak flanked by a series of increas-
ingly weak bands. At the top of the figure is a simulated diffraction pattern for a slit of width 50µm being illuminated
by light of wavelength 633 nm. Below this the intensity profile showing the variation in the intensity of the pattern.

Provided that the distance to the screen on which the diffraction pattern is being
viewed is much larger than the slit width, we can say that the light hitting any point on
the screen is the sum of all rays exiting the slit at some angle, θ.

The bright central peak is created by the constructive interference of all the rays
exiting the slit straight ahead. Each ray is exactly in phase with the others and so the
central peak is very bright.

The first minima either side in the diffraction pattern can be understood in terms of
destructive interference between pairs of rays, each with a path length difference of λ

2 .
For every ray in the ‘top’ half of the slit, a ray may be found in the bottom half that has a
path length difference of λ

2 . These pairs of rays destructively interfere and the result is a
minimum in the diffraction pattern. In this case the two ‘extreme’ rays passing through
each edge of the slit will have a path length difference of λ and

sinθ = λ

D

In contrast to the double slit case, λ= D sinθ results in destructive interference.
As the angle increases slightly, the number of pairs of rays which destructively inter-

fere decreases, and the number of pairs of rays which constructively interfere increases.
The first bright fringe is formed at an angle such that the path-length difference of the
two extreme rays is close to 3λ

2 and

sinθ = 3λ

2D

Each ray in the ‘top’ third of the slit will destructively interfere with a ray from the
middle third of the slit. This bright fringe is not as bright as the central peak, partially
because not all rays interfere constructively.

As the angle continues to increase, other regions of destructive interference and
partial constructive interference are found which cause the second, third, fourth, etc.
bright/dark fringes.
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Figure 32.11 The first dark band (θ1 in Figure 32.12) in the single-slit diffraction pattern is formed because of
destructive interference between pairs of rays exiting the slit at an angle such that each ray destructively interferes
with another that has a path-length difference of λ

2 . The first bright side band (between θ1 and θ2 in Figure 32.12) is
formed because of destructive interference between pairs of rays from the top third and middle third that have a path
difference of λ

2 . Some rays do not destuctively interfere, and this bright band is less intense than the central peak.

Generalising this, the condition for destructive interference for a single slit is

D sinθm = mλ, m =±1,±2,±3, ...(m not zero) (32.12)

Figure 32.12 Destructive interference is seen at the angles θ1, θ2, θ3, etc. These angles correspond to the integers
m = 1,2,3, .. in Eq. (32.12)

In the real world, the two slits that are used to produce an interference pattern each
have a finite width, and would individually produce a single-slit diffraction pattern like
Figure 32.10. This means that the real pattern produced is not an infinite series of light
and dark bands on a screen, but is a combination of the light and dark bands that would
be expected from Eq. (32.11), with an intensity pattern that is shaped like a single-slit
pattern with nodes at the positions predicted by Eq. (32.12).
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Figure 32.13 A comparison of the single and ‘real’ double slit diffraction patterns. When we have a pair of slits, each
slit individually produces a pattern like that in the top of the figure. When two such patterns are overlapping, there
is interference between the two patterns and a pattern like our theoretical double slit diffraction pattern is produced.
The spacing of the thin bands is dictated by the double-slit interference pattern, but these peaks lie within the profile
of a single-slit diffraction pattern, so some have lowered intensity.

Problem: Two slits, each 90 µm wide, are separated by a distance of 360 µm. The diffraction pattern produced

when 750 nm light passes through the slits consists of a series of narrow peaks whose peak intensities vary inside an

‘envelope’ whose shape is the same as the single-slit diffraction pattern for each slit (see Figure 32.14).

In this particular case, as in Figure 32.14, the first minimum of the single-slit ‘envelope’ happens to coincide with

the a peak in the double-slit pattern. Because of this there is a missing fringe. What is the order number m of the

missing double-slit interference pattern peak produced through the double slits specified in the question? (Note: it

is not the same as that shown in Figure 32.14.)

Example 32.1 Single-slit diffraction and double-slit interference

Solution: For light of wavelength λ, the minimum in the single slit envelope are given by

D sinθn = nλ

where D is the width of each slit, n is the order number of the minimum (n = 0,1,2, ...) and θn is the angle to the n-th
minimum. The maxima in a double slit pattern are given by

d sinφm = mλ

where d is the spacing between the slits, m is the order number of the maximum (m = 0,1,2, ...), and φm is the angle to
the mth maximum.

342 www.wiley.com/go/biological_physics



32.7 DIFFRACTION GRATINGS

Figure 32.14 A double-slit pattern consists of a series of narrow
peaks, the positions of which are found by considering the condi-
tion for constructive interference for a double slit, situated inside a
single slit ‘envelope’. It is possible for the narrow peak spacing to
be such that one of the peaks falls in a minimum in the envelope.

We are trying to find which peak (m = ?) in the double-slit pattern
coincides with a minimum in the single-slit pattern. Given this we
can say that the angle to the nth minimum is the same as the angle
to the mth maximum and so sinθn = sinφm

sinθn = sinφm

nλ

D
= mλ

d

m = n
d

D

which when using n = 1, d = 360×10−6 m and d = 90×10−6 m gives

m = 1× 360×10−6 m

90×10−6 m
= 4

The fourth double-slit maxima coincides with the first single-slit
minima and so will be missing from the pattern produced.

32.7 Diffraction Gratings

A diffraction grating is a series of evenly-spaced slits, typically chosen to produce only
a few narrow maxima. They are then useful for separating out different wavelengths of
light. Again the position of the nth order maximum is given by

nλ= d sinθ (32.13)

where d is the slit-to-slit distance, which is related to the number of slits per metre,
Figure 32.15 Intensity of diffraction pattern from
a circular aperture. The scale at the right indi-
cates the intensity, with white being the brightest.
[Public domain picture courtesy of Wikipedia.]

N , by d = 1/N . The number N is usually many thousand lines per centimetre.
Diffraction gratings are useful for separating wavelengths of light, rather like a prism.

They have some advantages, though. For example, a reflection-type grating can be con-
structed which will specularly reflect all wavelengths and act like a normal mirror (for
the zeroth order), and also separate out the light into its component wavelengths over
a range of angles (for the 1st-order maximum).

32.8 Circular Apertures and Diffraction

The Airy Pattern

When the aperture is no longer a long slit, the pattern formed on a screen is slightly
different. When a plane wave is diffracted through a circular aperture, the distribution
of the wave intensity follows a characteristic shape called an Airy pattern. Figure 32.15
shows how the pattern would look viewed on a screen and Figure 32.16 shows the in-
tensity profile from a crosssection through the centre.

Figure 32.16 The Airy profileConsider a situation where a circular aperture is uniformly illuminated by light
from a distant point source; this means that instead of being able to form a correspond-
ing sharp image point, an imaging system (such as the eye) really produces a smudge
with rings. This limits the ability of a system to resolve objects that are too close to-
gether – the resulting smudges will overlap.

The Rayleigh Criterion and Resolution

The sine of the angular distance (in radians) to the first minimum in the Airy pattern is
in fact 1.22 times the wavelength divided by the diameter of the aperture, rather than
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Figure 32.18 As the angular separation of two point-like objects viewed through some sort of circular aperture, be it
a telescope or the human eye, gets smaller, the Airy patterns of the objects start to overlap. Eventually this results in
an inability to definitively say that the two objects are separate from one another. (Left) Airy profile functions. (Right)
Simulated Airy patterns through two small circular holes.

the 1 for a slit. This allows us to define a criterion by which we can specify when two
objects are too close together to be resolved by the imaging system.

Figure 32.17 For small angles, the angle θR in
radians is approximated well by y/x.

Imagine that we have two identical, distant, point sources of light that emit light at
only one wavelength, λ. The light from these sources uniformly illuminates a circular
aperture and we observe the (spread out) image of the two sources on a screen. The
light intensity from the two sources will add together, and when the sources get closer,
so will the images, until the central areas are so overlapped that it is no longer possible
to tell that there are in fact two separate sources. (See Figures 32.17 and 32.18

Mathematically, we can express this as

θR ∼ sinθR = 1.22
λ

D
(32.14)

where λ is the wavelength, D is the diameter of the aperture and θR is the minimum
angular distance between the objects for them to be resolved.

This relationship tells us a great deal about the limits of any system designed to
gather information of a wave nature. For example, for a telescope to gather informa-
tion about objects in deep space (whether is the form of light or radio waves), the bigger
D is made, the smaller the minimum angle of resolution. The diameter of the pupil of
the eye sets limits on how good eyesight can be, although there are other considera-
tions, such as the spacing of the light-sensing cells on the retina.

32.9 Visual Acuity

Visual acuity is the ability of the visual system to resolve details. Acuity is limited by
diffraction, aberrations and the density of photoreceptors on the retina. Other factors,
such as illumination and contrast, may affect image resolution.

One commonly used method of measuring this is the Snellen chart. The letters on
the chart are constructed so that the details (width of stroke or gap) take up one-fifth
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of the height. In Snellen notation, a person’s visual acuity is specified in terms of the
ratio of two distances. The first is the viewing distance (usually 20 ft (feet) or 6 m). The
second is the distance at which the smallest letters that could be distinguished would
subtend an angle of a 12th of a degree. Normal acuity is 20/20 measured in feet, or 6/6
in metres, meaning that a person can read letters with a height of 8.8 mm at a distance
of 20 feet. A person is legally blind if they cannot read the largest letter on the chart (an
acuity of 20/200) while using the best corrective lenses available.

Problem: A telescope can just resolve features 5 km apart on the Moon’s surface. Given that the moon is 3.85 × 108 m

away from the Earth, what is the diameter of the telescope’s aperture? Use a wavelength of 550 nm.

Example 32.2 Resolution limit

Solution: s = rθ therefore θ = s
r = 5×103

3.85×108 = 1.30×10−5 radians. To be resolvable, the central maximum of one object’s
diffraction pattern must coincide with the first minimum of the other object’s diffraction pattern. Therefore the angle to
the first minimum of the diffraction pattern is 1.30×10−5 radians. Angle to the first minimum of the diffraction pattern
of a circular aperture is (using the small angle approximation)

θ ≈ sinθ = 1.22λ

D

Therefore

D = 1.22λ

θ
= 0.052 m

Problem: How close is normal visual acuity to the diffraction limit, assuming a pupil size of 5 mm?

Example 32.3 Resolution limit

Solution: To see the line on the chart that represents 20/20 vision, a person needs to be able to be able to resolve objects
one-fifth of 8.8 mm apart at about 6 m distance. This requires an angular resolution of

θ = s

r
=

8.8×10−3 × 1
5 m

6 m
= 2.9×10−4 radians

The diffraction limit for an aperture of 5 mm with visible light (λ∼ 500 nm)

θR = 1.22
λ

D
= 1.22

500×10−9 m

5×10−3 m
= 1.22×10−4 radians

The human eye is not so far from the limits of how good it can be in this respect.

32.10 Thin-Film Interference

Bands of colour in the light reflected from an oily puddle of water or a soap bubble
are a familiar sight. When you look at a soap bubble in white light, you might notice
that it is not really rainbow-like in its colouring, though. What you will see is mostly
a mix of yellows, pinks and blues. This is because as the thickness and your viewing
angle change, there is a particular wavelength range for which there is some destructive
interference of the waves reflecting from the two water/air interfaces. If this is in the
green part of the spectrum, the remaining colours will look much like a mix of red and
blue – magenta. (See Section 31.9.)

Iridescence

When some kind of interference phenomenon

causes colours to change with viewing angle,

this is called iridescence. This is the cause of

some of the most beautiful displays of colour

found in nature, such as the stunning blue

wings of butterflies of the Morpho genus. An-

other example is the peafowl feather, where

there are multiple kinds of interference in-

volved, such as scattering off periodic nanos-

tructures.

In the chapter on Waves (Chapter 8) it was pointed out that a wave may or may not
change phase upon reflection. For light waves:

• Waves reflecting off of a medium with a higher refractive index than the one they
are travelling through have 180° phase change.
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• Waves reflecting off of a medium with a lower refractive index than the one they
are travelling through have no phase change.

For the waves reflecting off the front and back surfaces, the path difference will
be twice the film thickness, t . If there is no phase change (or the same phase change
at both surfaces), we would expect destructive interference to occur when 2t is 1/2,
3/2, 5/2 of a wavelength and so on. Similarly, if there is a phase change for one of
the reflected waves (as for a soap bubble), then constructive interference will result
instead.

32.11 Summary

Key Concepts

Huygens’ principle An approach to wave propagation problems in which every point on a wave
front is considered to be a source of forward-propagating secondary wave fronts. The
combined effect of all the secondary wavelets gives the resultant advancing waves.

aperture An opening in something. The opening through which light passes to expose the film
or hit the sensor in a camera. The diameter of the primary mirror or lens in a telescope.

diffraction The bending of wave fronts around obstacles or apertures. The effects of diffraction
become significant as the wavelength approaches the obstacle or aperture size.

superposition (waves) When more than one wave propagates through a medium, the waves
pass through one another unchanged, and the resulting disturbance is the sum of the
individual displacements.

interference When multiple individual waves are superposed at the same position in a medium,
this is termed interference. Constructive interference results when the displacements add
to a disturbance larger than the individual waves, and destructive interference results
when the sum of the disturbances is smaller than the individual waves.

Young’s double-slit experiment A crucial experiment in the development of the wave theory of
light, performed by Thomas Young, which proved conclusively that light exhibited wave
properties. Monochromatic light passing through two narrow slits, closely spaced, shows
an interference pattern on a screen.

single-slit diffraction When monochromatic light passes through a single, small aperture and
falls on a screen some distance away, a series of dark minima and light maxima are ob-
served with a bright central maximum.

resolution Due to diffraction, the ability of any optical system to produce distinct images of
objects which are close together is limited. This limit is called the resolution or resolving
power of the instrument.

Rayleigh criterion A criterion by which we can judge if two objects will be resolvable, which
relates the diameter of the aperture to angle of resolution.

angular resolution The minimum angular separation of two objects, to then be distunguish-
able.

Equations

mλ= d sinθ m integer (double slit, maxima)

mλ= D sinθ m =±1,±2,±3, ...(m not zero, single slit, minima)

θm = 1.22
λ

D
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32.12 Problems

32.1 Light of wavelength 550 nm passes through a 10 µm wide slit
on to a screen 1 m away from the slit.

(a) How far either side of the central maximum are the 1st, 2nd
, and 3rd dark regions in the diffraction pattern?

(b) What is the maximum possible number of bright fringes
that could be viewed either side of the central maximum in perfect
conditions?

32.2 A high intensity source of microwaves used in a piece of
medical diagnostic equipment is not adequately shielded. The
microwaves produced by this equipment have a frequency of
150 GHz, and there is a gap in the shielding 1 cm wide. At what an-
gles from the gap in shielding will the intensity of the microwave
radiation be zero? (assume the microwaves are incident normally
to the gap.)

32.3 A concert is to be held in a large hall and two speakers are
placed 5 m apart at the front of and in the middle of the hall. Dur-
ing sound testing these speakers are producing a steady 1000 Hz
tone (the speed of sound in air is 340 m s−1). The hall is 50 m long
and 30m wide.

(a) The hall is 30 m wide and a person starts in the middle. As
the person walks to their right they should notice the sound inten-
sity vary. At what positions would you predict the person would
be able to hear the 1000 Hz tone produced by the speakers most
clearly?

(b) It is unlikely that the person will actually notice much dif-
ference in the sound intensity as they walk across the back of the
hall. What is the single biggest reason for this difference between
your prediction in (a) and the actual experience of the person?

32.4 A particular toy telescope produces a magnified virtual im-
age of distant objects. This virtual image has a magnification of
+3 and is located at the same distance from the telescope as the
object. The diameter of the objective lens of the telescope is 3 cm.
When looking through the telescope, the pupil of the eye dilates
to 6 mm. What is the minimum separation between two objects
that can be resolved at a distance of 150 m? (Assume light of wave-
length λ= 550 nm.)

32.5 The primary mirror of the Hubble Space Telescope is 2.4 m
in diameter. Suppose it is most sensitive to light of wavelength of
820 nm.

(a) What is the diffraction limited angular resolution of the
Hubble Space Telescope?

(b) If the HST were used to look at the surface of the
Moon, what is the minimum distance between two distinguish-
able points? (The Moon orbits at a mean distance of 384000 km
from the center of the Earth which has a radius of 6380 km, the
HST orbits at an altitude of 569 km.)

(c) If the HST were used to look at the surface of Jupiter, what is
the minimum distance between two distinguishable points? (The

orbital radius of the Earth is 150×106 km, and the orbital radius of
Jupiter is 779×106 km.)

(d) If the HST were used to try and find planets around a
star that was only 20 light years away (very close in astronomical
terms), what is the minimum distance between two distinguish-
able points? (c = 3.00×108 m s−1)

32.6 A normal person’s pupil diameter varies from a minimum of
around 2 mm to a maximum of around 8 mm.

(a) What is the minimum and maximum diffraction limited an-
gular resolution of a normal person’s eye for light of wave-
length 600 nm?

The light that falls on the retina, around 2 cm behind the pupil,
is detected by photo-receptive cells. These cells are most closely
spaced in a region called the fovea on which the image of objects
directly in front of the eye is produced by the cornea and lens. The
density of the photo-receptive cells in the fovea is approximately
3×105 cells per square millimeter and the cells are approximately
circular which means that they have a diameter of around 2.06 µm.

(b) Is the theoretical maximum resolution of the eye for 600 nm
light likely to be limited by the number of photo-receptive
cells or the Rayleigh criterion for a wide open pupil?

(c) Given your answer in (b) what is the minimum distance be-
tween two objects that can be resolved by the unaided eye at
distances of 1 m, 10 m, and 1 km? (Note that these are theo-
retical limits and the actual limits are somewhat worse than
this.)

32.7 An eccentric physicist inexplicably makes his home in the
bilge of a vodka delivery ship crossing the Atlantic ocean north of
the arctic circle. As the physicist forgot to note down the wave-
length of a new light source before throwing the packaging over-
board he performs a single slit diffraction experiment using a slit
of width 110.0 µm. The diffraction pattern is displayed on a screen
3.000 m from the slit and the 1st minima in the diffraction pattern
are 1.420 cm either side of the central maximum. (nair = 1.008.)

Disaster strikes at midnight in the form of an iceberg pushed
into the path of the ship by a team of vengeful teetotaler polar
bears. As the ship sinks and the lab becomes inundated the single
slit diffraction experiment becomes submerged in the briny wa-
ter. The very cold but excited physicist notices that the spacing
between the 1st minima and the central maxima of the diffraction
pattern changes to 1.066 cm.

With the air in his lungs rapidly running out and the chilling
cries of triumphant polar bears filling his ears he hurriedly scrawls
(to four significant figures) both the wavelength of the light source
in air and the refractive index of salty water on the wall for the edi-
fication of future salvage divers. What did the dead physicist write
on the wall?
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VI

Radiation and Health

Introduction

The discovery of X-ray emission by Röntgen in 1895 and nuclear radiation by Becquerel
in 1896 led directly to the development of ‘modern’ physics in the twentieth century.
The theoretical and experimental developments which arose from these discoveries
led to the development of atomic and nuclear physics. Atomic, nuclear and radiation
physics allow for an understanding of a diverse group of phenomena ranging from the
workings of smoke detectors to the evolution of stars.

In this topic we will investigate the importance of ionising radiation to the health
sciences by looking both at the health risks associated with exposure to sources of haz-
ardous radiation, and at how radiation is used in the diagnosis and treatment of med-
ical conditions. We will develop an understanding of the physical mechanisms under-
lying the phenomena, and with the various quantities used to measure radiation and
its effects on biological material.

To understand the nature and effects of radiation, we need to first look at the struc-
ture of matter at both the atomic and nuclear level. This is covered in the first two
chapters, where we will look at the constituents of atoms and nuclei and forces that
hold those sub-atomic particles together.

In the third chapter we will look at different types of ionising radiation: α, β, gamma,
and X-ray radiation. We will see which types of radiation are generated by atomic-level
processes and which have their origin in the nucleus. We will also gain an understand-
ing of the importance of the rate at which radiation is released and the energy trans-
ferred by this radiation.

The next chapter will then look at how radiation interacts with other matter, and
how this differs for the types of radiation (particle and photon). This will lead on to
an investigation of the effects of radiation on biological systems. We will look at the
effects of radiation on both individual cells and on overall health: the relationship be-
tween dose and effect, the medical symptoms of exposure and the use of radiation in
treatment and diagnosis of disease.

The goal of medicine is the understanding of the human body – its construction
and its function, in health, sickness and cases of injury. The body is a very complex
system, and images can provide a concise way of transmitting important information
about the state of the human body. Several modern imaging techniques will be covered
in varying depth in the final chapters.
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33ATOMS AND ATOMIC PHYSICS

33.1 Introduction

33.2 Parts of the Atom

33.3 Orbitals and Energy Levels

33.4 The Böhr Model of the Atom

33.5 Multielectron Atoms

33.6 Quantum Mechanics

33.7 Summary

33.8 Problems

33.1 Introduction

Atomic physics is the physics of how whole atoms behave, and is largely concerned
with how atomic electrons are arranged around the atomic nucleus and how they inter-
act with other atoms and fields. The sub-structure of the nucleus is of little importance
to the electron configuration, and so the nuclear structure will be covered in the next
chapter.

Most of the major advances in understanding the structure of the atom were made
in the early twentieth century. A key breakthrough in understanding atoms was the
development of the Böhr model of the atom. While modern atomic physics has moved
far beyond the over-simplified picture of electrons moving in planet-like orbits, we will
use this model of the atom to gain some useful insight into the electronic structure of
atoms, and use it as a basis for predicting X-ray energies in Chapter 35.

Key Objectives

• Understand the structure of the atom.

• To understand the basic electronic configuration of the atom and how energy is
absorbed and emitted by electrons.

• To be able to use the Böhr model of the atom to calculate electron energies.

33.2 Parts of the Atom

An atom can be regarded as the smallest unit of matter which retains the chemical
properties of an element, by which we mean that an atom of, say, carbon loses its
‘carbon-ness’ if it is broken into its constituent sub-atomic particles. Most of an atom
is space. It is made of protons, neutrons (in the nucleus) and electrons (in the space
around the nucleus), and has no net charge. If the nucleus was the size of the full stop
at the end of this sentence, the outer edges of the atom would be over 50 m away.

The basic atom consists of a central, positively charged nucleus surrounded by a
cloud of negatively-charged electrons. The nucleus (covered next chapter) is com-
posed of two types of particles – protons and neutrons.

Antimatter

Antimatter is not just something made up by

science-fiction writers. Each massive funda-

mental particle has an antimatter equivalent,

for example, the electron and positron are a

particle/antiparticle pair. If a particle and its

antiparticle meet, they both cease to exist, so

most antimatter doesn’t hang about for long in

our universe.

An atom is electrically neutral. The electron and proton carry electric charge of
equal magnitude but opposite sign, so in an atom there are equal numbers of protons
in the nucleus and orbiting electrons. Therefore, the number of protons determines
the number of electrons bound to the nucleus in an electrically neutral atom, and it is
the electron configuration that determines the chemical properties of an atom. Each
chemical element has a specific, unique number of protons in the nucleus. For exam-
ple, all carbon atoms have six protons, and oxygen always has eight.

Introduction to Biological Physics for the Health and Life Sciences Franklin, Muir, Scott, Wilcocks and Yates
©2010 John Wiley & Sons, Ltd
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33.3 Orbitals and Energy Levels

Electrons

An electron is what is known as a fundamental or elementary particle. This means
that is not believed to have any underlying substructure; there are no smaller parts
from which it is made. Electrons belong to a group of fundamental particles called
leptons, a grouping it shares with the electron neutrino (which will be discussed later
in the section on β decay). It is believed to be a point-like object with no spatial extent.

The electron has a charge of −1.602×10−19 C and has a mass of 9.109 × 10−31 kg.
Its antiparticle equivalent is the positron, which has the same mass and same charge
magnitude, but it is positively charged instead, hence the name.

Figure 33.1 A typical energy-level diagram for
a single electron bound to a hypothetical atomic
nucleus.

Electrons are often bound to positively charged nuclei to form atoms and molecules,
but they can also exist as free particles.

Atomic dimensions

Radius of the atom ∼ 10−10 m
Radius of the nucleus ∼ 10−15 m

Mass Charge

Neutron 1.675×10−27 kg 0
Proton 1.673×10−27 kg +1.602×10−19 C
Electron 9.109×10−31 kg -1.602×10−19 C

Table 33.1 Summary of atomic parameters.

Orbitals and Energy Levels

An orbital is a path described by an object under the influence of a central potential.
For example, the motion of satellites about the Earth, or of the planets around the Sun
are called orbitals because the gravitational forces which cause these objects to move
in this way all point towards a central point. This label is often used for the electrons
in an atomic system also; their motion is determined by an electrostatic force which
always points towards the nucleus of the atom.

Consider the case of a single electron and a positively charged nucleus in isolation.
When the negatively charged electron is near the nucleus, its potential energy is lower
than it is when it is further away. When the electron is in ‘orbit’ about the nucleus,
energy must be added to the system to remove it from its orbit about the atom. The
electron is in a bound state – it is bound to the nucleus. Work must be done on the
electron to remove it from the atom. This means that it has less energy while bound
to an atom than it does when it is free. A free electron could be at rest in empty space,
i.e., its kinetic and potential energy may be zero. This means that we should consider
particles in bound states as having negative energies.

It is a general result in quantum-mechanical theory that when bound to an atomic
nucleus an electron can only have certain specific total energies. This is called energy

quantisation, and means that the kinetic and potential energy of the electron can only
sum to certain specific values. These allowed energies dictate which electron orbitals
are possible, and which are not. The electrons inside atoms may exist only in certain
states. These allowed states give the range of energy levels of an atom.

The lowest allowed energy state is known as the ground state, and all the other en-
ergy states are called excited states. Figure 33.1 shows how we can illustrate the allowed
energy levels for a simple system like a single-electron atom. The lines show the ener-
gies of the allowed states, which are numbered, with energy increasing up the vertical
axis. Note that an energy diagram such as Figure 33.1 is not a graph of any function,
it is a schematic representation of the energy levels of a bound particle. In particular
the horizontal axis has no meaning at all. The allowed states get closer together in en-
ergy as n increases, and there is a zero energy level past which the electron is no longer
bound, but becomes free.
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Emission and Absorption Spectra

Figure 33.2 (Top) An atom can absorb the en-
ergy of a photon that strikes it by elevating one
of its electrons to a higher energy level. (Bot-
tom) Likewise an excited atom can lose energy
by emitting a photon as an electron jumps to a
lower energy level.

When an electron in an atom is in an excited state, and there is a lower-energy state
which is allowed and vacant, the electron can spontaneously make the transition to the
lower energy state by emitting the extra energy as a bundle of electromagnetic radiation
– a photon. This process is called spontaneous emission. The energy of the photon
that is emitted is the difference between the energies of the two levels.

Stimulated emission

In addition to spontaneous emission, a elec-

tron can undergo stimulated emission when

a photon of the same energy passes by. This is

the process that allows lasers to operate, and

laser is an acronym for light amplification by

stimulated emission of radiation.

In the Optics section, we emphasised the wave nature of electromagnetic radiation.
However, in some experiments it is observed that such radiation is absorbed and emit-
ted in ‘bits’, and the size (the magnitude of the energy) of those bits, the photons, is
proportional to the frequency. If a photon is emitted with energy E , then it will have a
particular frequency:

E = h f (33.1)

The energy and the frequency are proportional to one another, and the proportion-
ality constant, h, is known as Planck’s constant, and has the value h = 6.626×10−34 J s.

The range of possible transitions that the electrons in a particular type of atom may
make correspond to specific frequencies of electromagnetic radiation. This is called
the emission spectrum of an element. An electron may make a transition to a higher
energy state by absorbing precisely the right amount of energy to do so. By measuring
the frequencies at which a collection of atoms absorb radiation, an absorption spec-

trum can be obtained. These processes are illustrated schematically in Figures 33.2
and 33.3.

Because the way such frequencies were observed was by separating out emitted
or transmitted light with a prism and observing the coloured or dark lines, the terms
emission and absorption line (or just spectral line) are often used to refer to a particular
frequency emitted or absorbed by an element. Note that the discrete lines of atomic
absorption and emission spectra are due to the quantisation of the energy levels of
the electrons orbiting the atom and thus the spectrum emitted or absorbed depends
on the number and arrangement of electrons around the atomic nucleus, i.e., on the
element observed. A familiar example of an emission line is the sodium D line – when
sodium atoms are excited, the most intense emissions occur at around 589 nm. This
gives sodium street lights their characteristic orange tinge. Absorption and emission of
photons by atoms is the fundamental process which underlies the interaction of matter
with electromagnetic radiation. Phenomena as diverse as the operation of lasers, the
colour of materials and fluorescence are explained by these processes.

33.4 The Böhr Model of the Atom

Circular Orbits and Quantisation

The first model of the atom to give an explanation of emission and absorption spectra
in terms of quantisation of energy levels was developed in the early twentieth century
by the Danish physicist Niels Böhr (1885–1962). While it is not the best model we have
of how electrons in atoms behave, it provides useful insight into how the wave nature
of matter affects atomic structure.

Key equations from mechanics and elec-

tricity

Any object travelling in a circular path with con-
stant speed is kept in this path by a (cen-
tripetal) force directed towards the centre of
the circle with magnitude

F = mv2

r

Though not covered in this book, it can be
shown that the electrostatic potential energy
contained in a system of two charges sepa-
rated by distance r is equal to the work done
moving one charge toward the other from in-
finity, which is

U = k
q1q2

r

Böhr’s model was proposed (in 1913) for the simplest types of atoms and ions which
have a single electron: hydrogen, singly ionised helium, etc. Böhr’s proposal was that
the electrons in the atom moved in circular orbits around the nucleus and could only
have particular values of angular momentum (given the symbol L). Böhr hypothesised
that the angular momentum of the electron in orbit around the nucleus was quantised.
For such a circular orbit the angular momentum would be

L = mvr (33.2)

where m is the mass of the electron, v is its velocity and r is the radius of the orbit. The
allowed values suggested by Böhr were integer multiples of a fundamental quantity,

Ln = n
h

2π
= nħ (33.3)
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where h is Planck’s constant and n is a non-zero integer. ħ is commonly used as short-
hand for h/(2π), and is known as the reduced Planck constant.

Figure 33.3 Atomic electrons make transitions
up or down the energy level structure of an atom
by emitting or absorbing photons of the appropri-
ate energy.

The potential energy of an electron at a distance r from a nucleus with one proton
is

U =−ke2

r
(33.4)

(See the note in the margin for useful equations from mechanics and electricity.) The
total energy, the sum of the kinetic and potential energies of this electron, is

Etotal =
1

2
mv2 − ke2

r
(33.5)

The force on the electron is the Coulomb attraction between the electron and the atomic
nucleus. This is the centripetal force that keeps the electron moving in a circle, so

F = ke2

r 2
= mv2

r
or

mv2 = ke2

r
(33.6)

Putting this expression for mv2 into Eq. (33.5) gives the total energy

Etotal =−1

2

ke2

r
(33.7)

We can also rearrange Eq. (33.6) to show that

v =
√

ke2

mr
(33.8)

If the angular momentum given by Eq.(33.2) is quantised, then only certain orbital
radii, r , are permitted. Thus, quantised angular momentum implies that only certain
electron orbitals, with the right radius, angular momentum and total energy are al-
lowed. These orbits will be labelled with the index n. This label n is our first example of
a quantum number. The nth allowed orbit has angular momentum Ln = mvrn = nħ,
and radius, rn . Substituting in the value of the velocity from Eq. (33.8)

Ln = nħ=
√

ke2mrn (33.9)

and so the allowed radii are

rn = n2 ħ2

ke2m
(33.10)

These specific allowed radii place a constraint the possible energy levels:

En =−ke2

2rn
=− 1

n2

k2e4m

2ħ2
=−13.6 eV

n2
(33.11)

For cases other than hydrogen this formula needs to be slightly modified. For a he-
lium ion, the two charges involved, the electron and nucleus, now have charges +2e
and −e, so the Coulomb attraction is stronger. For a nucleus with charge Z × e (Z pro-
tons), the energy levels are

The electron volt, eV

This will be covered in detail in the next chap-

ter, see Section 34.3. It is an energy unit, and

is equivalent to 1.6×10−19 J.

Hydrogenic atoms

A hydrogenic atom is one with a single elec-

tron. Thus hydrogen is the only neutral hydro-

genic atom. All other hydrogenic atoms have

more protons than electrons and are thus pos-

itively charged. Some examples of hydrogenic

atoms: C5+, Li2+,U91+.

En =−13.6 eV
Z 2

n2
(33.12)

Figure 33.4 The emission lines from hydrogen. The black lines show observed emission and absorption lines, and
the visible light part of the spectrum is shown for reference.
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This result gives excellent agreement with the observed absorption and emission
spectra of the hydrogen atom when the atomic number is set to one, i.e., Z = 1, in the
above equation. These spectral lines are shown in Figure 33.4 and the atomic transi-
tions which give rise to this spectrum are illustrated in Figure 33.5. Note that Eq. (33.12)
is a good approximation for the transition energies of hydrogenic atoms (see margin
note) with higher atomic numbers.

Figure 33.5 The electronic transitions which give
rise to the hydrogen emission lines shown in Fig-
ure (33.4).

Eq. (33.12) gives the same results as the well-known Rydberg formula, determined
empirically from spectroscopic data

1

λ
= RH

(
1

n2
1

− 1

n2
2

)
(33.13)

where λ is the vacuum wavelength of the spectral line, n1 and n2 are the integers cor-
responding to the principal quantum numbers of energy levels and RH = 1.1×107 m−1

is the Rydberg constant for hydrogen. (Confirming this agreement is left as an exercise
for the reader. Recall that E = h f , c = f λ and note that hcRH = 13.6 eV.)

de Broglie and Waves

A few years after Böhr introduced this model, the French physicist Louis de Broglie
(1892–1987) proposed a radical explanation for the quantisation of angular momen-
tum. By the turn of the twentieth century, the wave-like properties of light were well
known, but Einstein’s explanation of a phenomenon called the photoelectric effect es-
tablished that a particle-like model was also needed. de Broglie’s idea was that if ob-
jects that were traditionally modelled as waves also had particle-like properties, then
the converse might be true – particles might have wave properties. This idea, that ev-
erything requires a wave and a particle description when we are discussing objects on
an atomic scale, is termed wave-particle duality.

Figure 33.6 Electrons in an orbital whose ra-
dius is an integer multiple of the electron’s de
Broglie wavelength will constructively interfere.
This means that this is an allowed electron or-
bital.

With any particle (including photons) we can associate a wave, and the wavelength,
λ, (called the de Broglie wavelength) is

λ= h

p
(33.14)

where p is the momentum and h is Planck’s constant. The electron’s small mass means
that the de Broglie wavelength is usually significant, as the following examples illus-
trate.

This insight, that matter behaves in wave-like ways at very small distances, moves
us away from the ‘solar system’ model of the atom. Electrons should be treated as waves
rather than tiny little billiard balls orbiting a much larger ball (the nucleus). This wave-
particle model may be used to explain the quantisation of angular momentum and the
separation of atomic electrons into allowed orbitals.

Figure 33.7 Orbits whose radii are not integer
multiple of the electron de Broglie wavelength are
not allowed. The electron wave would destruc-
tively interfere with itself on each successive orbit
around the atom, thus cancelling itself out.

Assume that an atomic electron moves in a circular path, radius rn . The angular
momentum of this electron is Ln = pnrn , so the momentum of the electron in the nth
orbital is

pn = Ln

rn
(33.15)

The wavelength associated with a particle in the n-th energy level is

λn = h

pn
= 2πħ rn

Ln
= 2πħrn

nħ = 2πrn

n
(33.16)

In other words, 2πrn , the circumference of the circular orbit, is an integer number of
particle wavelengths, nλn . Thus the quantisation of angular momentum is equivalent
to the claim that only orbits in which this particle-wave constructively interferes are al-
lowed. Constructive interference of de Broglie waves is illustrated in Figure 33.6; orbits
with greater or lesser radii than these result in destructive interference of de Broglie
waves as shown in Figure 33.7.
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Problem: What are the photon energies and wavelengths of the first five transitions in the Balmer series for hydro-

gen?

Example 33.1 The Balmer series

Solution: Transitions in the Balmer series are those that start on an orbital where n > 2 and finish on the n = 2 orbital.
The first five of these transitions are: n = 3 → n = 2, n = 4 → n = 2, n = 5 → n = 2, n = 6 → n = 2, n = 7 → n = 2. The en-
ergy of a photon released in the transition is equal to the difference in the energy of each orbital (from Equation (33.11))

Ephoton =−13.6 eV

(
1

n2
1

− 1

n2
2

)

which for the n = 3 → n = 2 transition gives

E3→2 =−13.6 eV

(
1

32
− 1

22

)
=−13.6 eV×−1.39 = 1.89 eV

Similarly, the other transitions give E4→2 = 2.55 eV, E5→2 = 2.86 eV, E6→2 = 3.02 eV and E7→2 = 3.12 eV.
We can obtain each of these energies in joules if required by multiplying by 1.6× 10−19 J eV−1. This is required if

we wish to use these energies to find the wavelength of each photon via Ephoton = h f = hc
λ , which gives λ = hc

Ephoton
.

(Alternatively we could use the Rydberg formula).

For the n = 3 → n = 2 transition this gives λ3→2 = 6.626×10−34 J s×3.00×108 m s−1

1.89 eV×1.6×10−19 J eV−1 = 657 nm, which lies in the visible part
of the spectrum and is bright red.

Similarly for the other transitions λ4→2 = 487 nm (blue-green), λ5→2 = 434 nm (deep blue/violet), λ6→2 = 411 nm
(violet) and λ7→2 = 398 nm (ultraviolet, not visible).

Problem: What is the de Broglie wavelength of an electron travelling at 100 km h−1?

Example 33.2 de Broglie wavelength of an electron I

Solution: First convert 100 km h−1 into SI units

100 km h−1 = 100×103 m

3600 s
= 100

3.6
= 27.8 m s−1

We then use this velocity and the mass of the electron (9.11×10−19 kg) to calculate the momentum of the electron

pe = me v = 9.11×10−19 kg×27.8 m s−1

= 2.53×10−29 kg m s−1

Finally we use the de Broglie relationship to calculate the wavelength of the electron

λe =
h

pe
= 6.63×10−34

2.53×10−29
= 2.62×10−5 m = 26.2 µm

Problem: What is the speed of an electron whose de Broglie wavelength is equal to r 1, the radius of the first energy

level of the hydrogen atom?

Example 33.3 de Broglie wavelength of an electron II

Solution: We first calculate the value of r1. To do this we substitute the appropriate physical quantities into Eq. (33.10)

r1 = 12 ħ2

ke2m
=

(
1.05×10−34

)2

9.0×109 × (
1.60×10−19

)2 ×9.11×10−31
m = 5.25×10−11 m
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Note that this quantity is known as the Böhr radius and is often given the symbol a0. The value we have calculated here
is slightly different to the accepted value of a0 = 5.29×10−11 m; this is due to the fact that we have used values for ħ
and e (the charge of the electron) which are only accurate to three significant figures. We now use this value as the
required de Broglie wavelength, and rearrange the de Broglie relation to find the momentum of this electron and then
the velocity of the electron

me ve =
h

λe
⇒ ve =

h

meλe

= 6.63×10−34

9.11×10−31 ×5.25×10−11

= 1.39×107 m s−1

This is about 5% of the speed of light.

33.5 Multielectron Atoms

We have touched on the idea that within an atom, an electron may exist only in cer-
tain allowed states. In order to understand the chemical properties of an element, it is
necessary to describe these states and how the electrons are arranged in these allowed
states.

The states which are allowed are ones which have allowed values of energy and an-
gular momentum, and we use quantum numbers to specify the values that a state has.
The most important quantum number is the principal quantum number, n, which we
have already met in looking at the Böhr model of the atom. It specifies which basic en-

ergy shell a state belongs to. The quantum number n can take on only positive integer
values, and for historical reasons these also have letter names. The n = 1 level is called
the K shell, n = 2 is the L shell, and so on.

Each shell has 2n2 allowed sub-states in which an electron can exist. These states all
have different angular momentum quantum numbers. There are two types of angular
momentum: the orbital angular momentum that an electron has because it is moving
around the nucleus, and the intrinsic angular momentum (also known as spin) which
is a property that all electrons have.

The allowed values of the orbital angular momentum depend on n, and are de-
scribed by the azimuthal quantum number, l . The allowed values of l are zero up to
n −1 in integer steps. Thus n = 1 shell can only have an azimuthal quantum number
l = 0. The n = 2 shell can have azimuthal quantum numbers l = 0 and l = 1. The different
l values also have letter symbols: l = 0, 1, 2, 3 and 4 are known as the s, p, d , f and g
orbitals. There are different spatial orientations possible for most values of l and these
are specified by the magnetic quantum number, ml . The values of ml can range from
−l to +l .

The last quantum number is the spin quantum number, ms . It can have two val-
ues: + 1

2 and − 1
2 (which are often referred to as ‘spin up’ and ‘spin down’).

We can now give an example of how the quantised values of energy and angular
momentum specify what states can exist. For the L shell (n = 2), there are 2× 22 = 8
allowed states. These are listed in Table 33.2.

n l ml ms

2 0 0 −1/2
2 0 0 +1/2
2 1 −1 −1/2
2 1 −1 +1/2
2 1 0 −1/2
2 1 0 +1/2
2 1 +1 −1/2
2 1 +1 +1/2

Table 33.2 Allowed quantum numbers for the L
shell.

The Pauli exclusion principle provides the basis for understanding how these al-
lowed states determine the electronic configuration and hence chemical nature of ele-
ments. It states that

Key concept:

No two identical fermions can occupy the same quantum state at the same time

Fermions are one of the two broad categories of into which particles can be placed,
the other being bosons. Fermions are particles which obey the Pauli exclusion princi-
ple; bosons don’t and many bosons can have the same quantum state. (One example
of a boson is the photon.) The bound electrons in atoms are fermions, and therefore,
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inside a single atom, only one electron may be in each of the allowed states we have
listed. In a later chapter we will find that the protons and neutrons which constitute
the nucleus of the atom are also fermions.

When an atom is in its ground state, the occupied states are easily found. A common
way of writing the electron configuration is to use spectroscopic notation. This lists
the principal quantum number, a letter label (s, p, d etc.) determined by the azimuthal
quantum number indicating which sub-shells are occupied, and a superscript which
indicates how many electrons are in the sub-shell (unless that number is one, in which
case it is often omitted). For example, sodium has 11 electrons, so its ground-state
configuration can be written 1s22s22p63s.

The chemical properties of elements depend on the electron configuration, and in
particular how close to being full the shells and sub-shells are. Elements with full elec-
tron shells tend to be chemically unreactive. Elements with a lone electron in an outer
shell tend to lose that electron (e.g., sodium) to form positively charged ions. Elements
that are one electron short of a full shell tend to grab an electron from other atoms (e.g.,
fluorine) to form negatively charged ions.

Problem: An electron occupies the n = 5 orbital of a hydrogen atom and has an azimuthal quantum number of l = 3.

What are the possible values of the magnetic (ml ) and spin (ms ) quantum numbers it might have?

Example 33.4 Quantum numbers

Solution: If the principal quantum number is n = 5, then the azimuthal quantum number l can range from 0 to 4
(l = 0, ...,n −1). It has an azimuthal quantum number of l = 3.

The magnetic quantum number can have values ml =−l ,−l +1, ..., l −1, l . For an electron with l = 3 then ml could be
−3, −2, −1, 0, 1, 2, or 3. In each of these seven cases the spin quantum number can be either + 1

2 or − 1
2 giving a total of

14 possible states: (n, l , ml , ms ) = (5, 3, −3, + 1
2 ), (5, 3, −3, − 1

2 ), (5, 3, −2, + 1
2 ), (5, 3, −2, − 1

2 ), (5, 3, −1, + 1
2 ), (5, 3, −1, − 1

2 ),

(5, 3, 0, + 1
2 ), (5, 3, 0,− 1

2 ), (5, 3, 1,+ 1
2 ), (5, 3, 1, − 1

2 ), (5, 3 ,2, + 1
2 ), (5, 3, 2, − 1

2 ), (5, 3, 3, + 1
2 ), (5, 3, 3, − 1

2 )

33.6 Quantum Mechanics

Quantum mechanics is a highly successful mathematical framework for explaining the
behaviour of systems of small particles, and is the theory underpinning modern chem-
istry, and atomic, nuclear, and condensed-matter physics. Quantum mechanics allows
us to calculate the possible outcomes when we try to measure a particular quantity and
to assign probabilities to those outcomes.

One of the key principles of quantum mechanics is the Heisenberg uncertainty

principle – the idea that there are certain quantities that cannot be measured to infinite
precision simultaneously. An example is the position and momentum of an object. The
more precisely the position is known, the less well-determined is its the momentum.

The Heisenberg uncertainty principle

The Heisenberg uncertainty principle places a
limit on the accuracy with which some pairs of
observable quantities can be measured. For
example, the product of the uncertainty in the
position, ∆x, and the uncertainty in the mo-
mentum, ∆p, must obey

∆x∆p ≥ħ/2

Another key idea is that of wave-particle duality – that matter particles also require
a wave description to account for their behaviour. One formulation of quantum me-
chanics (wave mechanics) associates with a particle a wave function. This is a complex
mathematical function, the squared amplitude of which gives the probability of finding
the particle at each location.

The Böhr model of the atom is based on the quantisation of the angular momentum
of atomic electrons and this may be interpreted in terms of the de Broglie wavelengths
of these electrons. However, the Böhr model specifies the exact radius of this orbit, and
the momentum of the electrons. Quantum mechanics requires a more sophisticated
model which retains many of the important features of the Böhr model, but only speci-
fies the probability of finding an electron at each spatial location. Models such as these
are not necessary for an understanding of the phenomena which we will investigate in
the remaining chapters of this section and will not be investigated further.
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33.7 Summary

Key Concepts

electron An electron is a fundamental particle. It has charge−1.6 × 10−19 C, mass 9.1 × 10−31 kg
and spin 1

2 .

photon A quantum of electromagnetic radiation (and the carrier particle of electromagnetic
force), exhibiting both wave and particle properties.

atom An atom can be regarded as the smallest unit of matter which retains the chemical prop-
erties of an element. It is made up of electrons surrounding a nucleus of neutrons and
protons, and is electrically neutral.

nucleus The central part of atoms and ions, consisting of positively charged protons and un-
charged neutrons.

electron volt (eV) The change in potential energy for a charge of magnitude e when it is moved
through a change in electrical potential of 1 V. 1 eV = 1.602×10−19 J.

orbital The path followed by an object under the influence of a central potential. The allowed
positions in space for an electron in a particular state.

energy level A state or set of quantum states with a specific energy that a particle may occupy.

photon energy The energy of a photon is proportional to its frequency, E = h f .

Planck’s constant (h) A constant that has a crucial role in quantum mechanics
h = 6.63 × 10−34 J s.

quantisation of energy Particles in bound states may only have particular allowed energies.

de Broglie wavelength All objects have wave-like properties and the wavelength associated with
an object is inversely proportional to the momentum. λ= h

p .

Equations

E = h f

Ln = nħ

En =−13.6 eV
Z 2

n2

1

λ
= RH

(
1

n2
1

− 1

n2
2

)

λ= h

p

nλn = 2πrn
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33.8 Problems

33.1 A photon is emitted by an atom when one of the electrons or-
biting the atom drops from an energy level of Ei =−10.64 eV to an
energy level of Ef =−12.70 eV.

(a) What is the energy of this photon (in eV)?
(b) What is the energy of this photon (in J)?
(c) What is the frequency of this photon?
(d) What is the wavelength of this photon?
(e) What is the momentum of this photon?

33.2 The electromagnetic radiation emitted from the Sun is most
intense at around 502 nm.

(a) What is the energy per photon (in J) for light of this wave-
length?

(b) What is the energy per photon in electron volts?
(c) What is the momentum per photon?
(d) How fast would an electron (melectron = 9.1 × 10−31 kg)

need to be traveling to have the same momentum as this photon?
(e) What would the de Broglie wavelength of such an electron

be?

33.3 What is the de Broglie wavelength of:
(a) an electron (melectron = 9.1 × 10−31 kg) travelling at

15 km s−1?
(b) an electron with a kinetic energy of 1 eV?
(c) a proton (mproton = 1.67×10−27 kg) travelling at 15 km s−1?
(d) a proton with a kinetic energy of 1 eV?
(e) an elephant (melephant = 10 tonnes) travelling at

15 km h−1?
(f) an elephant with a kinetic energy of 1 eV?

33.4 Which of the following atomic transitions in hydrogen (la-
belled (i) to (v)) will:

(a) release a photon of the highest energy?

(b) release a photon of the longest wavelength?

(c) release a photon of wavelength 433 nm

(d) release a photon of energy 0.661 eV

(i) n = 2 → n = 1

(ii) n = 5 → n = 1

(iii) n = 5 → n = 2

(iv) n = 4 → n = 3

(v) n = 10 → n = 5

33.5 What are the wavelengths of the n = 2 → n = 1, n = 3 → n = 1,
and n = 4 → n = 1 transitions for a singly charged Helium nucleus?

33.6 A muon is a elementary particle whose properties are similar
to those of an electron (a negative charge and a spin of 1/2) with
the exception of its mass. Because of this it is possible to replace
one or more electrons in an atom with muons. A muon is 207 times
more massive than an electron (and so has mass 1.88×10−28 kg).
If the electron in a hydrogen atom was replaced with a muon then
an exotic ‘muonic hydrogen’ atom is created.

(a) By what factor would the Bohr radius of the ‘muonic hydro-
gen’ atom change?

(b) By what factor will the energy of a particular electronic en-
ergy level change for ‘muonic hydrogen’?

(c) What will the wavelengths of the first three lines in the
Balmer series (ni → nf = 2) be for this exotic ‘muonic hydrogen’
atom?

(d) For ordinary hydrogen, the Balmer series falls in the visible
region of the electromagnetic spectrum. In what region of electro-
magnetic spectrum would you search for the absorption/emission
lines of the Balmer series of ‘muonic hydrogen’?

33.7 One of the most compelling demonstrations of wave-particle
duality is the wave-like interference pattern displayed by electrons
(which otherwise behave like a particle) when passing through a
pair of double slits. If a beam of electrons is created by acceler-
ating them from rest through a potential difference of just 500 V,
and this beam is trained on a pair of slits 10 µm apart with a detec-
tor 1 m behind the slits, what is the separation between adjacent
bright spots on the screen?

33.8 List the possible states of an electron in the n = 3 shell of a
hydrogen atom (i.e, reproduce Table 33.2 for n = 3)
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34.1 Introduction

The bulk of the mass of the atom is concentrated in the nucleus, which is made up of
protons and neutrons. In this chapter we will cover the basic structure of the nucleus,
how nuclei differ from one another and the stability of the nucleus. There are around
300 known stable nuclear configurations, and here we will give an explanation of why
some nuclei are stable and others unstable.

The chapter will end with a brief description of fission and fusion, both processes
that alter the structure of the nucleus. This discussion of the processes by which nuclei
change will continue into the next chapter on the production of ionising radiation.

Key Objectives

• Understand the structure of the nucleus.

• Understand the relationship between the mass of the nucleus and its binding
energy and stability.

• Understand how the binding energy determines which nuclei will undergo fis-
sion, which will undergo fusion and how much energy is released in these pro-
cesses.

34.2 Nuclei and Isotopes

Protons and Neutrons

The nucleus (plural nuclei) of the atom contains two types of particle – protons and
neutrons. Unlike the electron, these are not fundamental particles, but themselves
contain fundamental particles known as quarks. Both the neutron and the proton are
made up of three quarks, and are classified as hadrons (particles made of quarks) and
baryons (particles made of three quarks) by particle physicists. Protons and neutrons
are also collectively referred to as nucleons.

Table 33.1 in the previous chapter lists the mass and charge of the proton and neu-
tron. Note that the charge of the proton has the same magnitude as the charge of the
electron, but the opposite sign. Thus an electrically neutral atom has one electron for
every proton. The neutron has no charge and very nearly the same mass as the proton.

Atomic Number

In a neutral atom there are the same number of protons and electrons. The number
of electrons, and their arrangement into energy levels is called the electron configu-

ration. The chemical properties of the atom are determined by the electron configu-
ration, thus the chemical properties depend entirely on the number of protons in the
nucleus. The number of protons in the nucleus is given the name atomic number and
the symbol Z .

Introduction to Biological Physics for the Health and Life Sciences Franklin, Muir, Scott, Wilcocks and Yates
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Atomic Mass Number

While the chemical properties, and hence the element, are determined by the atomic
number, the number of neutrons can vary without significantly changing the chem-
istry. To completely specify what kind of nucleus we have, we have to give the number
of neutrons also. The total number of protons and neutrons is called the atomic mass

number, A.

Isotopes in chemistry

While the atomic number determines the elec-

tron configuration and the bulk of the chem-

ical properties of an atom, the atomic mass

does have a subtle effect. For example, there

are different isotopes of hydrogen and oxy-

gen in water molecules, and by examining the

ground water in different locations it has been

observed that the isotopic composition differs

(heavier isotopes fall as rain earlier). The geo-

graphic variation of the basic chemicals going

into the food chain can be used for point-of-

origin testing and detection of adulteration of

foodstuffs using a technique known as foren-

sic isotope ratio mass spectroscopy (FIRMS).

Symbols and Terminology

An element whose chemical symbol is X is written

A
Z X

For example, uranium-235 is written

235
92U

In this case the notation tells us that there are 92 protons (in the nucleus), 92 elec-
trons (orbiting the nucleus in the shells), 235 nucleons (protons and neutrons) and
235 − 92 = 143 neutrons (in the nucleus).

An added m beside the atomic mass number and/or a star superscript on the right
(Am

Z X ∗) indicates that the given nucleus is excited, that is, not in its lowest energy state.
The m stands for metastable state meaning that the nucleus may persist in this excited
state for a relatively long time.

A list of some terms used in nuclear physics:
nucleon A nuclear constituent, either a proton or a neutron.
nuclide Another name for a nucleus or an atom with a specific nuclear makeup
(i.e. number of neutrons is important).
isotopes Atoms with the same number of protons, but different numbers of neu-
trons.
isotones Atoms with the same number of neutrons, but different numbers of
protons.
isobars Atoms with the same number of nucleons, but different numbers of pro-
tons (i.e., A doesn’t change, but Z does).
isomers Atoms having the same number of protons and the same number of
neutrons. They differ in their nuclear energy states. For example, 131m

54 X and
131

54 X are isomers, but 131m
54 X is in a metastable state.

34.3 Energy and Mass Units

Equivalence of Mass and Energy

In 1905, Einstein was able to show that energy and mass are related by the expression,

E = mc2 (34.1)

Using this relationship, we can specify masses in terms of their energy equivalent. This
will make the task of calculating the energy changes involved in nuclear processes
much easier.

The Electron Volt

Energies of the scale that are relevant for describing atomic and nuclear energy states
and mass equivalents are extremely small when measured in joules (on the order of
10−10 to 10−20 J). Keeping track of these large exponents is unnecessarily cumbersome
and we can simplify things by defining a new unit of energy.

It is worthwhile thinking about the SI unit of energy, the joule, to get some hints as
to how we should go about defining our new unit. To begin with we will think about
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the size of the joule as a unit of energy. One joule of kinetic energy is the energy of
a 2 kg mass traveling at 1 m s−1, and one joule of gravitational potential energy is the
potential energy lost by a 1 kg mass that falls near the Earth’s surface through a distance
of 10 cm. These examples show that the joule is a useful measure of energy for systems
with velocities around 1 m s−1 and masses around 1 kg, or systems with masses around
1 kg acted on by gravitational forces. The joule is a perfectly sensible unit when working
with everyday macroscopic systems; in these situations measuring energy in joules will
often yield results on the order of 0.1–100 or so joules.

Figure 34.1 An electron gains 1 eV of kinetic en-
ergy when accelerated by a potential difference
of 1 V.

It is equally clear however that there is no good reason to use masses of this size
or gravity to define the size our new atomic unit of energy. Gravity is not normally an
important factor in atomic physics, so we should define an energy unit in terms of a
force that is. Thus we use electrostatic potential energy instead of gravity and we will
use the behaviour of the electron in this potential to define our new unit.

A Brief Reminder

The change in electrostatic potential energy
for a charge moving in an electric field is given
by

∆U = q∆V

If the charge is free to move under the in-

fluence of the electric field and there are no

other forces acting on the charge then this

change in electrostatic energy will correspond

to a change in kinetic energy as shown in Fig-

ure 34.1

We define the electron volt (eV) this way:

Key concept:

An electron volt is the change in the electrostatic potential energy of an electron
when it is moved through a potential difference of 1 V.

In joules, the size of the electron volt is

1 eV = e × (1 V)

= (1.602×10−19 C)× (1 V)

= 1.602×10−19 J (34.2)

so 1 J = 1
1.6×10−19 eV = 6.2×1018 eV. As another example, consider Planck’s constant, h.

In SI units this constant is
h = 6.626×10−34 J s

In terms of the electron volt this is

h = 6.63×10−34 J s

1.6×10−19 J eV−1

= 4.14×10−15 eV s

The modified Planck’s constant, ħ is

ħ= 1.05×10−34 J s

1.6×10−19 J eV−1

= 6.58×10−16 eV s

These are both very small numbers, even when we use our new energy unit. How-
ever, it is useful to have these constants in these units when performing calculations in
which the predominant energy unit is the electron volt.

The Atomic Mass Unit

The mass of an atom expressed in kilograms is on the order of ∼ 10−27 kg. This is also
a very small number and is also cumbersome to work with. Chemists and physicists
therefore employ a more appropriate unit called the atomic mass unit (amu or some-
times just u). The atomic mass unit is defined so that the atomic mass of the carbon-12
atom is exactly 12 amu. Avogadro’s number, NA, is the number of atoms in exactly
0.012 kg of carbon-12. Thus each atom of carbon-12 has a mass of

0.01200 kg per mole

6.022×1023 per mole
= 1.993×10−26 kg

This is exactly 12 amu, so

1 amu = 1.993×10−26 kg

12
= 1.661×10−27 kg (34.3)
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The are many similar-sounding terms in use for masses. The atomic mass, A, is
the mass of an atom, usually given in amu. For example, helium-4 has an atomic mass
of 4.002602 amu. Another term used is the relative atomic mass, unfortunately this
is also generally given the symbol A. This is usually a measure of the average atomic
mass, weighted by isotopic abundance, and relative to 1/12th of carbon-12, so it is a
dimensionless quantity. The molar mass or gram atomic mass is the mass of one mole
(a sample containing Avogadro’s number of atoms or molecules) of a substance.

Mass in ‘MeV’

As mentioned earlier, mass and energy and related by Einstein’s famous equation, Eq.
(34.1). It is thus natural to ask what the energy equivalent of a 1 amu particle is. This
will also give us a reference point when we discuss the energies involved in nuclear
processes. Using Eq. (34.1), we are able to calculate the energy equivalent to the mass
of a 1 amu particle as follows

E = mc2

= (
1.661×10−27 kg

)× (
2.998×108 m s−1)2

= 1.492×10−10 J

This is the energy equivalent to a mass of 1 amu in SI units. It will be more useful to
know this equivalent energy in electron volts. This is calculated as follows

1.492×10−10J

1.602×10−19J eV−1
= 931500000 eV = 931.5 MeV

1 amu = u = 1.661×10−27 kg = 931.5 MeV/c2 (34.4)

It is fairly common to hear physicists talk of a particle having ‘a mass of x MeV’.
What they mean by this is that the mass is equivalent to an energy of x MeV. Technically,
m = E/c2 so the mass is equal to x MeV/c2, i.e., the correct mass unit is MeV/c2.

34.4 Nuclear Forces

There are four known fundamental forces or fundamental interactions. These are grav-
ity, the electromagnetic force and two forces that are only important on the scale of the
nucleus: the strong and weak nuclear forces. It is remarkable that all of the interac-
tions in nature ultimately reduce to just these four forces. We have already discussed
the electrical force in some detail. We will now consider the two other forces which are
important for an understanding of atomic and nuclear physics, the strong and weak
forces.

The Strong Force and the Nucleus

The colour force

Protons and neutrons are composite particles.

They are composed of three fundamental par-

ticles called quarks. Quarks are held together

inside the nucleon by the colour force. This

is a very unusual force in that it acts between

three distinct charges or colours. It is stranger

even than this in that it gets stronger the fur-

ther apart the quarks get rather than weaker

like the electric force. The strong nuclear force

is actually a residual force much like the Van

Der Waals force between adjacent atoms, and

is the result of attractions between the quarks

of adjacent nucleons. Thus strictly speaking

the colour force is one of the four fundamen-

tal forces and the strong nuclear force is not.

However, the colour force is well outside the

scope of this book and we will treat the strong

nuclear force as a fundamental force in the in-

terests of simplicity and clarity.

The strong nuclear force is an attractive force that acts between protons and protons,
neutrons and neutrons, and protons and neutrons. There is no difference between the
strength of the p–p, p–n or n–n interactions. The strong nuclear force is a very short-
range force which acts rather like glue or Velcro on the surface of nucleons, holding all
the nuclear particles together.

The strong nuclear force is strong enough to overcome the repelling electrostatic
force between protons that tries to push the nucleus apart, allowing the creation of
some stable nuclei. In radioactive nuclides, the repulsive electrostatic forces are large
enough to make the situation unstable, and the nucleus may break apart, or change
the number of protons and neutrons to a more stable configuration.
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Problem: A litre of gasoline (0.75 kg) contains around 32×106 J of chemical energy. This energy can be obtained by

allowing chemical changes in the gasoline, e.g., burning it. How much energy would be obtained if the mass of this

gasoline could be converted directly into energy?

Example 34.1 Atomic energy

Solution: By using E = mc2 we find that there is 0.75 kg× (
3×108 m s−1

)2 = 6.75×1016 J of energy contained in a litre
of gasoline. This is around 2× 109 times higher than the amount of chemical energy that can be obtained from the
gasoline (even under ideal conditions)!

The Weak Nuclear Force

The weak force is responsible for the phenomenon of nuclear β decay. The detailed
behaviour of this force is extremely complex and we will not investigate this behaviour
any further in this book.

34.5 Nuclear Decay and Stability

Binding Energy

Key concept:

If it takes energy to pull the atom apart, then the constituent parts must lose energy
when they form an atom. So the energy, and consequently mass, of the atom is less
than that of the individual parts. This energy is the binding energy. The greater the
binding energy of the atom, the more energy we have to supply to break it apart, and
the more stable the atom is.

The energy of an electron in an atom is lower than the energy of a free electron. In
order to remove an electron from an atom, work must be done on the electron. In other
words, energy must be transferred to the electron from some external energy source.
This will free the electron from the atom and at the same time increase the electron’s
total energy.

The same is true of any bound system. Work must be done to unbind such a system
so that the total energy of all of the unbound constituents will be greater than the total
energy of the bound system.

In the case of atomic systems we would expect that the total energy of the unbound
protons, neutrons and electrons would be greater than the total energy of the bound
atom. This increase in energy is manifest as an increase in the mass of the atomic
constituents. Thus the total mass of the constituent parts of the atom, i.e., the mass of
all of the protons, neutrons and electrons, is greater than the mass of the original atom.

For example the mass of the carbon-12 atom is 12 amu (by definition). The mass
of its constituent parts may be found using the mass of the proton (1.00728 amu), the
mass of the neutron (1.00866 amu), and the mass of the electron (0.00055 amu) as fol-
lows:

Mass of constituent parts = 6× (1.00728) amu+6× (1.00866) amu+6× (0.00055) amu

= 12.09894 amu

The mass of the carbon-12 nucleus, and the sum of the masses of its component
sub-particles are clearly not the same. The difference in mass between the atom and
its constituent parts is called the mass defect, ∆m. For carbon-12 the mass defect is

∆m = 12.09894−12.000 = 0.09894 amu

This extra mass is due to the greater energy of the unbound constituent atomic parts.
Using Eq. (34.1), we can find the energy equivalent of this mass defect (converting mass
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to SI units first)

0.09894 amu = (0.09894)× (
1.6605×10−28)

kg

= 1.6429×10−27 kg

∆E = 1.6429×10−28 kg× (
2.998×108 m s−1)2

= 1.477×10−11 J

= 92.2 MeV (about 7.7 MeV per nucleon)

This is the amount of work which must be done to separate the carbon-12 atom into
its component parts. It is also the energy which would be released should six isolated
protons, neutrons and electrons combine to form a carbon-12 atom. This difference in
energy is called the binding energy of the nucleus.

Binding energy and ionisation energy

Given the relatively small size of the electro-

static force binding the electrons to the nucleus

compared to the forces holding the nucleus to-

gether, most of the energy deficit calculated

here would be used to separate the compo-

nents of the nucleus. For this reason bind-

ing energy is generally considered a nuclear

phenomenon and the ‘binding energy’ of the

electrons is normally called the ionisation en-

ergy of the atom. In general ionisation ener-

gies are of the order of a few tens of electron

volts, whereas the binding energy per nucleon

is of the order of 7–8 million eV.

The binding energy for a single nucleus is given by

BE =∆E =∆mc2 = (ms −mb)c2 = (
Z mp + (A−Z )mn −mb

)
c2 (34.5)

where ms is the mass of the separate nucleons, mb is the mass of the bound nucleus,
mp is the mass of a proton and mn is the mass of a neutron. The atomic mass (A) and
number (Z ) are defined as previously.

This equation is somewhat impractical to use, however. The information that is
most easily obtained is not the nuclear mass, but is the atomic mass, which includes
the electrons. Another form of Eq. (34.5) is

BE = ([
Z m(1H)+ (A−Z )mn

]−m(A
Z X )

)
c2 (34.6)

In this case, the masses are the atomic masses of both hydrogen and the isotope
in question. We have in effect added Z electrons in the hydrogen mass and then sub-
tracted Z electrons in the atomic mass of the isotope, so this equation gives the same
result as Eq. (34.5) (to within the difference in electron binding energies).

Problem: Calculate the mass defect of an α particle (mass = 4.00153 amu). What is the binding energy per nucleon?

Example 34.2 Binding energy

Solution: The mass of the constituent parts is 2× the mass of a proton + 2× the mass of a neutron

Combined mass = 2× (1.00728) amu +2× (1.00866) amu

= 4.03188 amu

The mass defect is 4.03188 amu − 4.00153 amu = 0.03035 amu.
1 amu is equivalent to 931.5 MeV, so the binding energy per nucleon is

BE per nucleon = 0.03035amu

4
× 931.5 MeV

1 amu
= 28.27 MeV

4
= 7.06 MeV (34.7)

This is in agreement with Figure 34.2.
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Problem: 14C is a radioactive isotope of carbon, notable for having uses in dating organic matter up to around

60 000 years. 14C decays into 14N via the emission of an electron and an antineutrino. (m14C = 14.00324 amu, m14N =

14.00307 amu, me− = 0.000545 amu, m1H = 1.00794 amu, and while an antineutrino has mass, this mass is so small

that you can ignore it here.)

(a) What is the binding energy of the 14C atom?

(b) What is the binding energy of the 14N atom?

(c) How much energy is released during the decay?

Example 34.3 14C decay

Solution: (a) We can calculate the binding energy of the atom by using Eq (34.6)

BE = ([
Z m(1H)+ (A−Z )mn

]−m(A
Z X )

)
c2

where the number of protons in 14C is 6 and the number of neutrons must be 8. This gives

BE = ([6×1.00794 amu+8×1.00866 amu]−14.00324 amu)×1.6605×10−27 kg amu−1 × (
2.998×108 m s−1)2

= 1.700×10−11 J

(b) A similarly for 14N, where there are 7 protons and 7 neutrons BE = 1.688×10−11 J. (c) The energy released in the decay
is the difference between these two numbers. This is 1.2×10−13 J = 749 keV. The mass of the electron that is emitted is
not needed, as we are working with atomic masses, and the atomic mass of nitrogen already includes 14 electrons.

The Liquid Drop Model

Due to the magnitude of the forces involved in holding the nucleus together, it is very
difficult to determine the properties of the nucleus as a whole from the behaviour of
the individual protons and neutrons from which it is made. It is possible however to
understand some of the behaviour of the nucleus using much simpler approximate
models.

One of the earliest and most successful of these simple models is the liquid drop

model. In this model we treat the nucleus as though it was a droplet of charged liquid.
To turn a drop of liquid into a gas (i.e., break it into its constituent parts) we must give
the drop some energy; this extra energy is the latent heat of vaporisation. This energy
is required to break inter-molecular bonds. The binding energy of the nucleus is the
energy we would need to add if we wanted to break the nucleus into its constituent
parts. The liquid drop model is based on the insight that the latent heat of vaporisation
is a direct analogue of the binding energy of the nucleus.

We will not go into any further detail regarding this model other than to state that it
may be used to predict the stability of nuclei and the energy released in nuclear reac-
tions such as nuclear decay, and nuclear fission and fusion.

The Nuclear Stability Chart

For small nuclei, adding extra nucleons increases the binding energy. In this case the
nucleons are all very close together and the strong force binding nearest neighbour nu-
cleons dominates the repulsive electrostatic forces between the small number of posi-
tively charged protons which are all sitting in very close proximity to each other. Once
the nucleus is large enough that it is about four nucleons in diameter (mass number
around 60), adding more protons begins to reduce nuclear stability. Nuclei with atomic
mass around 60, such as iron and nickel, are the most stable and thus have the high-
est binding energy per nucleon. After this point the electrostatic repulsion caused by
the long-range electromagnetic force begins to overwhelm the binding from the short-
range nuclear force. By the time the nucleus is around six nucleons in diameter, it is
too large to be stable, and nuclei above A = 209 are all unstable.
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Figure 34.2 The binding energy per nucleon versus atomic mass. [Courtesy of NASA.]

This behaviour may be seen in the nuclear ‘stability diagram’, shown here as Fig-
ure 34.2. A stability diagram plots the binding energy per nucleon of a nucleus against
the number of nucleons in that nucleus. The binding energy per nucleon is a mea-
sure of how much work must be exerted to remove a single nucleon from a nucleus
and is calculated by dividing the total binding energy by the atomic mass number for
that nucleus. The stability diagram shows the increase in binding energy as the num-
ber of nucleons increases to about 60, and then the slow decrease in binding energy
per nucleon as the number of nucleons increases past this point. The stability diagram
also indicates that the binding energy per nucleon is relatively constant at about 8 MeV
per nucleon. This is due to the fact that the short-range strong nuclear force does not
increase with atomic size, the slow decrease in binding energy per nucleon is due to
the fact that the long-range electrostatic repulsion between protons does increase with
increasing atomic number.

There exist certain ‘magic numbers’ of either protons or neutrons that are more
stable than would be predicted from the general trend in Figure. 34.2. This is believed
to be because the nucleus has a shell structure that is analogous to the arrangement
of electrons in shells. In the same way that closed electron shells are more stable, so
are closed shells in the nucleus. The magic numbers known at present are: 2, 8, 20,
28, 50, 82, and 126. Nuclei with proton and neutron numbers that are magic are par-
ticularly stable. For example, the helium-4 nucleus (two protons, two neutrons) has a
binding energy per nucleon that is significantly higher than the other nuclei around it
in Figure 34.2, as has oxygen-16 (8 protons and 8 neutrons). These are the second and
third most abundant nuclei in the universe. The anomalously large binding energy per
nucleon of the helium-4 nucleus is responsible for the fact that excess nucleons are
generally emitted from unstable nuclei as α particles, i.e., helium-4 nuclei.

Fission

Naturally occurring chain reaction

In the early 1970s in Oklo, Gabon (in West

Africa), scientists found evidence of natural,

sustained, fission reactions. Typical samples

of uranium contain about 0.77% U-235, an iso-

tope that releases enough neutrons per fis-

sion to induce more fissions and cause a

chain reaction. The samples taken from lo-

cal mines had only half the U-235 that was

expected. However, the most common iso-

topes of uranium have different decay rates,

and about 2 billion years ago, the proportion

of U-235 would have been more like 3% –

enough for sustained fission that would reduce

the amount of this isotope to what we see now.

Such a reaction would not be possible with the

present levels of U-235.

Fission is the process of breaking a nucleus into smaller parts. Spontaneous fission
occurs more often in the heavy elements (mass numbers from around 200 and up) such
as uranium. Alpha decay (covered in the next chapter) can be thought of as a type
of spontaneous fission where one of the fragments is a helium-4 nucleus, but larger
fragments occur in most fission reactions.

When a large nucleus fissions it breaks into two smaller nuclei. These daughter nu-
clei are closer to A = 60 on the stability chart than the parent nucleus and thus have
greater total binding energy than the parent nucleus. This extra binding energy is re-
leased in fission, ultimately as heat, sound and light.

Fission can also be caused by the bombardment of the nucleus with neutrons. In
this situation, if enough neutrons are freed by each fission, a chain reaction can be
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started – this is how the simplest nuclear weapons and reactors work. Large amounts
of radiation are also released in fission reactions and the daughter products of fission
reactions are generally also radioactive.

Fusion

In some cases it is energetically favourable for two nuclei to fuse together in a process
called fusion. This is the case for light nuclei such as the isotopes of hydrogen and
helium. Fusion reactions occur in stars like the sun which combine nuclei with atomic
masses all the way up to iron and nickel. Heavier elements are produced in the extreme
conditions occurring in supernovae explosions.

As for fission, energy may be released in fusion reactions. In fusion, two nuclei
which are lighter than A = 60 combine to form a heavier nucleus. The resulting nucleus
thus has greater total binding energy than the reactant nuclei, and again the excess
binding energy is released during the reaction ultimately as heat, sound and light.

The most powerful nuclear weapons utilise fusion reactions and are known as ther-
monuclear weapons. The fusion process can release vast amounts of energy, but to
overcome the electrostatic repulsion of the nuclei and get them close enough to fuse, a
fission explosion is used.

It has long been hoped that fusion could provide a comparatively clean and abun-
dant energy source. At the time of writing, a sustained fusion reaction which generates
more energy than it consumes has not been produced.

34.6 Summary

Key Concepts

nucleon A proton or neutron.

binding energy The energy required to separate the parts of a bound system, the energy re-
quired to separate a nucleus into its constituent nucleons.

mass defect The difference in mass between the atomic mass and the mass of its constituent
parts.

atomic mass unit (u or amu) A non-SI unit of mass, defined such that the atomic mass of carbon-
12 is exactly 12 amu.

strong nuclear force One of the four fundamental forces. The attractive force that binds nucle-
ons together in the nucleus.

weak nuclear force One of the four fundamental forces. Responsible for β decay.

fission The induced or spontaneous splitting of a single nucleus into multiple parts.

fusion The fusing together of two smaller nuclei to make one larger nucleus.

Equations

1 eV = 1.602×10−19 J

1 amu = 1.661×10−27 kg = 931.5 MeV/c2

BE =∆E =∆mc2 = (ms −mb)c2 = (
Z mp + (A−Z )mn −mb

)
c2

BE = ([
Z m(1H)+ (A−Z )mn

]−m(A
Z X )

)
c2
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34.7 Problems

34.1 If a particular atom has a mass of 6.644×10−26 kg and has a
total of 20 electrons when neutral (uncharged)what element is it
(use a periodic table to answer this question)?

34.2 (a) If all the mass of a carbon-12 atom was converted into en-
ergy, how much would this be in both joules and electron volts?

(b) How much energy (in J) would be released by the conver-
sion of 1 kg of carbon to energy?

(c) A kilotonne of TNT releases 4.184× 1012 J of energy. How
much carbon would you need to convert to energy to create an ex-
plosion the size of the largest hydrogen bomb test at Bikini Atoll
(equivalent to about 15,000 kilotonnes of TNT)?

34.3 An atom of uranium-235 (atomic mass: 235
92 U − m(235

92 U) =
235.04392 amu) decays to thorium-231 (atomic mass: 231

90 Th −
m(231

90 Th) = 231.03630 amu) via the emission of an α particle (nu-

clear mass: 4
2α−m(4

2α) = 4.00151 amu). Use c = 2.998×108 m s−1.
(Note: use the mass information on in Section 34.4 to solve this
problem.)

(a) What is the binding energy of an 235
92 U nucleus (in J)?

(b) What is the binding energy of a 231
90 Th nucleus (in J)?

(c) What is the binding energy of an α particle (in J)?
(d) What is the maximum possible kinetic energy (in J) of the

α particle emitted during this decay (Hint: what is the difference
between the mass of 235

92 U and the total mass of 231
90 Th and an α

particle)?
(e) What is the maximum velocity of the emitted α particle?

34.4 There is a rare, but naturally occurring, isotope of helium
called helium-3. A helium-3 nucleus has two protons and just one
neutron and has an atomic mass of 3.01603 amu.

(a) What is the binding energy per nucleon of helium-3?

(b) How does this compare with the binding energy per nucleon
of an alpha particle (helium nucleus)?

34.5 What is the binding energy of each of the following nuclei?

(a) Silicon-28, m(28Si) = 27.976927 amu

(b) Iron-56, m(56Fe) = 55.934939 amu

(c) Selenium-80, m(80Se) = 79.916520 amu
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35PRODUCTION OF IONISING

RADIATION
35.1 Introduction

35.2 Nuclear Decay Processes

35.3 Activity and Half-Life

35.4 X-ray Production

35.5 Other Sources of Radiation

35.6 Summary

35.7 Problems

35.1 Introduction

Ionising radiation is most often produced in one of two ways: acceleration of charged
particles or radioactive decay.

An atomic nucleus may undergo spontaneous or induced changes. Spontaneous
changes to the atomic nucleus occur when the nucleus is initially unstable and are
called nuclear or radioactive decay processes. Radioactive decay processes are named
for the type of radiation produced in the decay: α (alpha), β (beta) and γ (gamma).
Other possibilities are proton or neutron expulsion, and spontaneous fission. In prac-
tice, an unstable nucleus may decay in several different ways, and may undergo several
of these processes in rapid succession. Bombarding nuclei with other particles can
cause a change in the nuclear structure also, and may cause the nucleus to fission or
expel protons or neutrons.

The main production technique for X-rays is the acceleration of electrons using an
electric field. These fast-moving electrons generate X-rays in multiple ways, which we
will examine. Two kinds of X-ray-producing tubes will also be described.

Another process which produces ionising radiation that is highly relevant to the
medical sciences is particle–antiparticle annihilation – the destructive interaction of
matter and antimatter.

Key Objectives

• To understand the nature and origin of the three main types of radiation: α, β
and gamma radiation, and the decay processes which produce them.

• To understand the origin of characteristic X-rays and the generation of a contin-
uous spectrum by bremsstrahlung.

• To understand exponential decay processes.

• To understand the concepts of nuclear activity and half-life.

35.2 Nuclear Decay Processes

There are several processes by which an unstable nucleus transforms into a more stable
nucleus. During these processes, termed nuclear decay, energetic particles or electro-
magnetic radiation are emitted. The main processes we will describe here are given the
names alpha, beta and gamma decay.

Alpha Decay

Some unstable nuclei can become more stable by ejecting two neutrons and two pro-
tons in an asymmetric spontaneous fission process. The emitted particles are bound
together as a highly stable α particle, denoted α, or 4

2He, as it is identical to the nu-
cleus of a helium-4 atom. The charge on the α-particle is +2 times the magnitude of
the charge on an electron, and this is sometimes written explicitly, e.g., 4

2He2+.

Introduction to Biological Physics for the Health and Life Sciences Franklin, Muir, Scott, Wilcocks and Yates
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Alpha decay is most commonly seen in the case of large nuclei, where the electro-
static repulsion between protons is large enough to destabilise the nucleus. Reducing
the amount of positive charge in the nucleus would thus tend to increase stability and
emitting an α particle is one way to do this. For example, radium-222 will emit an α

particle to decay into radon
222
88 Ra → 218

86 Rn+ 4
2α (35.1)

Note that the mass numbers of the products (the daughter nuclei) add up to 222
and the atomic numbers add up to 88. In α decay the charge and nucleon number are
conserved. We may represent a general α decay process as follows

A
Z X → A−4

Z−2Y + 4
2α (35.2)

Some examples ofα emitters are 210
84 Po (famous for its use in the poisoning of Alexan-

der Litvinenko), and the naturally occurring isotopes of uranium (atomic number 92,
mass numbers 234, 235 and 238).

The daughter nucleus produced in α decay is often either in an excited nuclear
state or is still unstable. In the first case the daughter nucleus will de-excite by gamma
radiation (see below), and in the second case the daughter nucleus will decay further
by α or β emission.

Beta Decay

There are three separate processes that come under the heading of β decay: β− decay,
β+ decay, and electron capture. As with α decay, the daughter nucleus that is created is
often still unstable and the β decay is followed rapidly by gamma emission or another
decay process. (For some nuclei, two β emissions can occur at the same time.) Beta-
decay processes do not change the number of nucleons in the nucleus – the product
and the parent are isobars.

Useful advice

Can’t remember any examples for writing a

β-decay equation? Pick potassium-40. 40
19K

is naturally occurring and undergoes all three

kinds of β decay. β− decay

β− (‘β minus’) decay occurs when a neutron decays and a proton is created, with the
accompanying emission of a β− particle and an antineutrino, symbol νe . The antineu-
trino is the antiparticle of the neutrino, and the bar over the ν indicates that it is an
antimatter particle. The β− particle is just an electron. The process responsible for β−

decay is the transformation of a neutron into a proton, a process mediated by the weak
nuclear force.

n → p++e−+νe (35.3)

Neutrinos

The neutrino/antineutrino here is called the

electron neutrino or antineutrino as there are

other sorts, but we will not encounter them in

this book. This is the reason for the e sub-

script.

The neutrino is a particle from the same group of fundamental particles as the elec-
tron (the group called the leptons) and interacts very little with other matter (the neu-
trino interacts with other matter only via the weak force and gravity). It is believed to
have mass, but the upper limits placed on this mass by β−decay experiments is very
low, on the order of 1 eV/c2 compared with 0.511 MeV/c2 for the electron.

The β minus decay process occurs inside the atomic nucleus: the electron ejected
comes from inside the nucleus and is not one of the atomic electrons. Since neutrons
transform into protons, the atomic mass number of the parent nucleus remains the
same but the atomic number is increased by one.

The generic equation for β− decay of A
Z X is

A
Z X → A

Z+1 Y + 0
−1 β+νe (35.4)

Note that this process can also occur outside the nucleus and is responsible for the
instability of lone neutrons, which will decay by β emission. (This is quite rapid: half a
sample of single, unbound neutrons will decay in 10.3 minutes.)

The symbols e− and β− are used interchangeably, and sometimes 0
−1β

− is written to
make it simpler to see that the charge and nucleon number are conserved. (Remember
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that the upper-left-hand number is the number of protons and neutrons and the lower
gives the quantity of positive charge.)

An example of β decay is the decay of caesium-137

137
55Cs → 137

56Ba+e−+νe (35.5)

β+ decay

β+ (‘beta plus’) decay is the conversion of a proton into a neutron. Unlike β− decay,
energy is required for the process and so it happens only inside a nucleus where the en-
ergy is available, and comes from the creation of a daughter nucleus that is more tightly
bound. Free protons are stable. (At least, proton decay has never been observed, and
experiments designed to detect the radiation from such an event in vast underground
tanks of liquid put the half-life at over 1035 years.) In β+ decay, a proton in the nu-
cleus decays, creating a neutron a β+ particle and a neutrino. The β+ particle is the
antiparticle of the electron, and is also known as the positron, e+

energy+p+ → n0 +e++νe . (35.6)

The generic equation for β+ decay of A
Z X is

A
Z X → A

Z−1 Y + 0
+1 β+νe (35.7)

For example
22
11Na →22

10 Ne+e++νe (35.8)

Again there are several notation variants in use for the particle: β+, e+ and 0
+1β.

Electron capture

Electron capture is essentially the reverse of β− decay. Instead of a neutron transform-
ing into a proton and a β− particle (i.e., an electron), a nuclear proton captures an
orbiting electron and transforms into a neutron. This is alternative to β+ decay, as it is
also results in a proton → neutron conversion, but by a different route.

The generic equation for electron capture by A
Z X is

A
Z X +e− → A

Z−1 Y +νe (35.9)

For example
22
11Na+e− →22

10 Ne+νe (35.10)

Gamma Decay

Nuclei, like atoms, can exist in excited states. Just as an atom with its electrons in a
high-energy configuration can transition to a lower-energy configuration by emitting
a photon of the appropriate energy (and thus frequency), a nucleus in an excited state
can transition to a lower-energy state by emitting a photon. The photons emitted in
this process are much more energetic than their counterparts in atomic transitions
due to the much greater energies involved in holding the nucleus together. These high-
energy photons are called gamma radiation, denoted γ. The frequency of the γ radi-
ation emitted by a nucleus is determined by the possible excited states of the nucleus
which are unique to the particular nucleus concerned and the γ-ray spectrum emitted
by a nucleus may be used to identify that nucleus.

Technetium

Technetium-99m is by far the most commonly

used isotope in nuclear medicine. Its parent

nucleus 99Mo has a half-life of about 66 hours,

which means that a sample that has a useful

lifetime of about a week can be manufactured

and shipped to a hospital. The technetium is

easily chemically separated from the molybde-

num.

The generic equation for γ decay of A
Z X ∗ is

A
Z X ∗ →A

Z X +γ
(+γ+ . . .

)
(35.11)

Nuclei in excited states are generally indicated by the symbol ‘*’ as in A
Z X ∗. Another

commonly used notation is Am
Z X where the ‘m’ indicates that this is a relatively long

lived, or metastable, excited state. Note also that the number of γ photons emitted is
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not clearly specified in this generic equation as there may be a chain of de-excitations
occurring as a single excited nucleus decays to its lowest-energy configuration.

For example, molybdenum-99 is created artificially and decays into technetium-
99m. This 99mTc is a gamma emitter (each gamma photon having 140 keV energy) with
a half-life of 6 h

99mTc → 99Tc+γ (35.12)

Problem: Yttrium-90 is used in radioisotope therapy to treat various neuroendocrine tumors. Yttrium-90 decays

into zirconium-90 as shown in the following decay scheme

90
39Y →90

40 Zr+XA +XB

What are XA and XB?

Example 35.1 Decay products

Solution: The decay does not involve a change in the total number of nucleons: there are 90 nucleons before and after
the decay. This rules out α decay, as this would result in the number of nucleons being reduced by four. The
atomic number of the atom goes up by one during the decay which rules out γ decay in which the atomic number does
not change. The remaining possibilities are β− or β+ decay. The atomic number has increased during the decay,
indicating that a neutron has decayed into a proton, and expelled an electron and an antineutrino

90
39Y →90

40 Zr+ 0
−1e−+νe

35.3 Activity and Half-Life

Activity

Nuclear decay is an essentially random process: we cannot accurately predict when
a given unstable nucleus will decay. However, we can determine the probability that
a nucleus will decay within a given time period. Thus we can predict, given a large
number of nuclei, how many will have decayed after a specified time even though we
cannot predict beforehand which of the nuclei will decay. If there is a 50% chance that
a particular type of unstable nucleus will decay in 1 s, and we have a sample containing
1 million such nuclei, we can predict that close to 500 000 of these nuclei will have
decayed after 1 s. Note that the remaining 500 000 undecayed nuclei will still each have
a 50% chance of decaying in the next 1 s period, so that one second later we would
expect that 250 000 of the remaining nuclei will have decayed, and so on. This results
in the characteristic exponential decrease in both the number of undecayed atoms and
the ‘activity’ of the sample over time (see Figure 35.1).

Key concept:

The theory of radioactive decay depends on one fact: The number of atoms which
decay in a given time is proportional to the number of atoms present at the beginning
of that time.

Figure 35.1 An exponential decay curve for a
half-life of 50 seconds. Notice that after 50 s, the
activity drops to a half the original. After 100 s,
or two half-lives, it is a quarter of the original and
so on.

Mathematically, if N is the number of a nuclei of a particular type in the original
sample and ∆N is the change in the number of nuclei present after a given time, ∆t
then

∆N

∆t
∝ N

∆N

∆t
=−λN (35.13)

The negative number appears because the number decreases with time. λ is called the
decay constant. Eq. (35.13) implies the decay constant has units of inverse time, such
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as s−1. The quantity
∣∣∆N
∆t

∣∣ is the time rate of change of the number of nuclei, and tells
us the number of nuclei which decay in each time period, which is called the activity,
A, and A = Nλ.

A radioactive sample with a high activity may have a large number of moderately
unstable nuclei (small decay constant), or a small number of highly unstable nuclei
(large decay constant).

The SI unit of activity is the becquerel, symbol Bq. A becquerel is equivalent to one
disintegration per second. Another unit still in use, particularly in the US, is the curie,
symbol Ci.

1 Ci = 3.7×1010 Bq (35.14)

Half-Life

Eq. (35.13) is a special type of equation. Any quantity for which the rate of change is
proportional to the original quantity follows an exponential law, so

N (t ) = N0 e−λt (35.15)

where N0 is the number of radioactive nuclei present at time t = 0 and λ is again the
decay constant. (The number of nuclei remaining is written as N (t ) as a reminder that
the number is not constant, but a function of time.) As A = Nλ, we can multiply each
side of Eq. (35.15) by λ and obtain an expression for the activity

A(t ) = A0 e−λt (35.16)

Eq. (35.15) for N (t ) tells us the number of radioactive nuclei remaining at time t . So
if we started with N0, the number of nuclei which have decayed after a time, t , is

Ndecayed(t ) = N0 −N (t ) = N0(1−e−λt ) (35.17)

The probability that a nucleus will decay in a time t is the number which decay divided
the number which we started off with (Ndecayed/N0). This equation tells us that the

probability of a nucleus decaying in time t is 1−e−λt .
The decay constant tells us something about the probability of nuclear decay. How-

ever, another perhaps more useful quantity is the half-life, T1/2. This is the length of
time it takes for half the number of a sample of identical unstable nuclei to decay, or
equivalently, the time period over which the probability (P ) that a particular nucleus
will decay is exactly 1

2

P = 1−e−λT1/2 = 1

2

so

e−λT1/2 = 1

2

−λT1/2 = ln(
1

2
) =−0.693

with the result

T1/2 =
0.693

λ
(35.18)

Another timescale sometimes used in exponentially-decaying systems is the mean

life, τ, which is 1/λ.
The half-life is handy for getting an idea of how long it will take for a given sample

to reduce in number or activity. The number or activity will reduce to half the original
value after one half-life, to one quarter after two, to one eighth after three, to one six-
teenth after four half-lives and so on.
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Problem: Yttrium-90, which featured in Example 35.35.1, has a half-life of 64 h. A sample of 90Y has an activity of

2.5×107 Bq when first measured.

(a) What is the decay constant for 90Y ? (in s−1)?

(b) How many atoms of 90Y must be in the sample initially?

(c) What will the activity of the sample be after 256 h?

(d) What fraction of the atoms of 90Y will be left in the sample after just 1 hour?

Example 35.2 Decay rates and half-lives

Solution: (a) The decay constant is directly related to the half-life; both quantities are a measure of how likely an atom
is to decay in a given unit of time

T1/2 =
0.693

λ

λ= 0.693

T1/2
= 0.693

64 h×3600 s h−1
= 3.0×10−6 s−1

(b) Because we know the activity of the sample (how many atoms are decaying in a second) and the decay constant
(what fraction of a given sample size will decay in a given second) we can find the number of atoms in our sample

A =λN

N = A

λ
= 2.5×107 s−1

3.0×10−6 s−1
= 8.31×1012

which is actually quite a small amount (just 1.4×10−11 mol or 1.2 ng). (c) A period of 256 hours corresponds to exactly
four half-lives. Over each half-life the activity of the sample will drop by a factor of two, so after four half-lives that
activity will be 0.54 = 1/16 = 0.0625 of the initial activity, or 0.0625×2.5×107 Bq = 1.56×106 Bq.

(d) The number of atoms left after 1 h (3600 s) is

N = N0 e−λt

N

N0
= e−λt

= e−3.0×10−6 s−1 ×3600 s = 0.989

so only 1.1% of all of the atoms will have decayed.

Most Likely Decay Mode and Examples of Decay Series

The most likely mode of decay for a given unstable nucleus can be predicted from
its composition. A Segré chart shows which nuclei are stable. (An interactive ver-
sion can be found at the website of the International Atomic Energy Agency (IAEA):
http://www-nds.iaea.org/relnsd/vchart/index.html.)

Radon hazard and local soil composition

The naturally occurring decay sequences from

various uranium and thorium isotopes all pro-

duce isotopes of radon, which is an inert gas.

The most important is the decay of uranium-

238, which produces radon-222. This has a

half-life of 3.8 days, which means that there is

sufficient time for it to escape from uranium-

containing soil and pose a health hazard, par-

ticularly in enclosed unventilated spaces like

basements. The α-emitting decay products

of radon can adhere to dust particles and be

inhaled. The dose received this way varies

greatly according to local soil composition and

building design.

There are three main regions that can be identified on this plot: nuclei below the
stable region have too many neutrons so that β− is the most likely decay process; nu-
clei above have too few neutrons so that the most likely decay process is β+ decay or
electron capture; and nuclei with masses over about 208 amu are too big and will most
likely decay via α-particle emission.

In nature there exist three main chains of decays, known as decay series, by which a
nucleus that is far from the stable region can undergo a sequence of decays that even-
tually result in a stable nucleus. Most naturally occurring radioactive nuclides are a
member of such a series. For example, the following series starts from thorium-232
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and ends on a stable isotope of lead; for this reason it is known as the thorium series

232Th
α−→ 228Ra

β−
−→ 228Ac

β−
−→ 228Th

α−→ 224Ra
α−→ 220Rn

α−→
216Po

α−→ 212Pb
β−
−→ 212Bi

β−
−→ 212Po

α−→ 208Pb

or 212Bi
α−→ 208Tl

β−
−→ 208Pb

Two other sequences from isotopes of uranium to stable isotopes of lead exist. An-
other series of decays known as the ‘neptunium series’ features relatively short-lived
parent nuclei, so is no longer naturally occuring.

35.4 X-ray Production

Figure 35.2 A typical X-ray spectrum, showing
the continuum bremsstrahlung radiation and the
characteristic X-rays.

X-rays are electromagnetic radiation with wavelengths that are below about 10 nm.
The production of X-rays is an atomic process, not a nuclear one. The lower energy end
of the X-ray range (the ‘soft’ end) overlaps with ultraviolet, and the high energy (‘hard’
end) overlaps with gamma rays. The distinction between parts of the electromagnetic
spectrum in this wavelength range is not so much one of wavelength or energy, but
one of generation. An X-ray photon that is in all ways indistinguishable from a gamma
photon once it has been created is called an X-ray because it was not generated in a
nuclear process.

There are two key processes which are used to generate X-rays: electronic transi-
tions into inner shells, and the deceleration of fast-moving free electrons. Electronic
transitions within an atom can produce only certain, discrete X-ray energies, so the
X-rays created this way are known as characteristic X-rays or characteristic radia-

tion; the energies produced in these transitions are characteristic of a particular atom.
When fast-moving charged particles are decelerated and lose kinetic energy, this lost
energy can be emitted in the form of electromagnetic radiation. This process is known
as bremsstrahlung. If the charged particles are sufficiently fast, the highest-energy ra-
diation will lie in the X-ray region of the electromagnetic spectrum. The combination
of these two processes produces an X-ray spectra like that shown in Figure 35.2.

Characteristic Radiation

Figure 35.3 Spectroscopic labelling of electronic
transitions.

The energy levels of an atom are labelled by several quantum numbers which give all
the essential information about the energy, angular momentum etc. of the electron
in that particular orbital. The orbitals corresponding to principal quantum number

n = 1, 2, 3 and 4 are traditionally labelled the K , L, M and N orbitals. We will use these
letters to label the radiation produced by transitions to those particular levels, along
with a Greek letter subscript. For example, transitions from the L shell (n = 2) to the
n = 1 level are labelled Kα. Kβ radiation is produced by transitions from the M shell to
the K shell. Transitions to the n = 2 level are labelled Lα, Lβ . . . The K and L transitions
are illustrated schematically in Figure 35.3. X-ray nNomenclature

The X-ray labelling notation that has histori-

cally been used (Siegbahn notation) is more

complicated than the simplified scheme we

have used here, which is that most often found

in introductory texts. The energy levels of elec-

trons in multielectron atoms depend on more

than just the principal quantum number, so in

reality there are many more possible X-ray en-

ergies.

In the case of the heavier elements, the transition energies involved when a elec-
tron falls into the lower K and L shells may fall into the X-ray area of the electromag-
netic spectrum. In 1913, Henry Moseley discovered a relationship between the emitted
wavelength and the atomic number of the element for these characteristic X-rays. The
following empirical formula, known as Moseley’s Law was found to give a very good fit
to the data

λ∝ 1

(Z −σ)2
(35.19)

where Z is the atomic number, 13.6 eV is the ionisation energy for hydrogen, and σ is
an experimentally determined constant which must be determined for each spectro-
scopic series. For the K series, σ= 1, and for the L series, σ is found to be 7.4.

The allowed energies for the K-series transitions are given by
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∆E = (Z −1)2

[
1− 1

n2
2

]
13.6 eV (35.20)

where n2 is the principal quantum number of the shell which the electron leaves when
it jumps to the K shell. For example, the energy of the Kα spectral line is given by

EKα = 3

4
(Z −1)2 13.6 eV (35.21)

The formula for the characteristic X-rays resembles the formula we found for hy-
drogen and hydrogen-like ions in our section on the Böhr model of the atom (Section
33.4). In this case, however, the atomic number Z is replaced with Z −1. This is due to
the presence of another electron in the K shell (which can take a maximum of two elec-
trons with opposite spins). This electron effectively shields the outer electrons from the
full Coulomb attraction of the nucleus, making it appear to contain Z−1 protons rather
than Z protons.

A similar formula exists for the (Lα lines), with (Z −7.4) appearing instead of (Z −1)
to take into account the effective amount of shielding from the inner electrons.

Bremsstrahlung

When a fast-moving electron travels through a material, interactions with the electric
fields produced by local nuclei in the material can deflect the electron from its straight-
line path. Such a deflection amounts to an acceleration of the electron, that is, a change
in its speed and/or direction of travel. This means that a force has been exerted on
the electron, work has been done on it, and its kinetic energy will change. Generally
these deflections will slow the electron down and thus it will continually lose kinetic
energy as it travels through any material. For energy to be conserved, the electron has
to emit any energy lost in some form, and this energy is emitted as a photon, i.e., the
decelerating electron emits electromagnetic radiation. This type of radiation is known
as bremsstrahlung which is German for ‘braking radiation’.

The amount of energy emitted by the decelerating electron will depend on how
much kinetic energy the electron loses in a given deflection. However, there is a maxi-
mum amount of energy that the electron can lose. If the electron is brought to a com-
plete stop on its very first interaction with the nuclei of a material, it will give up all of
its kinetic energy at once as a single bremsstrahlung photon. Thus the maximum en-
ergy of X-rays produced by bremsstrahlung is determined by the decelerating electron’s
initial kinetic energy.

Figure 35.4 Variation in X-ray spectra for differ-
ent accelerating voltages.

As we will see in the next section on the construction of X-ray tubes, electrons are
accelerated by a large potential difference. Because the maximum kinetic energy of
the electrons is a function of the electric field used to accelerate them, this maximum
X-ray energy is fixed only by the applied voltage. If the applied voltage is V , then the
maximum kinetic energy of an electron accelerated by this potential difference is

KE = qV (35.22)

Bremsstrahlung in the Lab

Some radioactive isotopes routinely used in

the life sciences, such a phosphorus-32, emit

high-energy beta particles. For many situ-

ations, shielding from radiation is achieved

with layers of dense materials, like lead, but

for such beta-emitters the production of sec-

ondary radiation through bremsstrahlung can

be problematic. Lower density materials like

plastic and water are typically used for shield-

ing in such cases, as the proportion of the inci-

dent energy that is converted to bremstrahlung

radiation is proportional to atomic number.

If all of this kinetic energy is given up at once then the emitted photon will have this
amount of energy, i.e.

h fmax = qV (35.23)

From this expression we are able to calculate the maximum frequency produced by
bremsstrahlung for a given accelerating potential

fmax =
qV

h
(35.24)

and the minimum wavelength

λmin = hc

qV
(35.25)
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The characteristic X-rays produced by an X-ray tube are determined by the type of
metal in the target which the accelerated electrons strike. The accelerating voltage will
determine which characteristic X-rays may be generated, but it will not change their
energies.

Problem: A thermionic X-ray tube accelerates electrons over a potential of 100 kV into a tungsten (W) target.

(a) What is the minimum X-ray wavelength produced by this tube?

(b) What is the wavelength of the characteristic spectral line produced by electrons making the transition from

the n = 3 to the n = 2 orbital in the tungsten target in this X-ray tube?

Example 35.3 X-ray production

Solution: (a) The minimum wavelength (maximum energy) photons produced by the X-ray tube will occur when all of
the energy of an electron hitting the target is converted into a single photon. This energy does not depend on the target
material, but only on the energy of the electrons hitting it

λmin = hc

qV
= 6.626×10−34 J s×2.998×108 m s−1

1.6×10−19 C×100×103 V
= 0.0123 nm

(b) The n = 3 to the n = 2 transition corresponds to the Lα transition. Using Moseley’s law we can say that resulting
photons emitted from the tungsten target (Z = 74) will have an energy of

∆E = 13.6 eV(Z −7.4)2

[
1

n2
1

− 1

n2
2

]
= 13.6 eV×66.62 ×

[
1

22
− 1

32

]
= 8380 eV

which corresponds to a wavelength of

λLα = 6.626×10−34 J s×2.998×108 m s−1

8380 eV×1.6×10−19 J eV−1

= 0.15 nm

X-ray Tubes

Crookes Tube

The Crookes tube is an evacuated glass tube and electrode setup developed by Sir
William Crookes. It paved the way for the proper scientific exploration of X-rays, and
was used by many experimental physicists in the early investigation of the nature of
matter.

A Crookes tube is made of glass, contains gas at low pressure and has two built-in
electrodes. When an electrical potential difference is applied between the electrodes,
the electrode at higher potential (the positive electrode) is called the anode and the
electrode at lower potential (the negative electrode) is called the cathode. When the
applied voltage difference is large enough, some of the gas that remains in the tube is
ionised. The positive ions are accelerated towards the cathode, and when they strike
the cathode they liberate electrons. All the electrons created by these collisions and
the ionisation of the gas are accelerated toward the anode. If the anode is not blocking
the path of these electrons, they will overshoot and fly straight past anode, colliding
with the glass end of the tube or any target that is placed there. With sufficiently high
potential difference between the electrodes, these electrons will produce X-rays when
they are suddenly decelerated by the glass end of the tube or the target material placed
there.

By trial and error it was found that the best target material for generating X-rays was
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tungsten (chemical symbol W).
While the Crookes tube is of great historical importance and clearly displays the

processes involved in the generation of X-rays, it has largely been replaced in modern
devices by the thermionic tube.

Thermionic Tube

In the thermionic (or Coolidge) tube, a heated filament is used to produce electrons. A
filament is heated to the point were electrons in the metal gain enough energy to leave
the metal and form a cloud, or space charge around the filament. An electric field is
used to accelerate these electrons toward a target material (most commonly tungsten),
which also acts as the anode. The accelerated electrons collide with the anode and
produce X-rays either by bremsstrahlung or by causing the emission of characteristic
X-rays. In the Crookes tube, increasing the accelerating potential increased the ioni-

Figure 35.5 Schematic diagram of the modern
thermionic X-ray tube.

sation of the gas in the tube, which increased the number of positive ions colliding with
the cathode and thus increased the amount of X-ray photons produced. Increasing the
accelerating potential in the Crookes tube would thus increase both the number of X-
ray photons produced and their maximum energy. In the thermionic tube, on the other
hand, the current used to heat the filament and thus to generate the electrons which
produce the X-rays can be adjusted independently of the accelerating potential. Thus
the number of X-rays produced may be varied independently of the maximum energy
of the X-rays. This allows for greater flexibility in the clinical use of X-rays than was
possible with the Crookes tube.

The generation of X-rays is not an efficient process. For example, with a tungsten
target and an accelerating voltage of 100 kV, about 0.8% of the energy used to accelerate
the electrons is ultimately converted into X-rays. The rest of the energy is lost heating
the target, so only materials that have large heat capacity and high melting point are
suitable target materials.

35.5 Other Sources of Radiation

Pair Annihilation

When a particle and its antiparticle meet (e.g., an electron and a positron) they annihi-

late each other and the energy equivalent of their mass is released as energy in the form
of γ photons. In these interactions, all conservation laws are obeyed. The particle and
antiparticle are opposite in the sense that whatever property the particle has the an-
tiparticle has the opposite. If the particle has positive charge, the antiparticle has equal
but opposite charge, etc. However, energy and momentum must also be conserved.
The γ photons produced in the annihilation will have total energy equal to the total
rest mass energy of the particle–antiparticle pair. To conserve the total momentum of
the particle–antiparticle pair, two photons of equal energy, travelling in roughly oppo-
site directions, must be created. These photons have a characteristic energy that makes
them useful in medical diagnostics (0.511 MeV for electron–positron annihilation).

Cosmic Rays

Cosmic rays might sound like something you would find in comic books, but they are
very real. The term is used to describe high-energy particles that stream into the Earth’s
atmosphere from space. The origins and nature of these particles vary, from protons
originating in the Sun, to higher-energy particles from galactic supernovae, neutron
stars and black holes, and extremely high-energy particles coming from other galaxies.

The highest-energy particles to hit the Earth’s atmosphere have energies in excess
of several billion billion electron volts. This is equal to the kinetic energy of a well-hit
tennis ball. To put this in perspective, the most powerful particle accelerator ever built
on Earth (the Large Hadron Collider), will accelerate particles to energies of around
seven trillion (seven thousand billion) electron volts, a million times less energetic than
the most energetic cosmic rays. For many years, scientists could only speculate on the
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origin of most of these energetic particles, largely because they are usually charged,
and are therefore deflected a lot by interactions with electromagnetic fields. Recent
work on detection of the highest energy of these cosmic rays – the ones that are moving
so fast that they are not so easily deflected – suggests they originate in black holes that
exist in active galactic centres.

Solar activity andcosmic rays

Over the 50-year period that scientists have

been monitoring it, the pressure from the solar

wind, the constant stream of particles (mostly

protons and electrons) ejected from the Sun,

has been decreasing. According to NASA,

this has led to an increase in the cosmic

rays reaching Earth, though fortunately not the

number reaching the surface. This extra radia-

tion dose could affect manned space missions

to other planets and could cause more dam-

age to satellites in high Earth orbit. Strangely

enough, when the Sun ejects material in the

direction of Earth, this is a ‘bad thing’ the

charged particles can destroy satellites but

when one of these solar flares appears and is

not pointing in our direction, it can be a good

thing, as the resulting magnetic fields deflect

galactic cosmic rays – ones from outside the

solar system – away from us.

When such high-energy particles reach the Earth’s atmosphere, they interact to pro-
duce showers of lower-energy particles. The number of particles in a single cascade
can number in the billions, and it is this cascade which enables the detection of these
events.

Cosmic rays hitting the upper atmosphere are responsible for the creation of some
unstable nuclei, such as carbon-14. This process keeps the amount of carbon-14 in the
environment roughly constant, and allows the use of carbon-14 dating to determine
the time since death for some organic matter.

The expected radiation dose from cosmic rays in the absence of the Earth’s shield-
ing atmosphere and magnetic field is a big issue for future space missions to other
planets. The kind of exposures astronauts on a mission to Mars might get are around
200 times the level of exposure on the Earth.

35.6 Summary

Key Concepts

ionising radiation Particles or electromagnetic waves which have sufficient energy to ionise
atoms and molecules.

X-ray A type of ionising electromagnetic radiation with wavelengths from about 0.01 nm to
around 10 nm. The low energy end of the X-ray spectrum (the soft X-rays) overlaps with
the extreme ultraviolet.

gamma (γ) ray A form of ionising electromagnetic radiation with wavelengths less than about
0.01 nm. Gamma radiation is generated by processes within the nucleus and by antimatter
annihilation.

bremsstrahlung (German for ‘braking radiation’.) The continuum X-ray radiation produced by
the braking of fast-moving electrons when they interact with matter.

characteristic X-rays The X-ray photons produced by electronic transitions to tightly bound in-
ner shell orbitals. The transitions occur after the removal of an inner shell electron, usually
by collision with an externally produced fast electron. The photon energies produced are
characteristic of the target atom.

annihilation The process in which a particle meets its antiparticle and both particles cease to
exist, their rest mass energy being converted to gamma radiation. The reverse process is
pair production.

electron neutrino (νe) An elementary particle produced in some nuclear processes that travels
at close to the speed of light and has zero charge. The mass is not known, but the upper
limit of the possible mass range is very small.

antimatter Most fundamental particles (the exception being some massless particles like pho-
tons) have an antiparticle equivalent with the same mass and opposite charge (and other
quantum numbers). When a particle and its antiparticle meet, annihilation occurs.

α-decay The emission of a helium-4 nucleus (αparticle) from a larger, unstable nucleus, leaving
a daughter nucleus that has two fewer protons and two fewer neutrons.

β-decay One of three different processes (β−, β+ and electron capture) that result in a change
in nuclear composition, but not nucleon number. A neutron is converted into a proton, or
viceversa, with the accompanying creation of a positron, or the creation/loss of an elec-
tron and the production of a neutrino or antineutrino.

γ-decay A nucleus in an excited state can emit energy as a photon of electromagnetic radiation,
known as a gamma photon.

half-life (T1/2) The time taken for half the unstable particles in a pure sample to decay. Also the
time taken for the activity of a sample to halve.

activity The measure of the rate of decay of a radioactive sample. The SI unit of activity is the
becquerel (Bq), with 1 Bq being equivalent to one decay per second.
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decay constant (λ) For an exponential decay process, the rate at which the quantity decreases
is proportional to the quantity, with the constant of proportionality being the decay con-
stant.

exponential A quantity is said to change exponentially when the rate of change of that quantity
is proportional to the original value of that quantity.

Equations

N (t ) = N0e−λt A(t ) = A0e−λt

A =λN T1/2 = 0.693
λ

h fmax = qV λmin = hc
qV

∆E = (Z −σ)2

[
1

n2
1
− 1

n2
2

]
13.6 eV

A
Z X → A−4

Z−2Y + 4
2α

A
Z X →A

Z+1 Y + 0
−1 β+νe

A
Z X →A

Z−1 Y + 0
+1 β+νe

A
Z X +e− →A

Z−1 Y +νe
A
Z X ∗ →A

Z X +γ+γ+γ+ . . .
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35.7 Problems

You will need to use a periodic table to answer the three following
questions. 35.1 What is the decay product A

Z X in the following
nuclear decay process?
238
92 U →A

Z X+4
2 α

35.2 What is the decay product A
Z X in the following nuclear decay

process?
237
92 U →A

Z X+e−+νe

35.3 What is the decay product A
Z X in the following nuclear decay

process?
11
6 C →A

Z X+e++νe

35.4 What is the decay product A
Z X in the following nuclear decay

process (gold-196 by electron capture)?
196
79 Au+e− →A

Z X+νe

35.5 Cadmium-107 has a half life of 6.52 hours. If you start off with
sample which has an activity of 1.0×1010 Bq, what will the activ-
ity in Bq be after the following times (note: you can answer these
questions without using Equation (35.16)?

(a) 6.52 hours;
(b) 19.6 hours;
(c) 3 days;
(d) 6 days.

35.6 Iodine-120 has a half life of 1.35 hours. If you start off with
a sample which has an activity of 1.0 Ci, how long is it before the
activity drops to the following values (note: you can answer these
questions without using Equation (35.16)):

(a) 0.50 Ci;
(b) 0.125 Ci;
(c) 9.77×10−4 Ci;
(d) 9.31×10−10 Ci.

35.7 You find an old radioactive source in the back of the cup-
board which is labeled ‘Caesium-137 - 137C s →137 B a + e−, T 1

2
=

30.2 years, A = 1.4 mCi as of 01/01/1954’. If the date is now
30/06/2009, what is the current activity of this sample (in mCi)?

35.8 Some X-rays are produced by accelerating a beam of electrons
across a potential difference of 120 kV into a tungsten (184

74 W) tar-
get.

(a) What are the lowest wavelength (highest energy) X-rays
produced when the beam of electrons hits the target?

(b) What is the wavelength of the Kα characteristic X-rays pro-
duced in the target?

(c) What is the wavelength of the Kβ characteristic X-rays pro-
duced in the target?

35.9 Some X-rays are produced by accelerating a beam of electrons
across a potential difference of 15 kV into a nickel (58

28Ni) target.

(a) What are the lowest wavelength (highest-energy) X-rays
produced when the beam of electrons hits the target?

(b) What is the wavelength of the Kα characteristic X-rays pro-
duced in the target?

(c) What is the wavelength of the Kβ characteristic X-rays pro-
duced in the target?

35.10 You wish to design an X-ray tube that will produce a 1 W
beam of 0.07217 nm X-rays.

(a) If your X-rays are produced by the Kα characteristic transi-
tion, what element is the target made out of? (Consult a periodic
table.)

(b) You design your X-ray tube such that a beam of electrons
is accelerated through some potential difference into a target and
the maximum photon energies produced are twice that of the use-
ful 0.07217 nm beam. Through what potential difference do you
accelerate the electrons?

(c) If 0.5% of the energy deposited in the target is converted
into X-rays, and only 3% of the X-rays are the useful 0.07217 nm
X-rays, what is the power in the electron beam?
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36INTERACTIONS OF IONISING

RADIATION
36.1 Introduction

36.2 Attenuation and Cross Section

36.3 X-rays and Gamma Radiation

36.4 Particles

36.5 Detection of Ionising Radiation

36.6 Summary
36.1 Introduction

The way in which ionising radiation interacts with matter depends on the type of radi-
ation and its energy. Particulate radiation (α and β radiation) interacts with matter by
colliding with the atoms or molecules and ionising them. Antiparticles collide with and
are completely annihilated with their corresponding matter particles. Photons may be
completely absorbed by an electron, involved in scattering collisions, or be the cause
of particle–antiparticle pair production.

This chapter also includes some of the commonly used devices for detection of ion-
ising radiation.

Key Objectives

• To understand the concept of an interaction or scattering cross section.

• To understand some ways in which high – energy photons can interact with mat-
ter: Compton scattering, the photoelectric effect and pair production.

• To understand some ways in which particulate radiation can interact with matter.

• To estimate the penetrating ability of different kinds of radiation.

• To examine the operation of some commonly used radiation detectors.

36.2 Attenuation and Cross Section

When a beam of radiation (of any type) enters matter it is normally attenuated, that
is, the amount of energy in the beam decreases with distance into the material. The
processes by which the radiation interacts with matter will be discussed in the next
sections. Without knowing the specific kind of interaction, we are still able to make
some general statements about the rate of attenuation.

Consider a block of some material with area ∆A and depth ∆x; the volume of the
block is then ∆V = ∆ x ×∆A. Suppose also that the block contains ∆N atoms or
molecules with which radiation can interact. If a beam of radiation strikes the top sur-
face of this block the chances of an incoming particle striking an atom in the block is
twice as great if there are two target atoms per unit area instead of one – the proba-
bility that a particle in the beam will be absorbed is proportional to the total number
of interaction centres and inversely proportional to the total area over which they are
spread. To simplify the discussion we will define a quantity called the particle fluence,
Φ which is the number of incoming radiation particles per unit area. The number of
incoming particles lost in a volume ∆V is then −∆Φ. The number of particles per unit
area in the incoming beam that are absorbed in the volume ∆V is then proportional to
the total number of absorbing centres and inversely proportional to the total area over
which these centres are spread

−∆Φ

Φ
∝ ∆N

∆A
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We can convert the proportionality into an equality by introducing a constant of
proportionality

∆Φ

Φ
=−σ∆N

∆A
(36.1)

The constant of proportionality, σ, is called the scattering crosssection and has the
units of area. It can be thought of as the effective area of the target particles – the
area that an incoming particle needs to hit for an interaction to occur. The scatter-
ing cross-section is measured in units called barn, named by scientists working on the
Manhattan Project based on colloquial expressions about hitting targets that involve
barns, such as ‘such a bad shot, he couldn’t hit the broad side of a barn’. The barn is a
unit of area: a very small one, but large in terms of the typical size of a nucleus. One
barn equals 10−28 m2.

If we note that the concentration of the absorbing target particles, n, is ∆N /∆V , so
that ∆N /∆A = n∆x, it follows from Eq. (36.1)that

∆Φ

Φ
=−σ∆N

∆A
=−σn∆x

so that (with a little rearranging)

∆Φ

∆x
=−σnΦ (36.2)

In other words, the change in particle fluence with distance (∆Φ/∆x) is propor-
tional to the particle fluence (Φ). As we have seen before in radioactive decay, when
the rate of change of a quantity is proportional to that quantity, then that quantity is
described by an exponential function.

Key concept:

The intensity of beam of particles or photons, all having the same energy, decreases
exponentially with distance in an isotropic material.

For example, if the beam intensity is reduced by half after 1 cm, that does not mean
that the beam will be completely blocked by 2 cm – the beam intensity will be reduced
to one quarter. The real situation is often far more complex because of all the secondary
radiation from the absorption and scattering of the original beam particles.

36.3 X-rays and Gamma Radiation

Most of the attenuation of high-energy electromagnetic radiation (gamma and X-rays)
in matter is due to interactions between the incoming photons and orbiting electrons

in the target atoms. There are several interaction mechanisms:

• Complete absorption of the energy of the photon.

• Partial absorption of the energy of the photon, which results in a new, lower-
energy photon travelling in a different direction (Compton effect).

• The ionisation of the atom and the freeing of an orbital electron (Photoelectric
effect).

• The creation of new particles.

Since the chance of a collision depends on the density of electrons, high-atomic-
number materials, e.g., lead, tend to be more attenuating. This is the reason that lead
is so often used as radiation shielding. There are other elements with similar atomic
number, but these are either radioactive themselves or relatively expensive. The level
of attenuation of X-rays and gamma radiation depends very much on photon energy
– higher energy photons are typically more penetrating. X-ray and γ-ray photons are
removed from a beam by the absorption and scattering processes listed above, and the
likelihood of the different interactions depends on photon energy. We will consider
these different attenuation mechanisms in the following sections.

386 www.wiley.com/go/biological_physics



36.3 X-RAYS AND GAMMA RADIATION

The Photoelectric Effect

The photoelectric effect is the name given to the process in which a photon is com-
pletely absorbed by a bound electron, giving the electron enough energy to escape
whatever binding potential is holding it, generating a free electron called a photoelec-
tron. The bound electron is generally either bound to an atom or is held in a crystalline
solid by the collective action of a number of atoms (as in the case of conduction elec-
trons in a metal). Whether or not the photoelectric effect will occur depends on the
binding energy of the electron. The binding energy is the amount of energy that the
electron needs to completely escape from the binding potential.

The photoelectric effect can be observed when light in the visible or UV part of the
spectrum irradiates certain metals. In this case, the energy of the incident photons
may provide enough energy to allow the escape of electrons from a crystalline solid
(the metal). Here the conduction electrons are not bound to a single nucleus, and the
threshold energy for electrons to be emitted is called often called the work function of
the material.

The energy of a photon is related to its frequency by E = h f . Thus the higher the
frequency of the incident light the more energy each photon has, and this energy must
be greater than the work function for the absorption of a photon to result in the electron
gaining enough energy to escape. There is a cut-off frequency below which none of
the photons absorbed will be able to provide bound electrons with enough energy to
escape the binding potential. Thus below the cut-off frequency, no electrons will be
emitted from the metal surface.

Increasing the intensity of the radiation without changing the frequency has the ef-
fect of increasing the number of photons striking the material, but does not increase
the energy that each of these photons has. Hence increasing the intensity of the inci-
dent light will increase the number of photoelectrons emitted, but only if the frequency
of the light is above the cut-off frequency.

If the frequency of the incident light is greater than the cut-off frequency then there
will be some energy left over after a bound electron absorbs the photon and escapes the
binding potential. This extra energy appears as the kinetic energy of the emitted pho-
toelectron. Some of this kinetic energy may be absorbed by collisions with the crystal
lattice as the photoelectron makes its way to the surface of the metal and escapes, how-
ever it is possible that the photoelectron is already at or close to the surface so that it
does not lose any of this kinetic energy. Thus the maximum kinetic energy of photo-
electrons emitted by the photoelectric effect is simply the photon energy minus the
binding energy of the metal. The maximum kinetic energy of photoelectrons depends
solely on the frequency of the incident light and not at all on the intensity of this light

KEmax = h f −B (36.3)

where f is the frequency, h is Planck’s constant and B is the binding energy or work
function.

The photoelectric effect is historically very significant as it was Einstein’s explana-
tion of the process that showed that electromagnetic radiation came in packets which
were named photons. The theories of electromagnetic waves that had been postulated
previously predicted results that were in part at odds with experiment. In particular,
they suggested that any frequency of incident light should produce photo-electrons –
it would just take longer to free electrons if the light intensity was low. This is because
the classical model of electromagnetic radiation predicted that an electron would con-
tinuously absorb energy from the incident waves until they had sufficient energy to
escape. The experimental evidence indicates that this is not what happens; no elec-
trons are emitted when the incident light is below the cut-off frequency. Furthermore
the emission of electrons is nearly instantaneous and the time taken for emission does
not depend on the intensity of the incident light.

The photoelectric effect is more complicated in the case of high-energy radiation.
X-rays and gamma rays have sufficient energy to liberate not just the loosely bound
electrons in metals, but also more tightly bound atomic electrons, and generally are
able to liberate electrons from inner atomic orbitals. When photo-electrons are ejected
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from inner atomic orbitals, the resulting vacancy is quickly filled by an outer-shell
atomic electron which drops down into this vacancy. This process, an outer-shell elec-
tron dropping down into an inner-shell vacancy, results in the emission of the energy
difference between these two shells as another (X-ray) photon.

Attenuation of X-rays and gamma radiation via the photoelectric effect occurs be-
cause the ejected photoelectron carries away some of the energy of the incident X-
ray or gamma-ray photon as kinetic energy. The X-ray which is emitted as a result of
the dropping of an outer-shell electron into the inner-shell vacancy will generally be
less energetic than the original incident radiation, and can be emitted in any direction.
Thus the energy of the incident beam has been reduced.

Pair Production

Sufficiently high-energy gamma-ray photons may spontaneously convert into a elec-
tron – positron pair. This is more likely in the vicinity of a nucleus. The energy of
the photon is converted into matter and antimatter. Because energy is conserved, the
mass–energy equivalence relationship E = mc2 determines the total mass that can pro-
duced. There is a minimum photon energy necessary for pair production to proceed,
which is equivalent to the rest mass of the two electrons.

The rest mass energy of the electron may be calculated as follows

Eelectron = me c2

= 9.108×10−31 × (
2.998×108)2

= 8.187×10−14J

or in eV:

= 511.0 keV

Thus we must have Ephoton > 1.022 MeV to produce an electron and positron since
they each have a rest mass of 511 keV/c2. This means that only photons with frequen-
cies greater than about 2.5 × 1020 Hz will be able to produce electron–positron pairs.
This is a frequency in the gamma-radiation range.

All conservation laws must be satisfied in pair production. For example, charge
is conserved by the simultaneous creation of a positive and negative charge of equal
magnitude. Energy and thus mass is clearly conserved, but momentum must also be
conserved. This means that the pair of particles must have equal and opposite mo-
menta.

The reverse of the pair production process is particle–antiparticle annihilation, which
was discussed in Section 35.5.

The energy of an incoming beam of gamma radiation will be attenuated if pair pro-
duction occurs. The positron produced in this process will ultimately undergo anni-
hilation with an electron within the medium and this will produce two photons. Each
of these photons will have less energy than the original gamma photon responsible for
the pair production, and the direction will be different. In this way the process of pair
production will act to reduce the energy of a beam of electromagnetic radiation.

The Compton Effect

Figure 36.1 The Compton Effect. An incoming
photon is scattered from a nearly free electron,
giving energy and momentum to the electron and
moving off at some other angle with a reduced
frequency, i.e., in increased wavelength.

The Compton effect, or Compton scattering, is an interaction between electromagnetic
radiation and matter in which photons display their particle-like nature. In determin-
ing what happens when a high-energy photon is scattered by a particle (such as an
electron) without being absorbed, it is necessary to analyse the event rather like a colli-
sion between two billiard balls, and to look at conservation of energy and momentum
to fully explain the way the photon wavelength and energy change. Such a collision
demonstrating the Compton effect is shown Figure 36.1

When an incoming photon is incident on a nearly free electron which is more or
less at rest, energy is transferred from the photon to the electron. The electron gains
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kinetic energy and moves off in some direction, and a lower-energy, longer-wavelength
photon. The energy and momentum of the electron and photon after the collision are
such that both energy and momentum are conserved in the process.

A full mathematical treatment of Compton scattering is outside the scope of this
book, but there are a few points that are worth mentioning. Firstly, even though pho-
tons have no rest mass, as previously mentioned, they do have momentum, and this is
related to their wavelength by p = h

λ , where p is the momentum, h is Planck’s constant
and λ is the wavelength. Another observed result is that the change in wavelength is re-
lated to the angle at which the photon is scattered. The maximum energy transfer from
photon to electron occurs when the scattered photon returns in the opposite direction
to the incident photon.

When Compton scattering occurs, the incoming photon loses energy to the scat-
tered electron, so a beam of gamma or X-ray photons will also be attenuated by Comp-
ton scattering in the medium.

Figure 36.2 A summary of the ways photons interact with matter.

36.4 Particles

We will not discuss the mathematical details involved the particle–particle collisions
which are responsible for the attenuation of beams of particulate radiation. These col-
lisions are often between charged particles moving at relativistic speeds and the de-
tailed analysis is beyond the scope of this book. Here we will content ourselves with a
summary of the kinds of interactions that occur.

Neutrons

Neutrons are uncharged, and so interact predominantly with the nuclei in attenuating
material in the following ways:

elastic collision Kinetic energy conserving collision with another particle.

non-elastic collision The neutron interacts with a nucleus and is re-emitted with a
different (normally reduced) kinetic energy.

capture The neutron is captured and becomes part of a nucleus.

spallation/fission The neutron is captured, but the increase in energy causes frag-
mentation of the nucleus. Spallation is a term for the production of fragments
when an object is subjected to an impact or stress. Fission is the splitting of an
object into two parts.

The probability of an interaction between a neutron and a particular nucleus is energy
dependent. Except for very low energies (less than 100 keV) where capture is impor-
tant, elastic collisions dominate. Inelastic collisions are more likely above a few MeV,
and spallation occurs above about 20 MeV.

www.wiley.com/go/biological_physics 389



36 · INTERACTIONS OF IONISING RADIATION

Ions

This category includes protons, α particles and heavy nuclei.

capture of electrons The energetic incoming ion captures one or more electrons from
the absorbing material and becomes a neutral atom. In the process the ion loses
kinetic energy and ionises the surrounding material. This occurs for low-energy
radiation.

collisions with electrons The energetic incoming ion collides with atoms of the ab-
sorbing material but does not capture electrons and become neutral. In the pro-
cess the surrounding material is ionised and the atoms of the absorbing material
may be lifted into excited atomic states. Again the energy to ionise or excite the
surrounding material is provided by the incoming ion, which therefore loses ki-
netic energy in the process.

nuclear collisions The incoming ion collides directly with the nucleus of an atom of
the absorbing material. This occurs only when the incoming ions are at very
high energies. In these collisions processes such as spallation and fission may be
induced. Particle accelerators are sometimes used to produce a beam of protons
which are then directed into a target material to produce neutrons by spallation.

Electrons/Positrons

Some of the interactions of energetic electrons have already been covered in the X-
ray production section (see Chapter 35). The current discussion is more generalised,
however, and also applies to positrons.

annihilation Positrons may collide with an electron and be annihilated.

collisions with atomic electrons Energetic incoming electrons may collide with and
eject electrons from various atomic shells, in the atoms of the absorbing material.
The atomic shells involved will depend on the energy of the incoming electron.

bremsstrahlung The deceleration of energetic incoming electrons and the subsequent
emission of the lost kinetic energy as electromagnetic radiation (up to X-ray en-
ergy) has been described earlier (see Section 35.4).

Cerenkov radiation Cerenkov radiation is electromagnetic radiation emitted when elec-
trons travel through a material at speeds greater than the speed of light in that
material (though still lower than the speed of light in a vacuum, c). The effect
may produce damaging ultraviolet radiation. Occurs for electrons with kinetic
energy above about 500 keV when travelling in water.

36.5 Detection of Ionising Radiation

The Geiger–Müller Tube

The Geiger–Müller tube (often just called a Geiger tube) is a type of gas detector which
is most useful for the detection of α and beta radiation. They can be used for gamma
detection, but the detection efficiency is usually quite low, as the gas inside is at quite
low pressure. The ionising particle passes through a thin window at the end of the tube
(usually made of the mineral mica) and ionises the gas. The charged particles that are
created are then accelerated by an electric field, and collide with further gas particles,
creating an avalanche of charged particles. This current is detected and recorded as an
audible click or a spike in the output signal.

Geiger–Müller tubes can detect only the presence of radiation and not its energy.
They are also only useful up to count rates of about 1000 counts per second. The
ionised gas takes some time to recombine and return to a state where another parti-
cle event can be detected (this is called the dead time of the detector). As the count
rate increases, so does the probability that simultaneous events will be missed.
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The Photomultiplier

Figure 36.3 A schematic of a photomultiplier with
scintillating material.

Photomultipliers, as the name suggests, amplify the signal generated by the detec-
tion of a photon. When a photon hits a photocathode inside a vacuum tube, it triggers
the release of a photoelectron. This electron is accelerated towards a nearby electrode
(called a dynode) that is at a higher potential than the cathode, and when it strikes the
dynode, more electrons are emitted. This process is repeated several times to produce
a burst of up to ∼ 106 electrons from a single photon. Voltages of several thousand volts
are typically required. A simplified diagram of how a photomultiplier works is shown
in Figure 36.3.

Photomultipliers can be used as part of scintillation counters. A scintillating mate-
rial, one that generates photons when struck by ionising radiation, is used, and then
these photons are converted to electrical pulses with a photomultiplier. Such detectors
have the advantage of producing information about the energy of the incident parti-
cles, as the number of photons generated in the scintillating material is proportional
to the energy. Sodium iodide crystals are commonly used as scintillators in such detec-
tors, since they provide good efficiency due to the high atomic number and thus elec-
tron density of their component atoms. Germanium crystals have very good energy
resolution for gamma detection, but require low temperatures (achieved with liquid
nitrogen) for their operation.

Photographic Emulsions

The earliest type of detection equipment was the photographic film. It was the discov-
ery of the darkening of photographic films by nearby uranium samples that originally
led to the discovery of ionising radiation. X-rays affect the film in much the same way
as visible light does; silver halide salts are converted to metallic silver by incident pho-
tons.

Photographic film is routinely used for the detection of X-rays in a medical diagnos-
tics. To improve the sensitivity of the film and reduce the exposure needed, the film is
often coated on both sides with a fluorescent material that increases the effect of X-rays
on the film, and sometimes a layer of lead is used under the photographic emulsion to
backscatter the X-rays through the film a second time.

36.6 Summary

Key Concepts

photoelectric effect The process in which electrons are emitted from a material when electro-
magnetic radiation is incident on the surface.

Compton effect A process in which a photon is scattered off an electron such that it undergoes
a change in direction and a corresponding reduction in frequency.

photon momentum While photons have ‘zero rest-mass’, they do carry momentum p = h
λ

.

pair production The production of a particle–antiparticle pair, usually from energetic gamma
photons.

Geiger–Müller tube A gas-filled tube for detecting and counting radiation. It is most efficient
for α and beta radiation.

photomultiplier A light-detection device. Incident light produces electron emission by the pho-
toelectric effect, and these electrons are amplified by a series of electrodes at increasing
potentials to produce a detectable current.

scintillating material A material, such as sodium iodide, that emits a flash of light when it ab-
sorbs ionising radiation. These are often used in conjunction with photomultiplier for
radiation detection.
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Equations

∆Φ

Φ
=−σ∆N

∆A

∆Φ

∆x
=−σnΦ

p = h

λ

KEmax = h f −B
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37.7 Summary
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37.1 Introduction

In this chapter we will investigate the interaction of ionising radiation with biological
tissue. The specific effects produced by this interaction depend on the type of radia-
tion, and how the exposure occurs. The concept of radiation dosage will be discussed
and we will look at the risks and medical symptoms associated with different types of
radiation exposure in humans. The typical NZ citizen’s yearly radiation equivalent dose
is given in Figure 37.1.

Key Objectives

• To understand absorbed and equivalent dose.

• To be able to predict the possible or likely effects of a particular full-body radia-
tion dose.

• To understand how damage occurs at a cellular level and how this translates into
particular medical symptoms.

37.2 Mechanisms of Cell Damage

Ionising radiation causes damage to molecules, occasionally by a direct hit on a mole-
cule, but more often indirectly by the creation of ‘free radicals’. Free radicals are un-
charged atoms or fragments of molecules possessing an unpaired electron. They are
formed by the symmetrical breaking of a covalent bond.

Free radicals may cause damage to cellular proteins by breaking molecular bonds
and rendering protein molecules non-functional or even harmful. If there are many
undamaged copies of the protein, this may not adversely affect cellular function, but
too much damage may result in cell death.

Figure 37.1 A typical NZ citizen’s yearly ra-
diation equivalent dose. The typical dose is
2300 µSv y−1 [Copyright (c) 2010 National Ra-
diation Laboratory, New Zealand]

Direct hits and free-radical production by radiation may damage cellular DNA. If
this occurs there are several possible outcomes:

• DNA damage which the cell can detect and fix.

• DNA damage that cannot be fixed, causing the cell to undergo apoptosis, a form
of programmed cell death.

• Non-lethal damage that is passed on as a mutation in subsequent cell divisions.

In addition, neighbouring cells which are not directly damaged by radiation may
experience damage by communication with the damaged cells (the ‘bystander effect’).

DNA damage is described as either somatic or genetic. Somatic damage is non-
inheritable. The serious adverse effect of somatic damage is to increase the risk that
a cancer will develop. Genetic damage is inheritable and results from the mutation
of DNA in the reproductive cells, and these changes may thus be passed on to future
generations.

Introduction to Biological Physics for the Health and Life Sciences Franklin, Muir, Scott, Wilcocks and Yates
©2010 John Wiley & Sons, Ltd
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37.3 Dose and Dose Equivalent

Absorbed Dose

The absorbed dose, D, is a physical quantity which quantifies the amount of energy
absorbed by some material. The absorbed dose is not specific to the absorption of
radiation by biological material: an absorbed dose could, in principle, be calculated for
the absorption of sunlight by a metal plate, or the absorption of sound waves by a wall
in a house. However, the absorbed dose will be particularly useful in the quantification
of the effect of radiation on biological material. The SI unit of absorbed dose is the
gray, symbol Gy. One gray is equivalent to one joule of energy being delivered to one
kilogram of matter. An older (much smaller) unit of absorbed dose is the rad. The
relationship between these units is

1 Gy = 1 J kg−1 = 100 rad

The absorbed dose is given by

D = ∆E

m
(37.1)

where ∆E is the energy lost from the radiation beam, and m is the mass of material into
which the energy is absorbed. As stated earlier, the absorbed dose is a general concept.
It therefore applies to all kinds of radiation and all types of absorber.

Absorbed dose is an important concept, since the effect of radiation on biological
tissue depends directly on the amount of energy absorbed by that tissue. The damaging
effects of radiation occur when molecular bonds in important biological molecules are
broken or when free radicals are formed. Both of these processes require energy, and
thus the amount of damage produced by radiation is proportional to the amount of
energy from the radiation that is absorbed. However, as we have seen and as shown in
Figure 37.2, different types of ionising radiation lose energy in matter in different ways;
this is also an important factor in analysing the biological effects of the radiation. In
order to quantify this variation of effect for the same energy absorbed, we introduce
the concept of dose equivalent.

Dose Equivalent

The dose equivalent can be thought of as an expression of the dose in terms of its bi-
ological effect. To estimate this, we define the relative biological effectiveness or RBE
of a particular kind of radiation (also known as the Quality Factor, Q). The RBE varies
from one kind of radiation to another and quantifies the damage produced by each
kind of radiation in biological tissue.

Approximate RBE values (summarized from ICRP (1991)) X and Gamma rays, RBE
= 1 Electrons, RBE = 1 Neutrons (energy dependent), RBE = 5-2-0 Protons, RBE
= 5 Alpha Particles, RBE = 20

The distance travelled by a particular kind of radiation is dependent on the rate at
which that type of radiation deposits energy in matter. Electrically charged particles
interact strongly via the electric force and thus deposit their energy relatively quickly.
The larger particles will also lose energy rapidly because they are more likely to simply
collide with the molecules of the material through which they are travelling. The α

particle has twice the charge of the β particle and is also much larger. Thus energetic
α particles will deposit their kinetic energy more rapidly and over a smaller distance
than β particles with the same initial energy. Similarly, β particles will deposit their
kinetic energy more rapidly and over a smaller distance than γ-ray photons with the
same initial energy.
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Figure 37.2 Even if the amount of energy ultimately deposited by different types of radiation is the same, more
concentrated damage is caused by larger particles like α particles.

The fact that the range of the α particle is less than that of β, γ or X-rays, results in
α radiation depositing its energy in a smaller area. The greater concentration of ioni-
sation and cell damage results in greater (adverse) biological effect, and thus a larger
value of the RBE. Similarly, β radiation has a larger value of the RBE than γ radiation.
The RBE of γ radiation is set at 1. This means that radiation with a RBE of 7 (for exam-
ple) is seven times as damaging as the same absorbed dose of γ radiation.

The dose equivalent is measured in sievert (Sv). The dose equivalent is obtained by
multiplying the absorbed dose by the RBE

Sv ≡ Gy × RBE (37.2)

The non-SI unit still in use is the rem (which stands for Röentgen equivalent man):

dose equivalent in rem = absorbed dose in rad × RBE (37.3)

1 Sv = 100 rem (37.4)

Effective Dose

As different tissue types are affected differently by radiation, the risks associated with
lower doses of radiation can be better quantified by taking into account a weighting
factor that depends on tissue type. When this weighting is introduced, it is then called
the effective dose. In this book, we will avoid going into this much detail, and we will
concern ourselves only with the risk factors associated with a whole-body dose.

Problem:

(a) A 5 g tumour is irradiated with high energy X-rays and absorbs a total of 0.2 J of energy. What is the absorbed

dose in gray and rad, and the dose equivalent in sievert and rem?

(b) An alternate treatment for the same tumour is to administer a chemical solution containing a radioactive

isotope which is preferentially absorbed by the tumour. If the isotope involved is an alpha emitter with an

RBE of 20 and the tumour absorbs 0.05 J of energy, what is the absorbed dose in gray and rad, and the dose

equivalent in sievert and rem?

Example 37.1 Dose and RBE

Solution: (a) The dose in gray is just the number of joules absorbed per kilogram

DGy =
∆E

m
= 0.2 J

0.005 kg
= 40 Gy

The dose in rad is a multiple of this

Drad = 40 Gy×100 rad Gy−1 = 4000 rad

The dose equivalent in sievert and rem can be found from the dose in gray and rad by taking into account the relative
biological effectiveness of the type of radiation. The RBE of X-rays is 1 and so the dose equivalent in each unit is the
same as its dose counterpart

DSv = DGy ×RBE = 40 Gy×1 = 40 Sv

Drem = DSv ×100 rem Sv−1 = 40 Sv×100 rem Sv−1 = 4000 rem
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(b) Again, the dose in Gy is the number of joules absorbed per kilogram

DGy =
∆E

m
= 0.05 J

0.005 kg
= 10 Gy

The dose in rad is a multiple of this

Drad = DGy ×100 rad Gy−1 = 10 Gy×100 rad Gy−1 = 1000 rad

The absorbed dose in this case is less than in the previous part of the example.

DSv = DGy ×RBE = 10 Gy×20 = 200 Sv

Drem = DSv ×100 rem Sv−1 = 200 Sv×100 rem Sv−1 = 20000 rem

Because α radiation has such a large effect in biological tissue it has a much larger effect per unit energy absorbed than
X-rays.

Problem: A careless 75 kg radiopharmacologist accidentally ingests a small amount of a 1.7 MeV beta emitter with a

half-life of 24 days. The activity of the sample ingested is 13 mCi. What is the equivalent dose in rem received by the

pharmacologist in the first minute of his exposure to the radioactive sample, if 20% of all beta particles emitted are

absorbed in his body?

Example 37.2 Activity and dose

Solution: The half-life of the sample is much longer that the period of 1 min over which we are asked to calculate
the dose, so we can make the simplification that the activity will be a constant 13 mCi over this 1 min period. This
corresponds to an activity of 13× 10−3 Ci× 3.7× 1010 Bq Ci−1 = 4.81× 108 Bq. As only 20% of these particles will be
absorbed, there will be 0.96×108 β particles absorbed per second.

Each one of the β decays releases 1.7 MeV = 1.7×106 eV×1.6×10−19 J eV−1 = 2.72×10−13 J of energy. We can assume
that, for those β particles absorbed by the pharmacologist, all of this energy is deposited in the pharmacologist. The
total amount of energy deposited in 1 s is the number of β particles absorbed per second multiplied by the energy per
β particle

P = 0.96×108 β s−1 ×2.72×10−13 Jβ−1

= 2.61×10−5 J s−1

So in 1 min a total of 2.61×10−5 J s−1 ×60 s = 1.56×10−3 J is absorbed by the pharmacologist. This corresponds to a
dose (in Gy) of

DGy =
1.56×10−3 J

75 kg
= 2.09×10−5 Gy

which, taking into account the RBE for β emission above 0.03 MeV of RBE=1.7 corresponds to an equivalent dose of

DSv = DGy ×RBE = 2.09×10−5 Gy×1.7 = 3.55×10−5 Sv

Drem = DSv ×100 rem Sv−1 = 3.55×10−3 rem

The absorbed dose is 3.55 mrem which is around 1/68th of the dose received from background radiation over the
course of one year. While this might not sound like much, this is the dose absorbed in just 1 min. The total dose from
the ingestion of this radioactive material will be much higher.
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37.4 Types of Effect

Biological effects from ionising radiation have already been categorised as somatic or
genetic in terms of the effect of this radiation on DNA. The biological effects of radiation
can also be divided into two other categories: deterministic and stochastic. These
categories refer to large-scale physiological effects of radiation exposure rather than
the effects of this exposure on DNA.

Deterministic effects are produced by radiation doses that are high enough to de-
nature proteins or to cause cell death. These effects are therefore definite, noticeable
and fairly immediate. When the radiation dose is smaller, there may not be any obvious
damage to cells or organs, but the risk of a disease like cancer is increased. It is because
of the probabilistic nature of the consequences of these smaller doses that we refer to
the effects of such doses as stochastic (meaning a process that is governed by the laws
of probability).

There are a number of distinct characteristics of deterministic and stochastic ef-
fects of radiation exposure. These characteristics provide a useful contrast between
the two categories of effect. The defining characteristics of the deterministic effects of
radiation exposure are:

• These are early effects: they appear very quickly after the radiation dose is re-
ceived.

• They are the result of ‘lethal damage’ to tissue. The cells of the tissue are killed by
the radiation exposure.

• The killing of cells by radiation is extensive enough that it reduces or destroys at
least some organ function.

• The lethal damage required to produce cell death occurs only for radiation expo-
sure which results in doses above some minimum value, i.e., there is a ‘threshold’
dose below which deterministic effects do not occur.

• The severity of these effects increases with increasing dose.

Some examples of deterministic effects are the formation of cataracts, infertility
and erythema (skin reddening). These are all the result of cell death in the organs con-
cerned.

Stochastic effects, because they can only be discussed in terms of increased risk of
disease or of inheritable mutation, are much harder to definitely characterise. How-
ever, they are distinct from deterministic effects in several ways:

• These are ‘late’ effects, they do not appear immediately, but occur some time
after the radiation exposure has occurred (sometimes a generation later).

• They are effects caused by cellular or DNA damage, but damage which is not
immediately lethal.

• The fact that a cell, while damaged, is not killed by radiation exposure means that
the cellular repair mechanisms come into operation. This cellular repair process
is sometimes imperfect and can lead to cellular mutation, or abnormal changes
in cell function. The most likely result of such a change in cell function is the
induction of cancer at some later stage in the life of the individual.

• Since these effects are dependent on mechanisms such as cellular repair and the
inheritance of mutations, it is only possible to estimate the probability of harm
given a particular dose level.

• The severity of the effect is not dependent on the dose, again because of the com-
plexity of the causal mechanisms leading from the original radiation exposure to
the ultimate appearance of disease or disfunction.

• The probability of harm increases with increasing dose.
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37.5 Medical Effects and Risk

Large radiation doses may cause radiation sickness. Radiation sickness is a catch-all
phrase referring to a group of deterministic effects which have been observed to ap-
pear soon after very large radiation doses. The first symptoms of radiation sickness to
occur are typically, nausea, vomiting, diarrhoea and fatigue. Other symptoms that may
occur are skin burns (redness, blistering), weakness, fainting, dehydration, anemia,
dry cough, inflammation of exposed areas (along with redness, tenderness, swelling,
bleeding), hair loss, ulceration of the oral mucosa, ulceration of the esophagus, stom-
ach or intestines, vomiting blood, bloody stools, bleeding from the nose, mouth, gums,
and rectum, bruising, open sores on the skin and headache.

The cells that are most susceptible to death from radiation are those in the intestinal
lining, white blood cells and the cells that make red and white blood cells. Many of
the symptoms listed, such as dehydration, vomiting, and diarrhoea, are the result of
damage to the intestinal tract.

The time taken for a person to die from a lethal radiation dose is around two to four
weeks. Patients who receive a high full-body dose of radiation and are still alive after
six weeks are likely to recover.

The treatments available are largely aimed at ameliorating the symptoms: antin-
ausea drugs, painkillers, antibiotics to help fight infections and blood transfusions for
anemia.

Exposure to smaller amounts of radiation may cause no noticeable effects at the
time. Long-term epidemiological studies on populations exposed to varying doses of
radiation, such as atom-bomb survivors in Hiroshima and Nagasaki, suggest that the
probability of developing cancer from radiation exposure increases linearly with the
accumulated dose, and there is no minimum threshold of exposure below which there
is no risk. This is known as the linear no-threshold (LNT) hypothesis. Based on this
hypothesis and the available data, about 1% of the population could be expected to
develop cancer due to exposure to normal background levels of radiation.

Determining the exact risk of cancer from the available information is difficult. It is
not ethical or even possible to experimentally determine how much risk is associated
with low doses of radiation. Interpretation of the data that is available is further com-
plicated by the fact that radiation-induced cancers are indistinguishable from cancers
resulting from other known risk factors like diet and smoking.

37.6 Ultraviolet Radiation

Ultraviolet has been included here as a separate section, away from the higher-energy
forms of electromagnetic radiation. Exposure to ultraviolet radiation may well result
in damage to biological tissue, but it is not dangerous in the same way as γ or X-ray
radiation.

Ultraviolet (UV) photons are those in the wavelength range between X-rays and vis-
ible light, around 10 nm to 400 nm. The most important source of ultraviolet radiation
in everyday life is the Sun, which emits radiation from wavelengths of about 200 nm
up. This range, the ‘near UV’ is subdivided into three categories:

• UVA – 400 nm to 320 nm.

• UVB – 320 nm to 280 nm.

• UVC – 280 nm to 200 nm.

Ozone in the upper atmosphere is a very good absorber of ultraviolet light, so prac-
tically no radiation from the Sun below about 300 nm reaches sea level in most places.
In any case, the air is largely opaque at wavelengths below 200 nm due to absorption by
oxygen. Thus, most of the UV we are exposed to is UVA. Note that some UVB exposure
is needed for the production of vitamin D by the human body.

Ultraviolet radiation is mostly not energetic enough to interact with any but the
valence electrons in the atoms of the matter it passes through. This can still disrupt
biological molecules however. All three types of ultraviolet light reaching the Earth’s
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surface will damage collagen in the skin, causing premature aging. The least harmful
is UVA. UVB on the other hand, causes the most skin reddening (erythema) and can
cause DNA damage by disrupting covalent bonds which can lead to skin cancer, and
also causes cataracts.

Short-wavelength UV radiation can be used for antibacterial sterilisation, as it causes
DNA damage that can inhibit the ability of bacteria to replicate. Even if the bacterium
is not killed, it is the ability to replicate that makes its dangerous, so this technique is
useful when used in combination with other germ-killing methods.

Sunscreen ingredients protect the skin in one of two ways – by blocking (reflecting)
the UV light (titanium dioxide is a common ingredient in sunscreens of this kind), or
by absorbing and re-radiating the energy at much longer wavelengths (which is what
another common ingredient, avobenzone, does).

37.7 Summary

Key Concepts

deterministic effects The definite, observable effects that result from doses of radiation above
a threshold. The severity of the effect increases with dose.

stochastic effects The effects that may or may not occur due to small radiation doses. The prob-
ability of an effect is proportional to the long-term accumulated dose.

dose A measure of radiation exposure.

absorbed dose (D) The amount of energy absorbed from ionising radiation per kilogram of tis-
sue. Measured in grays or rad.

equivalent dose The absorbed dose weighted to account for the radiation type by multiplying
by the RBE. Measured in sieverts or rem.

relative biological effectiveness (RBE) A weighting factor which depends on the type of ionis-
ing radiation. The RBE is higher for radiation types that deliver their energy to a smaller
number of cells.

rad Non-SI unit of absorbed dose. One hundred rad equals one gray.

gray (Gy) SI unit of absorbed dose. One gray equals one joule per kilogram.

rem Non-SI unit of equivalent dose. One hundred rem equals one sievert.

sievert (Sv) SI unit of equivalent dose, symbol Sv. The equivalent dose in sieverts is found by
multiplying the absorbed dose by the RBE.

background radiation The radiation exposure experienced from everyday unavoidable sources,
such as cosmic rays and naturally occurring radioisotopes. Around 2 mSv per year.

linear no-threshold model (LNT) Hypothesis that the probability of developing cancer from
exposure to radiation increases linearly with dose, and there is no threshold below which
the risk is zero.

UV Ultraviolet radiation. The part of the electromagnetic spectrum between the blue end of the
visible part and X-rays.

Equations

D = ∆E

m
1 Gy = 1 J kg−1 = 100 rad

Sv ≡ Gy×RBE

1 Sv = 100 rem
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37.8 Problems

37.1 A 65 kg person undergoing a series of X-rays receives a dose
of 12 rem.

(a) What dose does he receive in sieverts and rad?

(b) How much energy was deposited in the person’s body?

37.2 A 14 g ovarian tumor is treated using a sodium phosphate so-
lution in which the phosphorus atoms are the radioactive 32P iso-
tope with a half life of 14.3 days and which decays via beta emis-
sion with an energy of 1.71 MeV. Half of the sodium phosphate so-
lution is absorbed by the tumor and deposits 9.00 J of energy into
it. The other half of the solution is dispersed throughout the pa-
tients tissues, also depositing 9 J of energy into the 50.0 kg of body
tissues.

(a) What is the dose (in Gy and rem) that the tumor receives?

(b) What is the dose (in Gy and rem) that the rest of the patient
receives?

37.3 A person is exposed to ionizing radiation which deposits 10 J
of energy in their tissue.

(a) What dose (in Gy) would an 80 kg adult and a 15 kg child re-
ceive under these circumstances?

(b) What dose (in rem) would the adult and child each receive if
the radiation were low energy (< 0.03 MeV) β radiation?

(c) What dose (in Sv) would the adult and child each receive if
the radiation were low energy α radiation? (RBE)=10.)

37.4 A person with lymphoma receives a dose of 35 Gy in the form
of γ radiation during a course of radiotherapy. Most of this dose is
absorbed in 18 g of cancerous lymphatic tissue.

(a) How much energy is absorbed by the cancerous tissue?

(b) If this treatment consists of five 15 minute sessions per week
over the course of 5 weeks and just 1% of the γ photons in
the γ ray beam are absorbed, what is the power of the γ ray
beam?

(c) If the γ ray beam consists of just 0.5% of the γ photons emit-
ted by the γ source, each of which has an energy of 0.03 MeV,
what is the activity (in Ci) of the γ ray source?

37.5 A 60 kg person accidentally ingests a small source of alpha
particles (RBE=15). The activity of the source is 0.04 Ci, the half life
of the source is 110 years, and each alpha particle emitted has an
energy of 0.586 MeV. It takes 12 hours for the alpha source to pass
through the persons digestive system and exit the body.

(a) How many alpha particles are absorbed by the person (you
may assume that 100% of the alpha particles emitted by the
source are absorbed by the person)?

(b) How much energy is deposited in the person by the source
(in J)?

(c) What is the absorbed dose (in rad)?

(d) What is the absorbed dose (in rem)?

37.6 A radioactive contaminant gives an unfortunate 0.5 kg lab rat
a dose of 1500 rem in just 1 minute. Assuming that the half life of
the radioactive isotope in the contaminant is much longer than 1
minute, what would the activity (in Bq) of the contaminant be if ...

(a) the contaminant is a 5 MeV alpha emitter (RBE = 15)?

(b) the contaminant is a 1.1 MeV beta emitter?

(c) the contaminant is a 0.01 MeV gamma emitter?
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38.1 Introduction

38.2 X-ray Imaging

38.3 CT Scan

38.4 PET scan

38.5 Gamma Camera and SPECT

38.6 Diagnostic Procedures: Dose

38.7 Ultrasound Sonography

38.8 Summary

38.1 Introduction

Many of the current technologies in use in the field of medical diagnostic imaging have
their origin in pure research, or in military and defense research. The development of
sonar for military purposes led to medical ultrasound. The development of the nuclear
reactors that are used to produce radioisotopes for nuclear medicine was originally
part of the push towards building the first atomic weapons at the end of World War II.
Until recently, it has largely been a case of technologies developed in other fields being
adapted for use in medicine. This is changing. There is an increasing emphasis on
developing, or improving on, the imaging and diagnostic techniques that are available
specifically for medical purposes.

The changing relationship between technological research and medical applica-
tions of this research is the result of a number of factors, and we will here mention only
a few of the more striking ones. Firstly, the increase in understanding of human bio-
logical systems that has resulted from imaging technologies, like magnetic resonance
imaging (MRI) and computerised tomography (CT) scanning, has lead us to ask in-
creasingly sophisticated questions. Secondly, rapid advances in computer processing
power and communications allow us to collect and store far more data, visualise struc-
tures in three dimensions, overlay data from different sources and transmit this data
to others. Finally, the clinical and research staff now entering the health sciences are
much more adept at understanding and using the new technology, having grown up in
a computer-rich environment.

There is no doubt that the non-invasive imaging techniques now routinely avail-
able in hospitals have become indispensable, and that the technology will continue to
advance. Any student wishing to work in the health sciences would do well to develop
some understanding of the basic physics that lies behind the technology, to aid them
in understanding the possible applications, limitations and risks involved.

There are a number of imaging techniques commonly in use in the health sciences
today. Here we will cover the most important: X-ray photography, computerised X-
ray scanning tomography (CT), emission computerised tomography (PET and SPECT),
and ultrasound. Magnetic resonance imaging (MRI) will be covered in a separate chap-
ter.

The imaging techniques mentioned above are covered here because they are the
most likely to be encountered by those working in a clinical setting in the health sci-
ences. They are all useful for gathering anatomical or physiological data. Increasingly,
researchers in the biological sciences are turning to imaging on a molecular or cellular
scale, using a host of new methods: laser-scanning confocal microscopy, fluorescent
labelling, multiphoton microscopy, electron energy loss spectroscopic imaging . . . this
list really does go on.

Key Objectives

• To understand the basic principles of the major medical imaging technologies.
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38.2 X-ray Imaging

X-ray images are widely used in medicine and dentistry, and have been used to produce
images of the internal structure of objects that are opaque to visible light since soon
after the discovery of X-rays was announced by Röentgen on the 28th of December,
1895.

To produce an X-ray radiograph of the human body, the area of interest is exposed
to X-rays while a photographic film is placed beneath the body. This produces an image
where the areas of greatest exposure correspond to the areas of the body that are the
most transparent to X-rays. Instead of recording reflected light, as in a photograph, it
records degree of transmission of X-rays as a shadowgraph.

The attenuation of X-ray photons depends on the photon energy (which deter-
mines which type of interaction occurs – Compton scattering and the photoelectric
effect are the dominant processes at X-ray and γ-ray energies as shown in Figure 38.1),
and the atomic number of the key elements present in the materials being imaged.

Figure 38.1 The amount of electromagnetic energy absorbed is dependent on photon energy, as different interaction
processes dominate at different photon energies. Gamma and X-ray absorption coefficients are available from the
National Institute of Standards and Technology (NIST) public databases. [Reprinted with permission from Biological
Radiation Effects, Jurgen Kiefer. Copyright (1990) Springer.]

For low-energy (below about 35 keV) X-ray photons, the predominant interaction
with atoms in the target is through the photoelectric effect. The probability of a photo-
electric interaction falls rapidly with increasing photon energy (varying roughly in pro-
portion to the inverse of the energy cubed), and the attenuation is stronger for higher
effective atomic number (it varies with Z 3

eff). Soft tissue and body fluid are largely made
up of water and have an effective Z of about 7.5. Fat has a slightly higher concentration
of low-atomic number elements like hydrogen, so, overall, has a slightly lower Zeff of
around 6. Bone has more high-Z trace elements, so has an effective Z up around 13.
This means that for 15 keV X-ray photons, the attenuation is about four times as much
for bone as it is for tissue by the photoelectric effect. Lower X-ray energies are used to
improve the contrast when imaging areas for which the inherent contrast between the
different tissue types is low, like the breast.

Higher-energy X-rays (more than 30–40 keV) interact with matter primarily through
the Compton effect. The probability of Compton scattering has little dependence on
atomic number, but does depend on electron density. X-ray images from high-energy
photons are best suited for showing differences in physical density. They can be useful
for reducing the shadowing effect of bone to view the tissue behind.

Contrast agents can be used to improve the contrast of an X-ray image. Introducing
high-Z elements such as barium and iodine will make those organs which absorb them
more opaque to X-rays. Iodine is used for imaging the circulatory system, such as in
angiography. Barium is used as a contrast agent in imaging the gastrointestinal tract.
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38.3 CT Scan

CT stands simply for computed tomography. (Sometimes the word ‘axial’ is added and
the term CAT scan is used.) The word tomography is derived from the Greek for ‘slice’
(tomos), and is used to describe any imaging technique that produces cross-sectional
images. While there are several techniques that are a kind of computed tomography,
unless otherwise specified, CT is usually taken to refer specifically to X-ray transmis-
sion computed tomography obtained using an apparatus like that shown in Figure 38.2.

Figure 38.2 Fourth-generation CT scanners em-
ploy a circular array of detectors and a rotating
source.

A limitation of X-ray radiography is the projection of a three-dimensional structure
onto a two-dimensional film. There is also a limit to the contrast that film can pro-
vide and differences in intensity of a few percent cannot be detected. In CT scanning,
the orientation of the path of the X-rays through the body is varied, and a computer
is used to reconstruct a picture of the cross section from the transmission data. The
reconstruction techniques have their origins in many branches of physics – radio as-
tronomy, electron microscopy and holography.

The first generation of CT scanners, introduced in the early 1970s, used a thin, pen-
cil beam of X-rays and a single detector (sodium iodide) in line on the far side of the
patient. A series of transmission measurements (over 100) were taken in translational
scan, and then the angular orientation was varied by a degree and the translation scan
was repeated, eventually moving through 180°. Around 30 000 separate transmission
measurements were used to reconstruct a ‘slice’ image. This took minutes and was
prone to motion blurring.

Modern CT scanners use instead a fan X-ray-beam geometry and a circular array of
600–700 fixed detectors to reduce scan times for a single slice to about 1 s. The more
recent generations of scanners also use a helical path of the X-ray source about the
patient, rather than a slice-by-slice approach.

The patient dose for a CT scan is higher than for a traditional X-ray. A scan involves
an effective radiation dose of about 2 – 10 mSv.

38.4 PET scan

PET stands for positron emission tomography. When a nucleus undergoes positive
β decay, a positron is emitted. The positron is the antiparticle of the electron, and
with ordinary matter being very full of electrons, the positron quickly collides with an
electron and both are annihilated. This produces two photons, each with 511 keV of
energy (equivalent to the rest mass of an electron/positron), and for momentum con-
servation these two photons are emitted in nearly exactly opposite directions as shown
in Figure 38.3. By using a circular array of detectors and looking for the simultaneous
detection of photons with the correct energy, the location of the decay event can be
narrowed down to the line joining the two detectors that were triggered.

Figure 38.3 A PET scanner works by detecting
simultaneously-emitted pairs of photons at about
511 keV.

One of the great benefits of PET scanning is that it can be used to get information
on metabolic processes instead of producing only structural information. Positron-
emitting radionuclides can be included in molecules involved in a particular process,
and areas of the body where those molecules accumulate will be shown.

For example, fluorine-18 (T1/2 about 110 min) can be included in the glucose-analogue
molecule fluorodeoxyglucose (FDG). The molecule is taken up by cells and undergoes
a specific metabolic process – phosphorylation by hexokinase enzymes. The resulting
molecule is not metabolised further, and is trapped inside the cell. Because cancer cells
have elevated hexokinase, tumours will collect more of the tagged molecules and show
up strongly on the PET scan. The oncological use of FDG is the most common medical
application of PET.

Another commonly used isotope is nitrogen-13 (half-life around 10 min), which
can be incorporated into ammonia molecules. Its main use is to study the supply of
blood and nutrients to tissues (perfusion studies). The use of PET to study blood flow
is not limited to medical studies. For example, it is being used by researchers in clinical
psychology to measure blood flow to the brain to determine levels of activity in studies
of memory and post-traumatic stress disorder (PTSD).
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It is becoming more common to use PET in conjunction with other scanning tech-
niques, such as CT, to get structural and functional information.

The biggest limitation on the use of PET is the need for short-lived radioisotopes
that have to be produced in a cyclotron. Most hospitals and indeed many countries do
not have the facilities to produce isotopes for medical use and have to import these on
a regular basis.

The dose from a single PET scan is similar to that from a CT scan.

38.5 Gamma Camera and SPECT

Figure 38.4 (Top) A plain X-ray image of a frac-
tured foot. The fracture is difficult to see in this
image. (Middle) A CT scan of the same foot.
The image is a slice through the middle of the
foot. The fracture is also difficult to see in this
image. (Bottom) The same foot imaged using a
nuclear medicine bone scan. It shows increased
Technetium uptake in the fracture. [Images cour-
tesy of Professor Terry Doyle, University of Otago
School of Medicine.]

The gamma camera (also called a scintillation camera or Anger camera) is used for
detection of radiation in nuclear medicine studies.

Nuclear medicine involves inhaling, injecting or ingesting radionuclides that emit
γ radiation. Depending on what body system is being investigated, several different
radionuclides are used. One example is gallium-67. The body treats Ga3+ like Fe3+ (an
iron ion), and it concentrates in areas of inflammation and rapid cell division, making
it useful for cancer diagnosis. Radio-isotopes of iodine are used for thyroid studies.
Technetium-99m is the most widely used γ-emitter; there are about 30 radiopharma-
ceuticals into which it is included for imaging studies for many areas of the body – the
brain, myocardium, liver, lungs, kidneys, skeleton and gallbladder, to name some.

Radionuclides are useful not only for obtaining structural information; by detect-
ing the accumulation of a particular pharmaceutical, they can also provide functional

information about the rate of metabolic processes (see Figure 38.4).
The function of the gamma camera is to detect the γ radiation from the radionu-

clides that have been introduced into the patient’s body and to pinpoint the point of
origin of the radiation in the body. The detection of the γ radiation is achieved with a
scintillating crystal such as sodium iodide, and photomultiplier tubes. To determine
the direction from which the radiation originated, lead collimators are used. These en-
sure that only radiation coming from a narrow angular range will get through each gap
in the lead, thus determining the direction to the source of the radiation.

SPECT stands for single-photon emission computed tomography, which is simi-
lar in many respects to X-ray transmission computed tomography. An image is recon-
structed by computer from information gathered at multiple times and locations show-
ing the distribution of the radionuclide that was administered. However, in SPECT the
detector is rotated about a stationary radiation source – the patient.

38.6 Diagnostic Procedures: Dose

Table 38.1 shows the typical doses and the associated cancer risk for a number of diag-
nostic procedures. The risk is higher for pediatric patients (multiply by about two) and
lower for geriatric patients (divide by about five). This data was provided by the Health
Protection Agency, UK (http://www.hpa.org.uk).

38.7 Ultrasound Sonography

Sonography using ultrasound is a medical diagnostic imaging technique that does not
use ionising radiation. Instead it utilises high-frequency acoustic vibrations, above the
limit of human hearing (which is about 20 kHz). When a wave is travelling through a
medium and it reaches a boundary with another medium, some of the wave is trans-
mitted through the boundary and some is reflected. In the case of sound waves, the
amount of reflection depends on the difference in a property of the media called the
acoustic impedance – the greater the impedance mismatch between two media, the
more reflection of ultrasound there will be. Acoustic impedance depends on the speed
at which sound travels through a medium, and this in turn depends on the density of
the material.

The reflection coefficient, R, is the proportion of the energy of an incoming sound
wave that is reflected at a boundary between two media. The reflection coefficient
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Diagnostic procedure Typical effective Equivalent period of Lifetime additional
doses (mSv) natural background risk of fatal cancer

radiation per examination
X-ray examinations:
Limbs and joints (except hip) < 0.01 < 1.5 days 1 in a few million
Teeth (single bitewing) < 0.01 < 1.5 days 1 in a few million
Teeth (panoramic) 0.01 1.5 days 1 in 2 million
Chest (single PA film) 0.02 3 days 1 in a million
Skull 0.07 11 days 1 in 300 000
Cervical spine (neck) 0.08 2 weeks 1 in 200 000
Hip 0.3 7 weeks 1 in 67 000
Thoracic spine 0.7 4 months 1 in 30 000
Pelvis 0.7 4 months 1 in 30 000
Abdomen 0.7 4 months 1 in 30 000
Lumbar spine 1.3 7 months 1 in 15 000
Barium swallow 1.5 8 months 1 in 13 000
IVU (kidneys and bladder) 2.5 14 months 1 in 8000
Barium meal 3 16 months 1 in 6700
Barium follow 3 16 months 1 in 6700
Barium enema 7 3.2 years 1 in 3000
CT head 2 1 year 1 in 10 000
CT chest 8 3.6 years 1 in 2500
CT abdomen/pelvis 10 4.5 years 1 in 2000
Nuclear medicine studies:
Lung ventilation (Kr-81m) 0.1 2.4 weeks 1 in 200 000
Lung perfusion (Tc-99m) 1 6 months 1 in 20 000
Kidney scan (Tc-99m) 1 6 months 1 in 20 000
Thyroid scan (Tc-99m) 1 6 months 1 in 20 000
Bone scan (Tc-99m) 4 2 years 1 in 5000
Dynamic cardiac (Tc-99m) 6 2.7 years 1 in 3300
Myocardial perfusion (Tl-201) 18 8 years 1 in 1100

Table 38.1 Dose data provided by the Health Protection Agency in the UK. Based on average dose of 2.2 mSv per
year. Risk assessment for 16–69 year-olds.

depends on the acoustic impedances of the materials on each side of the boundary, if
we label the acoustic impedance of the first medium as Z1 and the acoustic impedance
of the second medium as Z2, then the proportion reflected at the boundary is

proportion reflected = (Z1 −Z2)2

(Z1 +Z2)2
(38.1)

so depends strongly on the differences in Z . (The reflection coefficient varies with the
frequency of the incoming sound wave, as do the acoustic impedances of the two me-
dia).

In order to generate an image in a medical setting, a device called a piezoelectric
transducer is used to produce acoustic waves with frequency in the low MHz range.
The waves that are produced are reflected back from the boundaries between tissue
types. The ultrasound signal is not emitted continuously, but in pulses. By detecting
the time delay for the echo of the pulses, and the signal strength, a picture can be built
up of the location of the boundaries.

Because the impedances of air and skin are so different, if there is an air gap be-
tween the skin and the transducer then most of the intensity is lost by the waves being
reflected before penetrating the body. It is possible to resolve this problem using a gel
layer between the probe and the skin. This procedure, ensuring a small difference in
impedance to ensure minimal reflections, is called impedance matching.

Ultrasonography is generally considered to be safe, and in many countries it is used
routinely to monitor pregnancy. However, the ultrasound signal consists of mechanical
pressure waves, which can have a heating effect on the tissue.
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38.8 Summary

Key Concepts

tomography From the Greek for ‘slice’ (tomos). Used to describe any imaging technique that
produces cross-sectional images.

PET Positron emission tomography. A radio-imaging technique which uses positron-emitting
radionuclides. The emitted positrons meet nearby electrons and are annihilated, produc-
ing two γ photons which have a characteristic energy (0.511 MeV), which are emitted in
opposite directions. Coincidence counting, i.e. detecting simultaneous photons, enables
reconstruction of the location where the positron was annihilated.

SPECT Single photon emission computed tomography. Computer reconstruction of multiple
images from a gamma camera to produce a 3-D image.

CT or CAT scan Computed tomography or computerized axial tomography. The reconstruction
of a series of X-rays to form images of slices through the body.

X-ray radiograph A shadowgraph formed by exposure of a photographic film to transmitted X-
rays.
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39.1 Introduction

39.2 Magnetism

39.3 A Brief Outline of MRI

39.4 Nuclear Magnetic Resonance

39.5 Magnetic Resonance Imaging

39.6 Summary

39.7 Problems

39.1 Introduction

The great Danish physicist Niels Böhr is quoted as saying about magnetic resonance
methods, ‘You know, what these people do is really very clever. They put little spies
into the molecules and send radio signals to them, and they have to radio back what
they are seeing’. This is the idea at the heart of magnetic resonance imaging: trans-
mitting radio waves of the right kind into the body, in the right circumstances, forces
the molecules in the human body to radio back information on their location and their
local environment. Decoding these transmissions gives us the means to re-create a
map of the inside of the body. Additionally, because the process uses radio waves, MRI
avoids the damaging effects on living tissue caused by ionising radiation.

Magnetic resonance imaging or MRI has become one of the most important med-
ical imaging techniques currently employed by medical professionals. Furthermore,
MRI in the form of functional MRI has become a central technology in a range of re-
search areas in the health sciences, particularly in neuroscience. MRI is based on the
phenomenon of nuclear magnetic resonance (NMR), which is currently increasing in
importance in many areas of science, not in the health sciences – areas of interest range
from the characterisation of materials to quantum computing.

This technique has become so important to modern medical science that it war-
rants its own chapter in this text. Here we will cover the most important aspects of the
physics of magnetism, NMR and MRI. The level of technical detail is beyond that of
most of this book – even if the main learning outcomes for many students will focus
on telling what type of image they are looking at and which best distinguishes tissues
types, it seems best to present a fuller picture of how the echo sequence parameters
can be altered to achieve certain goals.

Key Objectives

• To understand the physical processes involved in nuclear magnetic resonance,
particularly the phenomenon of Larmor precession.

• To understand the connection between a static magnetic field and the Larmor
frequency of a precessing nucleus.

• To understand the sequence of processes leading to the production of an MRI
signal.

• To understand spin–lattice and spin–spin processes leading to the decay of an
MRI signal.

• To understand the T1, T2 and T2* times in an MRI signal.

• To understand free induction decay and the spin echo pulse sequence.

• To understand the production of T1-weighted and T2-weighted images.
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39.2 Magnetism

The word magnetism is used to describe a set of phenomena associated with the move-
ment of charged particles. Magnetism is caused by the same fundamental force as that
which causes the electric phenomena described in the Electricity and DC Circuits topic
– the electromagnetic force – so the two are inextricably linked.

We have previously avoided a discussion of magnetism in favour of topics with
more obvious relevance to biological systems. However, magnetism is central to the
physics of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI).
We will therefore briefly cover the most important aspects of this subject. There are
some key points we wish to introduce regarding magnetism:

Historical notes

The ability of magnetic materials like lodestone

to attract iron has been known and puzzled

over since ancient times. The Arabian Nights

tales mention a mountain that would tear the

nails out of ships that came near. The Greek

wise-man Thales of Miletus believed that the

attraction was due to the stones having a soul.

A superstition from the Middle Ages was that a

magnet could cure gout, but garlic removed its

power. (It could supposedly be restored with

goat’s blood, however.)

Magnetic moment

The magnetic moment of a system which

produces a magnetic field is a measure of

the strength (and direction) of the system’s

magnetism. It differs from the magnetic field

strength in the same way as electric charge (or

strictly speaking, the electric dipole moment)

differs from electric field strength.

1. Magnetic fields are generated by moving electrical charges, such as in an electri-
cal current.

2. Moving electrical charges experience a force in a magnetic field.

3. A time-varying magnetic field will induce a current in a loop of wire if that mag-
netic field passes through the loop.

4. Sub-atomic particles such as electrons and protons have intrinsic angular mo-
mentum. They thus behave like tiny current loops and produce a magnetic field
even when they are stationary.

We will now cover these points in more detail.

The Magnetic Force and Field

Figure 39.1 The Earth has a magnetic field that
is shaped as though the Earth contained a giant
bar magnet with its north pole somewhere un-
der Antarctica. This is caused by currents in the
Earth’s iron core. This field is very important for
protecting us from charged particles streaming in
from space.

In the chapters about electricity, we saw that electric forces result from a fundamen-
tal property of matter called charge, which is non-zero for some particles. Charged
particles exert a force on one another, and the strength and direction of this force is
described by Coulomb’s law. An alternate model we use is the field description, where
we picture how a collection of charges (the source charges) create an electric field, and
then look at how other charges are influenced by this electric field.

Magnetism is a little more complicated than this because there is no simple mag-
netic equivalent of charge. Instead, the phenomenon we call magnetism has its ori-
gins in the movement of electrical charges. This can be demonstrated by examining a
current-carrying wire. It is well known that some metals, iron in particular, are affected
by magnetic fields. If you take small shards of iron (iron filings) and put them near a
magnet, then they align in particular directions. Putting iron filings near a wire through
which charge is flowing will show that they experience a force causing them to arrange
themselves into patterns when the current is on, but no such force when it is off.

However, permanent magnets – objects that possess the ability to attract iron when
stationary and not connected to an electrical circuit – are a common, everyday item.
While there is no externally driven movement of charge as there is in a current-carrying
wire, there are still moving charges. The electrons in the atoms are moving about the
nucleus. Additionally, the electrons and nuclei have a property called ‘spin’ or ‘intrinsic
angular momentum’, and behave rather as though they are permanently rotating. We
will come back to sub-atomic particles and spin in much greater depth in a later section
(Section 39.4). Both the orbital motion of these particles and their intrinsic angular
momentum produce magnetic fields.

Magnetism and animal navigation

It is known that many animals are able to nav-

igate long distances using the Earth’s mag-

netic field, though the exact mechanisms by

which they achieve this vary, and are still

largely a source of speculation. Various the-

ories have been proposed, such as strings

of magnetic particles selectively opening ion

channels through cell membranes, and elec-

tric potentials being created across cell mem-

branes by the oscillations of the sensory organ

with respect to the field direction.

A basic property of a simple permanent magnet is that is has two poles, which we
refer to as north and south. Two magnets exert a force on one another. Opposite poles
attract and like poles repel. We can visualise the effect of a magnet on the region around
it, its magnetic field, by picturing the influence it would have on a tiny bar-shaped
magnet at each point in space, in much the same way as we imagined a test charge for
visualising an electric field. If our imaginary tiny bar magnets are free to rotate, they
will move just like a compass needle. We can draw magnetic field lines showing which
direction the north pole of a tiny bar magnet would point, as shown in Figure 39.2. Note
that the north pole of our test magnet/compass needle points to the south pole of the
magnet, so the arrows on magnetic field lines point from north pole to south.
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Figure 39.2 A permanent bar magnet is shown with the north and south poles labeled. The magnetic field lines are
shown starting at the north pole and ending at the south pole. Small compasses are placed around the bar magnet
and line up with the magnetic field lines so that the north pole of the compass points towards the south pole of the
magnet and vice versa.

The most common permanent magnets (such as standard bar magnets and com-
pass needles) are made mostly of iron. This is because iron is what we call ferromag-

netic. A ferromagnetic material acts like a whole lot of tiny little bar magnets that tend
to line up the same way as their neighbours. These form into little regions with the
same alignment, called magnetic domains. The magnetisation of the material de-
pends on the degree of alignment of the domains. In a permanent magnet these do-
mains are largely pointing in the same direction and stay that way; in unmagnetised
iron, the alignment of the domains is random.

Quick reference:

1 tesla = 10 000 gauss

Earth’s field varies, but is around 50 µTThe magnetic field strength (also known as the magnetic flux density) is usually
denoted by the symbol B, and it is a vector quantity. The term B-field is often used as
well, to reduce the confusion between this and a slightly different quantity, called the
magnetising field (referred to as H). The SI unit of magnetic field strength is the tesla,
symbol T. Another commonly used unit is the gauss and 1 T is equivalent to 10 000
gauss. The Earth’s magnetic field strength varies from place to place on the surface, but
the strength is on the order of 0.5 gauss or 50 microtesla. A 1 T magnitude field is strong
indeed, and field strengths of 1–2 T (and, increasingly, higher fields) are used in MRI.

Magnetic Field Examples

The magnetic field at a point in space can be found by adding all the contributions
from all the currents in the region, just as the electric field can be found from sum-
mation of contributions from all the nearby charge. We will not give any mathemati-
cal proofs or explanations here, but will merely give some examples of the fields cre-
ated in certain situations. There are two key examples to be familiar with: the straight,
current-carrying wire; and the bar magnet/current-carrying coil. We will also describe
two more-advanced examples that are relevant for magnetic resonance imaging ma-
chines and for controlling fields in the lab: Helmholtz and anti-Helmholtz coils. These
are illustrated below.

Figure 39.3 The magnetic field around a
current-carrying wire. The magnetic field lines
form closed circles around the wire.Current-Carrying Wire

The magnetic field around a current-carrying wire is circular and the direction can be
determined from the right-hand rule: point the thumb of your right hand in the di-
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rection of the current (and remember, that means the direction of the conventional
current, from positive to negative potentials) and your fingers will curl in the direction
of the magnetic field lines. An example of the magnetic field around a wire is shown in
Figure 39.3.

Figure 39.4 The magnetic field in the region
around a current carrying coil. The magnetic
field lines look much like those produced by a bar
magnet.

Current Loop/Bar Magnet

The field lines around a bar magnet have already been discussed, but we’ll add another
important fact here: a current-carrying coil of wire like that shown in Figure 39.4 pro-
duces a magnetic field that looks the same from a distance. If you take your right hand
and curl your fingers in the direction of the current, and your thumb will point in the
direction of the field lines through the coil.

Helmholtz and Anti-Helmholtz Coils

The last examples we’ll give here are some particular coil pairs. By taking two identical,
flat, circular coils of wire and placing them a particular distance apart – for circular
coils this is the radius – we can produce a field that points along the central axis and
is nearly uniform by ensuring that the currents in the two coils are equal and in the
same direction. Such coils are known as Helmholtz coils, and they can be used for
applications such as cancelling out the Earth’s magnetic field. If the direction of current
in one loop is reversed, these are known as anti-Helmholtz coils, and have a uniform
field gradient. The exact field properties of such current configurations are beyond the
scope of this textbook, but are mentioned here to give readers some idea of how more
complex magnetic fields can be created. In particular, anti-Helmholtz coils are used
in MRI machines to provide a gradient to the static field. Both Helmholtz and anti-
Helmholtz coils are shown in Figure 39.5.

Figure 39.5 (Left) A pair of Helmholtz coils. The magnitude and direction of the current in each identical coil is the
same. The distance between the coils is the same as the coil radius. (Right) Anti-Helmholtz coils. The arrangement
of the coils is the same as for a pair of Helmholtz coils except that the currents through the coils are in the opposite
directions. The magnetic field lines in the vicinity of each set of coils and the magnetic field vectors at several points
are shown.

Force on Charges in a Magnetic Field

We have discussed how magnetic fields are created by moving charge. They in turn
also affect moving charge. The magnitude of the force F on a charge moving in a static
magnetic field B is given by

Figure 39.6 The force on a charge moving in a
magnetic field is perpendicular to the plane that
contains the velocity and magnetic field vectors.
The direction that the force acts can be found by
using the ‘right-hand slap rule’.

F = qvB sinθ (39.1)

where B is the magnetic field strength, q is the charge, v is the velocity of the charge,
and θ is the angle between the magnetic field vector and the velocity vector. The direc-
tion of the force is perpendicular to both these vectors (see Figure 39.6). A useful tool
for remembering which direction the force is in is the ‘right-hand slap’ rule: point the
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thumb of your right hand out at right angles to your fingers and point it in the direction
of positive-charge movement, then point your fingers in the direction of the field lines.
The direction you would slap your palm is the direction of the force.

Some examples of the motion of a charged particle in a magnetic field are shown in
Figure 39.7. When the charge is moving in the direction of the field, there is no force,
and the velocity of the particle is unaffected. In the case where the charge is moving
across the field, θ is 90°, the force is the maximum and the charge will move in a circle
(assuming a uniform field).

The Southern Lights (Aurora Australis)

The Aurora Australis and Aurora Borealis (the

Northern Lights) are caused by the magnetic

force. Charged particles from space follow

paths that spiral around the field lines from the

Earth’s field. This funnels them towards the

poles, and so large quantities of fast, charged

particles will hit the upper atmosphere at high

latitudes, sometimes creating a visible glow in

the sky.

A combination of these two motions happens for other angles. The component of
the velocity in the direction of the field is unchanged; the component perpendicular
to the field has its direction, but not magnitude, modified. The result is the charge
spiralling around the magnetic field direction.

Figure 39.7 (Left) When a charge is moving along (or against) a magnetic field line it experiences no magnetic force
(sin0° = sin180° = 0) and will travel in a straight line (provided no other forces are acting upon it.) (Middle) A charge
moving perpendicular to magnetic field lines will travel in a circle as the magnetic force on will always be at right
angles to the direction of travel. The diagram shows a postive charge. (Right) A charge moving at an angle to the
magnetic field will have force components that are parallel and perpendicular to its velocity. The charge will travel in
a spiral in such an instance. Again, the diagram shows the force on a positive charge.

Induced Currents: Faraday’s Law and Lenz’s Law

Figure 39.8 The flux through an area A is
proportional to the component of the magnetic
field vector that is perpendicular to the surface
(B cosθ.

There is one final key law of magnetism that has relevance to MRI: Faraday’s law. A
charge moving in a static field experiences a force, but it is also the case that a changing
field will affect charges. Most often we are interested in how this will affect charges in
simple circuits, like loops of wire.

Key concept:

Faraday’s Law:
The induced electromotive force in any closed circuit is equal to the time rate of
change of the magnetic flux through the circuit.

The magnetic flux, Φ, is proportional to the number of field lines through a surface.
In the simple case of a uniform field and planar area

Φ= B A cosθ (39.2)

where B is the field strength, A is the area and θ is the angle between the normal to the
surface and the field direction (see Figure 39.8). The flux can be altered (and an emf
and hence current induced) if the field changes strength or direction, or if the area of
the circuit is changed. This is how MRI machines receive information from the object
being scanned: a current is induced in receiver loops by a changing magnetic field, and
the frequency and decay time of this is recorded and decoded.

Figure 39.9 The current induced in a loop of
wire by a changing magnetic field will act to op-
pose the change. In this case, the applied field
is increased, producing an induced current that
would create a upward field through the plane of
the loop.

The direction of the induced current is given by another rule:

Key concept:

Lenz’s Law:
A changing magnetic field will induce a current. The direction of the induced cur-

rent will be that which produces a magnetic field which opposes the changes to the
magnetic field, i.e, in the same direction if it is decreasing, and opposed to otherwise.
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In other words, a magnetic field, B1 induces a current, I , in a loop of wire like that
shown in Figure 39.9. The current in the wire will itself produce a magnetic field, B2.
The direction of B2 is determined by the direction of the current in the loop. Lenz’s law
says that B2 will always be in a direction opposite to the direction of changes in B1. The
current, I will flow in a direction that ensures this.

Types of Magnetic Materials

We can classify the magnetic properties of materials into three distinct groups: param-
agnetic, diamagnetic, and ferromagnetic (see Figure 39.10). There are implications for
MRI scanning with all three material types.

Paramagnetism

Paramagnetic materials contain unpaired electrons, and so the molecules have a per-
manent non-zero magnetic moment. In metals, this can arise from the magnetic mo-
ments associated with the conduction electrons. Usually, the electron spins are ran-
dom in orientation. In the presence of an external magnetic field, the material be-
comes magnetised and produces a magnetic field in the same direction as the external
magnetic field. This effect does not persist once the external field is removed.

Figure 39.10 Paramagnetism, ferromagnetism,
and diamagnetism.

Ferromagnetism

Ferromagnetic materials can retain a net magnetic moment in the absence of an exter-
nal field. As in the case of paramagnetism, they have unpaired electrons, but while nor-
mally the lowest energy state is for neighbours to anti-align, in ferromagnetic materials
it is energetically favourable, over short distances, to line up with magnetic moments
parallel. Iron and nickel are examples of ferromagnetic materials.

Diamagnetism

Diamagnetic materials are pretty much opposite to the above: materials with nicely-
paired electrons that do not exhibit the more normal responses to external fields. How-
ever, the external field influences the electron orbits in such a way that they become
magnetised in the opposite direction to the external field. In most materials, the effect
is quite weak, but in superconductors the effects can be quite interesting.

39.3 A Brief Outline of MRI

The physics of NMR and MRI is very complex. For this reason we begin the discussion
of MRI with a brief outline of the actual process of producing an MRI image without
the details of the physics involved.

The essential practice of MRI is as follows. A patient, or a biological sample to be
investigated, is placed in a large magnetic field. This magnetic field is of constant mag-
nitude and is pointed in a single direction, i.e., it is uniform and homogeneous. For the
purpose of our discussion, we will call the direction that this magnetic field is pointed
in the z-direction. This field is often called the longitudinal field and is about 0.5–1.5 T
in magnitude in most machines currently used, although machines with a longitudinal
field of 3 T are beginning to appear.

With the patient lying in the longitudinal magnetic field, an oscillating electromag-
netic field is turned on. This field is oscillating in the radio-frequency range of the
electromagnetic spectrum and is tuned to transfer energy to the protons which are the
nuclei of hydrogen atoms in the patient. The energy of the RF field is absorbed by the
hydrogen nuclei and this energy is then re-radiated by these nuclei as another RF elec-
tromagnetic field. This second RF field is detected by antennas in the MRI machine
and the signal produced is analysed by powerful computers to produce images like
those shown in Figure 39.11. By carefully engineering the characteristics of the RF field
sent into the patient, we are able to ensure that the RF field returned by the protons in
the patient contains information about the position and composition of the tissues in
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which the protons reside. In particular, the frequency (and phase) of the emitted signal
can indicate where the signal came from, and the decay time gives information about
the tissue composition.

Figure 39.11 T1 (left) and T2 (right) weighted MRI images of the same spine. These images show a lumbosacral
intervertebral disc protrusion (slipped disc). [Images courtesy of Professor Terry Doyle, University of Otago School
of Medicine.]

39.4 Nuclear Magnetic Resonance

Angular Momentum, Rotation and Precession

Magnetic resonance imaging (MRI) employs nuclear magnetic resonance – a tech-
nique which exploits the magnetic properties of the nucleus to map the interior of a
sample. The word ‘nuclear’ is now usually left out of the term nuclear magnetic reso-
nance (NMR) when referring to imaging due to confusion with nuclear decay and ex-
plosions (which are entirely different processes), as this caused unnecessary fear and
anxiety. To understand NMR, we need to re-acquaint ourselves with some technical
terms and introduce some new ones – we will need to understand a little about angular
momentum. An excellent tool for familiarising ourselves with the necessary quantities
is the spinning top, and we will use the top analogy extensively.

Many of the physical quantities that describe translational motion have rotational
analogues. For example, the analogue of the displacement is the angular displacement,
the velocity has the angular velocity as its companion, and we can also assign a value to
the angular acceleration as we do to linear acceleration. Newton’s third law, the familiar
F = ma, tells us the effect of a force on an object: a is the rate of change of the velocity,
making ma the rate of change of mv , the momentum. The equivalent quantities when
discussing rotational motion are the torque and the angular momentum. The torque is
the time rate of change of angular momentum; applying a torque to a body will change
its rotational motion.

Et tu, Brute?

The axis of rotation of the Earth is precessing,

with a period of rotation of about 26 000 years.

Currently the planet’s North Pole is pointing to-

wards the star Polaris, which is known as the

Pole Star for just this reason, but this is not go-

ing to continue forever. In 13 000 years time,

the star Vega will be at this position instead.

Shakespeare didn’t seem to know about this

when writing Julius Caesar ; he has Caesar

saying:

But I am constant as the northern star

Of whose true-fixed and resting quality

There is no fellow in the firmament.

At the time of Caesar’s death in 44 BC, Polaris

was about 12° off the North Celestial Pole.

Consider the case of a top that is not spinning, but merely standing on its point.
There are two forces at play here: the downward force through the centre of mass and
the upwards force through the point. If these forces are not acting exactly along the
same line, then there will be a torque on the top that will rotate it. It will acquire angu-
lar momentum by falling over. A stationary top is thus extremely unstable since these
forces do not generally line up exactly and the top quickly falls over.

But a spinning top like that shown in Figure 39.12 doesn’t fall over. Why not? The
spinning top already possesses angular momentum: the torque resulting from a mis-
match between the gravitational and support forces still changes the top’s angular mo-
mentum, but the effect is now a little different. The result is that the axis about which
the top is spinning is no longer up-down (we’ll call this the z-axis), but at some angle
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to the z-axis, and this direction will change with time. The axis of rotation will describe
a circle around the z-axis. This movement is called precession. The angle between the
z-axis and the rotation axis is called the precession angle. The top is quite resistant to
efforts to push it over – applying such a force will merely change the precession angle.
The term for a change in precession angle is nutation.

There are two directions of importance here: the z-axis and the axis of rotation of
the top. The z-axis is defined by the direction of the gravitational field the top is in,
here provided by the Earth. The axis of rotation of the top defines the direction of the
top’s angular momentum vector. The spinning top analogy is a very useful one for
describing the effects of a magnetic field on a collection of nuclei because the average
direction of the spin (intrinsic angular momentum) of the particles behaves similarly,
precessing about the direction of magnetic field.

Figure 39.12 The axis of rotation of a spinning top precesses about the vertical. The angular momentum vector of
the top has a vertical longitudinal component which is constant and a horizontal transverse component which rotates
about the vertical.

Classical Picture Versus Quantum Mechanics

At this point, we will take a slight digression in order to clarify why the word ‘average’
was necessary in the previous section. This has to do with the ‘classical’ and ‘quantum-
mechanical’ views of the world. In the classical world view, properties that a body
might possess, such as energy, have allowed values which form a continuous range. In
the quantum view, some properties may only take on certain discrete values. A exam-
ple of quantisation which we have already encountered is that of the allowed energies
of the electrons bound in atoms.

While quantum mechanics is a very successful framework for predicting how the
world behaves on a small scale, where classical mechanics fails, the classical view is
adequate much of the time because the predicted average behaviour of a large collec-
tion of quantum systems gives the same result. We mention this here because we will at
times be talking about specifically quantum-mechanical particle properties like spin,
and at others talking about the bulk magnetisation resulting from the accumulated ef-
fects of all the spins. Our spinning top analogy is very good for describing the bulk
magnetisation. It is actually a poor model for the behaviour of a single particle, but we
will still borrow it for this from time to time.

Figure 39.13 The component of the magnetic
moment of a proton is measured with respect
to an external field. The measured component
of the magnetic moment is always a multiple of
some fundamental value.

For an object where the classical picture is adequate, like a spinning top, the an-
gular momentum vector can have any magnitude, and can be described completely –
you could write equations that show the direction of the vector at all times, and pre-
dict the result of a measurement of the angular momentum component in a chosen
direction at some future time. This classical picture does not work for particles like
electrons, whose behaviour is fundamentally quantum-mechanical. Most importantly
for our discussion of MRI, the spin of an electron has a set of fixed possible values,
i.e., the spin of the electron is quantised. This has some unusual consequences. These
consequences are quite counterintuitive, but rest assured that they are firmly based on
experimental evidence.
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The central experiment which was the historical source of our understanding of
quantum-mechanical spin was the Stern – Gerlach experiment (see margin box). If
you design an experiment to measure the value of the component of the spin of some
sub-atomic particle, in a given direction, your measurements of spin will only ever yield
an integer number of values, rather than a continuous range of values. For an electron,
for example, the component of spin in the chosen direction will be +ħ

2 J s or −ħ
2 J s,

no matter what that direction is. Furthermore, if you change your mind and redo the
experiment, measuring the component of angular momentum again but in a different
direction, you will find that the value you measure is again +ħ

2 J s or −ħ
2 J s.

The Stern – Gerlach experiment

Theory predicts a force on a magnetic mo-

ment in an inhomogeneous magnetic field; a

gradient in the z-direction will produce a force

which depends on the component of the mag-

netic moment in the z-direction. This provides

a way to test quantum theory against classical

mechanics. Classical theory suggests that an

atom with angular momentum can have a con-

tinuous range of z-component values, while

quantum theory predicts only discrete allowed

values. In 1921 Stern and Gerlach performed

an experiment of this kind with a beam of sil-

ver atoms, which split into two distinct beams

in the magnetic field, supporting the quantum

world view.

Interaction of Nuclei With Static Magnetic Fields

In atoms, there are three important sources of angular momentum. The circular mo-
tion of an electron in its orbital about the atomic nucleus contributes to the angular
momentum of this electron and to the total angular momentum of the atom. This is
called (not surprisingly) the orbital angular momentum of an electron. As discussed
in the previous section, a particle like an electron also has spin. This spin is a quantum-
mechanical form of angular momentum and thus contributes both to the total angular
momentum of the electron and the total angular momentum of the atom. Finally, the
nucleus is composed of nucleons and each nucleon has both orbital and spin angular
momentum. The angular momenta of the nucleons combines to give a total angular
momentum for the nucleus as a whole and this contributes to the total angular mo-
mentum of the atom.

For our discussion of MRI we will only need to concern ourselves with the be-
haviour of the hydrogen nucleus – a single proton. Protons are spin-1/2 particles: there
are only two possible values for the component of the spin or intrinsic angular momen-
tum vector, just as in the case of the electron. The component of the spin of the proton
in a particular direction is either aligned with the chosen measurement direction or
aligned against it. We often call these spin values ‘spin up’ and ‘spin down’ for conve-
nience.

In the section on magnetism, it was noted that current moving in a loop acts like
a bar magnet. We have now determined that protons (and electrons etc.) have an in-
trinsic angular momentum (spin) and since the proton is charged this implies that the
proton has some kind of intrinsic circulating current. This in turn implies that protons
will behave a bit like little bar magnets – that they will have a magnetic moment. This
magnetic moment vector points in the same direction as the axis of spin of the proton.

Figure 39.14 In the presence of a static mag-
netic field, more protons align with the field than
against it.

In the presence of a static external magnetic field, the two different spin states have
slightly different energies, and more protons will be in the lower energy state (with z-
component of the magnetic moment in the field direction). Overall, then, if we have
many protons and add up all the little magnetic moments from their spins, the net
magnetisation vector of the collection will be in the direction of the magnetic field
(see Figure 39.14); the sample is longitudinally magnetised in the field direction (which
we will also refer to as the positive z-direction).

Interaction of Nuclei With a Resonant Electromagnetic Field

In an external magnetic field, there is an energy difference between the spin up and
spin down states of a collection of protons. If we are able to supply the correct amount
of energy somehow, a number of the protons in the lower energy state will flip from
one spin state to the other. Fortunately we have a handy mechanism which we can use
to supply protons with the correct energy. We can irradiate the sample with photons
having the correct energy, or, in other words, we need to irradiate the protons with
photons having the correct frequency. To flip protons, this correct frequency is

f = γB (39.3)

whereγ is a number called the gyromagnetic ratio of the proton and is equal to 42.5 MHz T−1.
The frequency defined by Eq. (39.3) is called the Larmor frequency, and the fact that
this frequency depends on the size of the external magnetic field is central to the physics
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of MRI. In a field on the order of 2 T, this frequency is in the radio part of the electro-
magnetic spectrum, in the region used for FM radio broadcasting.

Gyromagnetic ratio

Books on this topic use inconsistent notation

for the gyromagnetic ratio. Some write that

γ/2π = 42.5 MHz/T instead, if they are using

angular frequency rather than frequency.

If we send resonant radio-frequency photons into a sample containing hydrogen
nuclei then the sample will temporarily change its longitudinal magnetisation (see Fig-
ure 39.15). This change in magnetisation occurs because protons in the low-energy
state with their magnetic moment aligned with the external magnetic field can now
absorb a photon and flip so that their magnetic moment points in the opposite direc-
tion. The total magnetisation of the sample is the sum of all of the magnetic moments
of all of the protons, so if enough of the protons flip into the opposite direction then the
longitudinal magnetisation of the sample will be cancelled out. If even more of these
lower energy protons flip, the longitudinal magnetisation of the sample can even be
reversed. It will eventually revert to its original aligned state if the radio-frequency (RF)
radiation is stopped.

The RF field has another important effect, though. We have previously talked only
about the longitudinal magnetisation. What about the other directions, i.e., the trans-
verse plane perpendicular to the magnetic field? In the presence of a purely static mag-
netic field, there is no magnetisation in the transverse plane, because the transverse
components of the magnetic moments of all the protons are not synchronised. This
means that when the transverse component of the moment of one proton is pointing
one way, the next one could be pointing anywhere in the transverse plane: when all
the transverse components of all the protons are added up they cancel each other out.
Even though the protons are all precessing about the z-direction, there is no synchro-
nisation between neighbours they are not in phase at all – so overall the average value
of the transverse magnetisation is zero.

Figure 39.15 Initially the protons mostly have
magnetic moment aligned with the field. The
transverse components of the magnetic moment
are all out of phase however.

This changes with the addition of a resonant (transverse) electromagnetic field,
which has the extra effect of creating phase coherence the phase of the spins of the pro-
tons are synchronised by the RF field (see Figure 39.16). The principle is the same for
all kinds of systems: if you apply a force at the resonant frequency, the energy transfer
is the most efficient, and the energy source and the recipient rapidly end up in a fixed
phase relationship. If you want to push a child on a swing, you need to always push at
the same part of the swing’s cycle to get them to go higher. If you were able to push 100
children on swings at the same time, they would all end up swinging in sync no matter
how they started out. Since the spins (and thus the magnetic moment vectors) of all
the protons are now synchronised, they will all add up rather than cancelling out. Thus
there will now be a component of the magnetisation which is rotating in the transverse
plane. Furthermore it will be rotating at the Larmor frequency. These rotating mag-
netic moments will produce a changing magnetic field, which will induce a current in
a wire loop placed nearby.

To summarise, a resonant, radio-frequency electromagnetic field will reduce (or
even reverse) the magnetisation in the longitudinal (z) direction at the same time as
introducing a rotating magnetisation in the transverse plane.

If the RF field is applied for the just the right amount of time, then the longitudinal
magnetisation can be completely cancelled out – there will be as many protons with
aligned spins as there are protons with anti-aligned spins. The magnetic-moment vec-
tors of all of the protons will also be synchronised. They will all be pointing in the same
direction at the same time and rotating at the same frequency (the Larmor frequency).
In effect, the magnetisation of the sample has gone from pointing in the same direc-
tion as the external longitudinal magnetic field to rotating in the plane transverse to
the longitudinal field. The magnetisation of the sample has been rotated 90° into the
transverse plane. For this reason the pulse of RF field that achieves this is called a 90°

pulse.
Figure 39.16 After the application of a specific
RF field the longitudinal components of the pro-
tons magnetic field cancel each other out (half
spin-up, half spin-down) but the transverse com-
ponents are all in phase with each other. This is
called a 90° pulse.

Relaxation Processes and Times

After a 90° RF pulse has been sent into a sample, the magnetisation of the sample is
rotated 90° into the transverse plane and rotates at the Larmor frequency. Eventually,
though, if the sample is left unperturbed, the magnetisation will relax back to its orig-
inal longitudinal direction (see Figure 39.17). There are two basic relaxation processes
involved, and they each occur on a different time scale:
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Figure 39.17 The longitudinal and transverse components of the bulk magnetisation return to their original values
following a resonant RF pulse.

• Loss of coherence in the transverse plane as the spins of the protons lose their
synchronisation.

• The total magnetisation of the sample rotates back into the longitudinal direction
as the spins of the protons flip until the original number of protons in each spin
state is achieved.

The characteristic length of time taken until the longitudinal magnetisation recov-
ers, that is, the time it takes the longitudinal magnetisation to go from zero back to
within 37% of its old value following a 90° pulse, is called the T1 time. This time is gov-
erned by how long it takes for protons in the higher-energy state to give up the energy
they gained from the RF field. The protons can lose this energy only by transferring it
to something else; in this case the only place that they can transfer the energy to is the
surrounding lattice of atoms and molecules. The T1 time is therefore dependent on
the environment in which the protons find themselves (the density of the surrounding
medium, the particular form of the molecules in which the proton is embedded etc.),
as this will determine the ways in which they can give up this energy. The T1 time is
thus also known as the spin–lattice or longitudinal relaxation time.

The transverse magnetisation is a result of the synchronisation of the spin of a pro-
ton with its neighbouring protons. As they lose this synchronisation (or phase coher-
ence), the transverse magnetisation is reduced: the individual proton spin vectors don’t
quite point in the same direction so their sum is slightly smaller. We have already seen
that a proton can transfer energy to the surrounding lattice. A proton can also trans-
fer energy to other protons. In this process one proton will lose energy and another
will gain energy. This transfer of energy results in slight changes in frequency between
neighbouring protons and thus will kick them out of synchronisation. As an analogy,
imagine a row of ballerinas en pointe, twirling about in perfect unison. Now suppose
that one reaches out to her neighbour and they press hands together as they spin past.
One of them will get pushed ahead by this, increasing her rotational speed and fre-
quency. The other ballerina will get pushed back the other way and her rotational speed
and frequency will decrease. They won’t be exactly in time any more. This is an analogy,
but it is a reasonably good one. In actual fact the magnetic field of one proton interacts
with the magnetic field of a nearby proton, changing the Larmor frequency of each of
them (see Eq. (39.3)). These spin–spin interactions cause a decay in the total rotating
transverse magnetisation of the sample with a characteristic time called the T2 time,
or the spin–spin relaxation time. This is the time it takes the transverse magnetisation
to decay to 37% of its original value.

The T2 time is, like the T1 time, dependent on the background material in which the
protons are embedded. In particular, the T2 time depends on the density of protons
in the background material. The more protons there are nearby, the more spin–spin
interactions there will be and the faster the synchronisation of the transverse magnetic
moments of the protons will disappear.

There is another process which causes loss of phase coherence. The spin–spin in-
teraction is ultimately caused by the interaction of the magnetic field of a proton with
the magnetic field of a nearby proton. A similar process will result from a local inhomo-
geneity in the external longitudinal magnetic field. This will cause the magnetic field to
vary slightly from place to place, and hence the precession rate of different protons will
differ very slightly. This combines with the spin–spin interaction of neighbouring pro-
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Tissue type T1 at 0.5 T(ms) T1 at 1.0 T (ms) T1 at 1.5 T (ms) T2 (ms)
Fat 210 240 260 80
Liver 350 420 500 40
Muscle 550 730 870 45
Kidney 440 590 700 58
Heart 560 750 890 57
White brain matter 500 680 780 90
Gray brain matter 650 810 900 100
Cerebrospinal fluid 1800 2160 2400 160

Table 39.1 Approximate T1 and T2 times. [Reprinted with permission from The physics of Diagnostic Imaging 2nd
ed., Dowsett et.al. Reproduced by permission of Edward Arnold (Publishers) Ltd. Copyright 1998.]

tons to cause the transverse magnetisation to decay with a characteristic time called
T2* (‘tee two star’). The T2* decay time is shorter than the T2 decay time as it involves
the fluctuations in the large external field, which, although small, are large compared to
the magnetic fields produced by individual protons. To go back to our ballerina anal-
ogy, imagine that at some places on the stage the ballerinas can spin faster since the
floor is more highly polished there. Pretty soon they won’t be spinning in time with
their neighbours. This is similar to the loss of coherence due to variations in the back-
ground magnetic field, as opposed to variations due to the interaction of the protons. It
is possible to mitigate the effects of these local variations in the background magnetic
field using clever RF pulse sequences, and we will cover this in the next section.

The fact that different types of biological tissues have different T1 and T2 times is
the central idea of MRI imaging. The T1 time is due to spin–lattice interactions which
will vary depending on the nature of the underlying lattice in which the proton is sit-
ting. The T2 time depends on spin–spin interactions, which are dependent on the den-
sity of protons in the material. Thus these two decay times will vary from material to
material. Table 39.1 lists some characteristic T1 and T2 times for different biological
materials and tissues; the values are quoted at three different values of the external
longitudinal magnetic field.

Liquids and Solids

Solids tend to have short T2 times whereas liquids tend to have relatively long T2 times.
The reason for this is the presence of inhomogeneities in the local magnetic field. These
inhomogeneities will cause variations in the Larmor frequencies of neighbouring pro-
tons, causing them to rapidly fall out of synchronisation. In solids these inhomogeneities
are ‘frozen’ in place by the background lattice of the solid in which the proton is embed-
ded. Any inhomogeneities in the local magnetic field will not change with time as the
background lattice does not change with time. In a liquid, on the other hand, any lo-
cal inhomogeneities in the background magnetic field will wash out as a proton moves
about in the fluid. In general the inhomogeneities experienced by a proton in a fluid
will average out. If the field increases at one point, it will tend to decrease at another
point. Thus though the Larmor frequency of the proton increases at one point it will
decrease at another point so that on average it will have the same Larmor frequency
as all the other protons in the fluid, since they are also moving through the same local
inhomogeneities.

In ice, water protons are never more than a short distance from another proton.
The field strength due to this proton will be on the order of 1× 10−4 T which gives a
dephasing time on the order of 1

γB = 2.4×10−4 s. This makes the T2 time in a solid like

ice very short, and the T2 times for most solids are on the order of ∼ 10−4 s. In a liquid,
however, the random tumbling motion of the other nearby protons tends to subject a
proton to a field that averages out to zero, and the T2 time is much larger (about 2 s for
water).
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39.5 Magnetic Resonance Imaging

We now have the tools we require to understand diagnostic magnetic resonance imag-
ing (MRI).

The human body is about 75% water. Each water molecule contains two hydrogen
nuclei, i.e., single protons, with spin 1

2 . Large biologically important molecules also
contain a large amount of hydrogen bound to other elements such as carbon in very
specific configurations. When placed in an external longitudinal magnetic field and
then stimulated with an RF field, these protons will then radiate an RF field of their
own. This RF field can be detected as a radio-frequency voltage signal in a detector
antenna loop. This signal will depend on the tissue parameters (proton density, T1
and T2 times) and machine parameters that can be altered to change how the signal
depends on T1 and T2.

In the early, pioneering days of MRI it was hoped that all body tissues, normal or
diseased, would have specific T1 or T2 relaxation times that would act as a signature of
those tissues and which could be measured precisely. As discussed above solids tend to
have shorter T2 decay times than liquids. We would thus hope that bone for example
would have a much shorter T2 time than, say, blood and would thus be distinguishable
from blood and other tissue simply by looking at the T2 decay times of the MRI signal.
Unfortunately, things did not prove to be quite that simple. There is considerable vari-
ation in the measured T2 (and T1) times from a given tissue type. Again taking bone
as an example, bone is porous to a greater or lesser degree (depending on the partic-
ular bone tissue considered) and thus will contain greater or lesser quantities of blood
and other biological fluids. Thus the T2 signal from bone will not be characterised by
a single clear signature T2 time. For this reason, accurate measurement of T1 and T2
is not generally attempted; an MRI image is a map of MRI signal strength at each loca-
tion across the sample. The MRI machine is set up so that the signal strength depends
strongly on the T1 or T2 times, or the density of protons contributing to the signal. This
is the reason that most MRI images are black and white – they are just recording the
intensity of the RF signal received from the sample as shown in Figure 39.18.

The character of the signals measured by an MRI machine depends on the types
of RF pulse sequences that are sent into the sample and the nature of the longitudinal
static field in which the sample is held. We will begin our discussion of MRI signals
and their interpretation by describing the free induction decay (FID) pulse sequence,
and the signal that can be detected from this. FID is the simplest case, and we should
perhaps not even call it a pulse sequence. We will then examine more complex RF pulse
sequences to see how they can be used to produce signals that depend most heavily on
T1, T2 or hydrogen (proton) density. We will then look at how the point of origin of
each component of the RF field can be encoded into the measured MRI signal with the
clever use of extra magnetic fields which add various gradients to the large longitudinal
static field.

Free Induction Decay

In the previous section we pointed out that an MRI image is generally a black and white
image in which shades of gray represent the intensity of the MRI signal. We also men-
tioned that the intensity of the MRI signal can be linked to either the T1 or the T2 decay
times. In this section we will briefly indicate how this is done. We will require some
technical machinery to do this, and we will introduce it without much explanation, as
the derivation of these equations is unnecessary for our purpose here.

In a free induction decay sequence, an RF pulse (not necessarily a 90° pulse, but
we will use this as our example) is applied to a sample in a static, z-directed magnetic
field. As previously discussed, this type of pulse rotates the magnetisation vector away
from the z-axis and into the x y-plane. The bulk magnetisation vector of the sample,
M , has had its longitudinal component reduced from its initial value to zero by the
pulse and this M vector then rotates in the x y-plane at the Larmor frequency. Once the
stimulating RF field has been switched off, the magnetisation of the sample will return
to its initial value.

www.wiley.com/go/biological_physics 419



39 · MAGNETISM AND MRI

The strength of the MRI signal emitted by the sample, which we will call S, will
decrease exponentially with two time constants, T1 and T2*. We can express this using
the following equation

Figure 39.18 Free induction decay: The com-
ponents of the magnetisation vector. The
transverse component of the magnetisation
decays at a different rate to the recovery of
the longitudinal magnetisation. The oscillation
frequency shown here is much smaller than in
reality for clarity – the frequencies are on the
order of 40–120 MHz, and the decay times on
the order of 100–2000 ms.

S = S0e−t/T1e−t/T2* (39.4)

The T2* time is a lot shorter than the T1 time so it will dominate Eq. (39.4). That is,
term e−t/T2* in this equation will become very small much faster than the term e−t/T1,
and this in turn will mean that the reduction in signal strength will be largely due to the
short T2* time. Getting information about the T1 and T2 times from the free induction
decay signal is therefore tricky. However, using more complex sequences of RF pulses,
information about the T1 or T2 times can be extracted. We will now introduce one
such pulse sequence, for the purpose of demonstrating how images can be weighted to
emphasise different features.

Spin Echo Pulse Sequence

The much shorter T2* time is a serious limitation on the ability of MRI scans to extract
T1 and T2 time information. The spin echo pulse sequence uses an additional RF pulse
to get around this problem.

To understand how the spin echo pulse system works it is important to remem-
ber the source of the T2* decay time. The T2* time is due to variations in the local
background magnetic field which this results in variations in the Larmor frequencies of
neighbouring protons. This in turn results in a rapid loss of synchronisation between
these protons. However, these background field inhomogeneities are relatively stable
so that a proton with a slightly lower Larmor frequency will always have a slightly lower
Larmor frequency. Over time those protons with higher Larmor frequencies will move
a little ahead of the protons with the average Larmor frequency, and the protons with
lower Larmor frequencies will start to lag. This results in a spread of magnetisation
vectors across the sample as the faster protons pull ahead and the slower protons fall
behind. If we could flip this spread around so that the faster protons were at the back
and the slower protons were in the front then the spread would bunch up again.

As an analogy, suppose a group of runners, capable of running at slightly different
speeds, all set off from the start line at the same time. A little while later they will be dif-
ferent distances away. However, if the runners all turn around at the same time and run
back towards the start line, maintaining their original speed, they will get back there at
the same time. This is the idea behind the spin echo pulse sequence. The process by
which the proton magnetic moments are bunched up again is called re-phasing as it
amounts to correcting the small phase differences which have developed between the
proton magnetic moments. A typical spin echo sequence would go through the follow-
ing steps (also shown in Figure 39.19):

1. A 90° pulse rotates the magnetisation of the sample into the transverse plane.

2. The transverse magnetisation decays with characteristic time T2*, as the individ-
ual proton magnetic moments spread out in the transverse plane.

3. At time T a second RF pulse flips the sample magnetisation vector (and thus all
of the individual proton magnetic moments) through 180°, this puts the spins
that were ahead behind and vice versa. This is (unsurprisingly) known as a 180°
pulse.

4. After a second time period of T , the spins have become re-phased – the proton
magnetic moments are bunched up again and the transverse magnetisation of
the sample is restored. The MRI signal strength peaks when the dephasing effect
of the magnetic field inhomogeneity has been exactly reversed (i.e., at time 2T ).
The MRI signal strength is still dependent on T1 and T2, and so the signal will still
be decaying but at a reduced rate. The time at which the peak in the MRI signal
caused by the spin echo pulse sequence occurs is called the time to echo, TE.
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Figure 39.19 The spin echo pulse sequence. An 90°excitation pulse is followed by a re-phasing 180°RF pulse which
reverses the effects of the magnetic field inhomogeneities on the precession frequencies. The effects of spin–spin
interactions which cause the transverse magnetisation to decay with characteristic time T2 are not reversible.

5. The spin echo sequence is then repeated. The time between repetitions of the
spin echo sequence is called the time to repetition, TR.

If the TE and TR times are adjusted, the echo signal strength will be altered. If the
repetition time (TR) is short compared to the T1 time, the longitudinal magnetisation
will not have fully recovered when the second (or third) spin echo sequence begins. The
next 90° pulse will tip a smaller magnetisation vector into the x y-plane as the magneti-
sation vector has not fully recovered, and the resulting measured MRI signal will be
reduced. The smaller the value of T1, the more the longitudinal magnetisation will
have recovered by the time the next spin echo sequence arrives and the stronger the
resulting MRI signal will be. In other words, when a spin echo pulse sequence is used
to produce an MRI signal, a short T1 time will correspond to a strong signal and a long
T1 time will correspond to a weaker MRI signal. We have thus encoded the T1 time as
MRI signal intensity.

In MRI images produced in this way, short T1 means more signal, and a brighter
spot on the image. An image where the TR and TE times are chosen to emphasise
differences in T1 by choosing a short TR is known as T1 weighting. Of course the TE
time must be shorter than the TR time, so both times must be short to produce a T1
weighted image.

Figure 39.20 The spin echo sequence produces
an echo signal from the re-phasing of the spins.
The strength of the signal can provide informa-
tion on the T2 time that had been obscured by
dephasing from a slightly non-uniform field.

If the TR time is very long, then the longitudinal magnetisation of the sample will
be nearly fully recovered no matter what the value of the T1 time is. In this case, the
strength of the MRI signal will not be so strongly dependent on the T1 time. In this
regime, however, the MRI signal strength can be made to depend on the length of the T2
time. Increasing the time to echo (i.e., the time until the 180° pulse) means that signals
with short T2 times will have dephased more. The 180° pulse only compensates for the
T2* dephasing and does not change the T2 dephasing since this is irreversible. Thus
samples with shorter T2 times will produce a smaller MRI signal because they dephase
more before the next sequence begins (with a 90° pulse). Thus the bright areas on an
MRI image made in this way will be the places with larger T2 values. Such an image is
known as T2 weighted.
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Key concept:

Short TR and TE values emphasise differences in T1, and bright image areas have
shorter T1. Long TR and TE values emphasise differences in T2, and darker areas on
an image have shorter T2 values.

If TR is long, and TE is short, the signal will be quite strong regardless of the T1 and
T2 times, and will emphasise differences in proton-density instead. This is known as
proton density weighting.

Figure 39.21 (Top) A CT scan of a patient’s head. The patient had an unexplained accident but the CT scan showed
no abnormality. (Bottom left) T1-weighted MRI image of the same patient located in the same place as the CT image.
This image shows a low contrast image of a tumour in the left temporal lobe. (Bottom right) A T2-weighted image in
which the large water signal in the tumour is clear. [Images courtesy of Professor Terry Doyle, University of Otago
School of Medicine.]

One of the easiest ways to tell if an MRI image is T1 or T2 weighted is to look for
areas in the sample where liquid is expected. Liquids have much longer T2 times than
solids, so water and water-rich substances like cerebrospinal fluid or vitreous humour
will appear bright on a T2-weighted image.

T1 and T2 in MRI

T1

The T1 time is determined by how long it takes to transfer the energy gained from an
RF excitation pulse to the surrounding material lattice in which the protons are embed-
ded. Molecules undergo various types of motion (vibration, rotation, and translation)
and the frequency of these motions relative to the Larmor frequency will determine the
efficiency of the energy transfer from protons to lattice. The frequency of these motions
therefore determines the T1 time. Smaller molecules (like water) tend to have higher
natural frequencies, while larger proteins tend to have lower motional frequencies due
to their greater size and mass. Typically, both very large and very small molecules have
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frequencies far from the Larmor frequency, and so have long T1 times. In contrast,
medium-sized molecules like cholesterol have frequencies close to those used in MR
scanning, so T1 times in the region of such molecules are short. Thus, on a T1-weighted
image, water is dark and fat tissue is bright. The myelin in the white matter of the brain
is bright for this reason, also.

Water normally has a long T1 time, but this can be altered when a water molecule
sits near large biological molecules, such as the surface of proteins. The water molecules
are weakly bonded to the proteins, and this reduces their motion, decreasing the T1
time.

T2

The T2 is not a measure of the rate of energy loss to the surrounding material, but
measures the dephasing or decoherence rate that leads to the loss of synchronisation
between the spins of the protons in the sample. Inhomogeneities in the local mag-
netic field in the substance influence the T2 time, generally shortening this time con-
siderably. In liquids, the rapid motions of molecules tend to average out these inho-
mogeneities as we discussed earlier, and this will mean that the T2* is much longer.
T2 times are also longer, as individual protons are not as close together as they are in
solids and hence do not dephase each other as much. In a T2-weighted image, long T2
times appear as bright patches, thus water shows up strongly in T2-weighted images.

Differences in protein binding of water molecules allows some distinction between
white and grey brain matter: white matter will appear darker on a T2-weighted image.

Key concept:

On T1-weighted images, water is dark and fat tissue is white. T1-weighted images
are provide useful structural/anatomical information.
On T2-weighted images, water is bright. T2-weighted images are used where water
sensitivity is important, such as when looking for oedema (accumulation of fluid).

Solids

Bone tissue, or any stones (gall stones, kidney stones etc.) that may be present, have
short relaxation times and do not contribute significantly to the signal in either T1 or
T2 weighted images. They will appear dark on an MR image. MRI is not very useful for
examining the bone in detail, and where information on fractures etc. is needed, other
techniques, such as CT scanning, are often used instead of, or in conjunction with, MRI
images.

Spatial Information

So far we have shown how the signal strength can transmit information about the T1
and T2 times and proton density of the sample being examined. In order for this infor-
mation to be used to create an image, it is also necessary to know where each compo-
nent of the signal received originated from inside the sample. To achieve this, spatial
information is encoded in the frequency and phase of the MRI signal. In the following
sections we will show how this is done.

Slice Selection

When imaging the human body, images of a slice through the body a few millimetres
in width are produced. This is done by ensuring that the magnetic field, and hence
the resonant (Larmor) frequency of the slice is different from the rest of the body. This
means that the 90° RF pulse is only absorbed in that particular slice. To produce this
effect, a gradient field is added to the strong (1 T or more) static field that is always on
during the MRI imaging procedure, and the magnetic field at position z will be

B(z) = B0 +
∆B

∆z
z (39.5)

www.wiley.com/go/biological_physics 423



39 · MAGNETISM AND MRI

where B0 is the magnetic field at z = 0, and ∆B
∆z is the field gradient.

This extra gradient field is directed along the z-axis like the static field, but it varies
linearly in strength along this axis. This ensures that the precession frequency of the
spins will also vary longitudinally and a cross-sectional slice can be excited by an ap-
propriately tuned RF field, while the rest of the body is not.

Frequency Encoding

The frequency of the signal emitted by protons in a sample is dependent on the local
value of the Larmor frequency, and this is dependent on the local value of the longi-
tudinal magnetic field. By making the magnetic field strength vary along a particular
axis, the detected signal now has components at a range of different frequencies which
correspond to particular locations along that axis. It is common to use this kind of
frequency encoding on one axis, say the x-axis, and to use phase encoding for the per-
pendicular (y) direction.

The gradient field used for this frequency encoding does not need to be on during
the whole imaging sequence; in fact, this would be unhelpful, as the T1 times are field
dependent. The extra field is only switched on during the signal detection part of the
sequence, and so is often referred to as the readout gradient.

Phase Encoding

Phase encoding is a method which encodes spatial information in the relative phase of
protons within a slice that has been selected by some other method. Initially, all of the
protons in a particular slice have the same Larmor frequency and are all synchronised
with each other. A gradient field in a transverse direction is then turned on for a short
period. Suppose that we chose the y-direction as the direction in which we wish to use
phase encoding. The new gradient field will then have a gradient in the y-direction.
While this new gradient field is on, the Larmor frequency of the protons in the slice
will vary in the chosen direction. The new gradient field is then turned off so that now
the protons in the slice are all precessing at the same Larmor frequency again. Now,
however, the transverse magnetic moment of the protons at a particular point in the
y-direction will be slightly ahead of the magnetic moment of the protons to one side
and slightly behind that of the protons on the other side. The phase of the magnetic
moment of the protons now encodes their position in the y-direction. The phase en-
coding will be present in the MRI signal and can be used to locate points in the chosen
slice.

Magnetic Resonance Spectroscopy

Magnetic resonance spectroscopy is the analysis of the frequency spectrum of an MRI
signal. This spectrum can supply information about the chemical environment in
which protons in the sample are embedded. In diagnostic applications, this can pro-
vide valuable information about metabolic processes in the sample tissue. In standard
MRI images, hydrogen nuclei consisting of a single proton are the source of the MRI sig-
nal. However, any nuclei with a non-zero magnetic moment (i.e., non-zero spin) will
produce an MRI signal, these other nuclei are commonly used in magnetic resonance
spectroscopy. The gyromagnetic ratios of some nuclei used are shown in Table (39.2).

Element γ, MHz/T
1H 42.58
19F 40.1
31P 17.2
23Na 11.3
13C 10.7

Table 39.2 Elements used in magnetic reso-
nance spectroscopy. [Reprinted with permission
from The physics of Diagnostic Imaging 2nd ed.,
Dowsett et.al. Reproduced by permission of Ed-
ward Arnold (Publishers) Ltd. Copyright 1998.]

Chemical Shift

The exact magnetic field which a nucleus experiences depends on the amount of shield-
ing from the molecular electron cloud. This magnetic field will cause a shift in the Lar-
mor frequency for the nuclei. The Larmor frequency, and thus the frequency of the MRI
signal, is chemical-species dependent, and so the frequency spectrum of an MRI signal
will show peaks that correspond to particular molecules. The area under the peak in-
dicates concentration. As T1 and T2 times are unimportant, the FID signal alone gives
all the required frequency information.

424 www.wiley.com/go/biological_physics



39.5 MAGNETIC RESONANCE IMAGING

Hydrogen MR spectroscopy can be used to observe metabolites like lactate and glu-
cose. For example, increased lactate concentrations indicate anerobic conditions. The
strong signal from the water molecules can tend to obscure the peaks from chemicals
of interest. There are a number of techniques which can be used to suppress the water
signal, but these techniques are beyond the scope of this text.

Figure 39.22 (Left) The same T1-weighted image as in Figure 39.21. (Top right) An MRI spectroscopy image of the
area around the tumour. (Bottom right) The MRI signal spectrum showing choline and creatinine peaks characteristic
of a tumour. [Images courtesy of Professor Terry Doyle, University of Otago School of Medicine.]

Contrast Agents

Contrast agents are chemical substances that affect the decay rate of the MRI signal.
They are useful for manipulating features in the images as hown in Figure 39.23.

Paramagnetic materials contain unpaired electrons. These electrons can interact
with nearby precessing nuclei, increasing the longitudinal relaxation rates and short-
ening T1 times. Thus, the presence of a paramagnetic substance will change the re-
sponse of nearby tissue and can be used to provide contrast on an MRI image. The
most commonly used paramagnetic contrast agents contain the metal gadolinium.

Superparamagnetic iron oxides (SPIO) consist of very small crystals of iron oxide.
Each crystal is a single magnetic domain so that each crystal behaves like a particle
with a very strong magnetic moment. The direction of this magnetic moment would
normally flip about randomly due to random temperature fluctuations in the medium.
In an external magnetic field they act like paramagnetic materials, since the tiny crys-
tals tend to line up with the field. In low doses, such agents will decrease the T1 time
of blood. At higher doses, the iron oxides have a noticeable effect on the T2 relaxation
times. SPIO contrast agents are of particular use for imaging the liver and spleen. Be-
cause the iron oxides accumulate in certain liver cells which are not present in hepatic
tumours, improved contrast results from the signal loss in the healthy tissues.

Contrast agents can be classified as positive or negative, depending on whether
they make the signal stronger or weaker. Decreasing the T1 time will make an area of
the image brighter, and decreasing T2 relaxation times will make it darker.
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Figure 39.23 (left) The same T1-weighted image as in Figure 39.21. (right) A T1-weighted image after after gadolin-
ium administration. This image shows increased signal around the periphery of the tumour. [Images courtesy of
Professor Terry Doyle, University of Otago School of Medicine.]

Functional MRI

Functional MRI, or fMRI, refers to any MRI technique which allows the imaging of func-
tion rather than just structure. An example of fMRI is the use of MRI images of blood to
determine levels of functioning in the brain.

Deoxygenated and oxygenated blood have different magnetic properties. Haemo-
globin is diamagnetic when oxygenated, but becomes paramagnetic when deoxygenated,
and the difference can be distinguished on an MRI scan. Changes in blood flow and
oxygenation are linked to areas of activity in the brain, since neurons lack an internal
energy and oxygen store and so must have this supplied by the blood. Areas of the brain
with actively firing neurons will correlate with lowered blood oxygenation levels.

Instrumentation

There are four main parts to an imaging system: the primary magnet, the gradient mag-
nets, the RF coils and the computer system.

It is not feasible to generate the required magnetic fields of several tesla with a con-
ventional permanent magnet. The field is instead generated with a large electromag-
net, which is the most expensive component in the system. The magnet is composed
of several kilometres of superconducting wire; once current begins to flow in the coil,
it will remain in place more-or-less indefinitely, as long as the wire is maintained at a
sufficiently low temperature.

Several types of room-temperature coils are used to create the gradient fields. The
magnetic field gradient in the z-direction is created using a pair of anti-Helmholtz coils,
which have oppositely directed currents. Figure-eight-shaped coils generate field gra-
dients in the x- and y-directions.

There are several different kinds of RF field coils: some are transmit-only and pro-
duce the pulse sequences which rotate the magnetisation, some are for receiving only
and produce a voltage when current is induced in them by the RF fields coming from
the sample and some do both. Different coil types can be used for imaging different
parts of the body.

The analysis of the signals received is done with sophisticated electronics which
perform the calculations necessary to convert the frequency and phase information in
the MRI signal into 2-D position information and generate on-screen images showing
signal strength versus position, with increased brightness representing increased signal
strength.
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Safety

If standard safety procedures are followed, MRI is a very safe imaging technique. How-
ever, there is some risk associated with the use of MRI equipment.

The magnetic fields generated by the superconducting coils are very large. Any fer-
romagnetic materials that are in the same room as the MRI apparatus are likely to be
lifted into the air and pulled into the magnet’s bore. The force with which such an ob-
ject hits the magnet casing may cause damage that affects the field homogeneity, cause
the leakage of helium, or even destroy the RF coils. If there is a person in the scanner,
the results can be tragic. In 2001, in New York State, a six-year-old boy was fatally in-
jured when an oxygen tank that had been left in the room was pulled into the magnet,
striking him in the head.

The US Food and Drug Administration (FDA) has set guidelines for the safe opera-
tion of MRI imaging facilities. These are largely to do with setting limits to the amount
of heating permissible and the largest field gradients that a person may be exposed to.
Energy is being sent into the patient in the form of radio waves. This energy ultimately
has to go somewhere, and not all of it returns to the system in the form of an RF signal.
Inevitably there is some degree of heating as energy is transferred to the surrounding
tissue by spin–lattice interactions. The set of US FDA guidelines issued in 2003 places
an upper limit of 8 T on the field strength for adults, children and infants aged 1 month
or more, and 4 T for younger infants.

There have been reported cases of moderate to severe burns resulting from the RF
fields. Malfunctioning RF coils can cause nasty burns, and so if the patient complains
at all about any burning sensation, the scan should be stopped. Patients with tattoos
or wearing drug-release patches containing aluminium have also reported mild burns.

39.6 Summary

Key Concepts

magnetism A group of phenomena associated with the movement of charged particles, caused
by the electromagnetic force.

Faraday’s law The induced electromotive force in any closed circuit is equal to the time rate of
change of the magnetic flux through the circuit.

Lenz’s law A changing magnetic field will induce a current in loop. The direction is such that the
field generated by the induced currents will oppose the change in the external field.

MRI Magnetic resonance imaging. An imaging technique utilising radio-frequency EM radia-
tion and magnetic fields to produce images of the body for medical diagnostic purposes.

magnetisation The magnetic moment per unit volume, which characterises the degree of mag-
netic polarisation of the sample.

longitudinal magnetisation The component of the magnetisation vector in the z-direction, the
direction of the large, static magnetic field, directed horizontally through the bore of the
main magnet.

transverse magnetisation The component of the magnetisation in the x y-plane.

T1 time The time taken for the longitudinal magnetisation to recover to 63% of its original value.
It depends on the time taken for the nuclei to interact with the local molecules to lose
energy, so it also called the spin–lattice relaxation time.

T2 time The time taken for the transverse magnetisation to decay to 37% of its maximum value.
It depends on how quickly the nuclei become out of phase and is also called the spin–spin
relaxation time. Dephasing from spin–spin interactions is not reversible.

T2* time Due to local inhomogeneity in the longitudinal magnetic field, the spins dephase at
an increased rate, and the characteristic timescale for this is called the T2* time. This
dephasing is reversible.

TE time Time to echo. The time taken for a rephasing pulse to re-synchronise the nuclei, gener-
ating an echo signal.

TR time Time to repetition. The time between the start of successive pulse sequences.

frequency encoding Using additional gradient magnetic fields, the local Larmor frequency and
hence emitted signal frequency will have unique value which indicates its point of origin.
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phase encoding By varying the magnet field along an axis for a short period, the nuclei will lag
or lead those in the neighbouring columns, and this phase difference can be used to locate
the point of origin of the emitted signal.

90° pulse An RF pulse which rotates the magnetisation vector through 90°, flipping it from the
longitudinal direction to rotating in the transverse plane at the Larmor frequency.

free induction decay (FID) The signal emitted after a single excitation pulse as the sample re-
turns to its original magnetisation state.

spin echo pulse sequence A pulse sequence which reverses the dephasing caused by local field
inhomogeneity with a 180° pulse.

T1 weighting Using a short TR time, the longitudinal magnetisation will only have recovered
enough for the next pulse sequence to produce a strong signal if T1 was short. Strong sig-
nal therefore correlates with short T1. T1-weighted images are useful for showing anatomic
detail.

T2 weighting With long TR and TE, the signal will be the weakest where the spin–spin dephasing
is most rapid, so the image will be darkest for short T2 times. Water has a long T2 time, so
T2 weighted images are bright in water-rich areas.

Equations

F = qvB sinθ

f = γB

B = B0
∆B

∆z
z
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39.7 Problems

39.1 A β+ particle is moving at 19 500 m s−1 parallel to the ground
and due east through a region of space in which there is a uniform
0.05 T magnetic field. If the magnetic field lines point upwards in
the vertical direction, what is the direction and magnitude of the
magnetic force on the β+ particle?

39.2 In a region of space there is a uniform magnetic field of mag-
nitude 0.25 mT pointing vertically straight down.

(a) If an electron is moving in the horizontal plane at a speed of
550 km s−1, what will the radius of the resultant circular path
be?

(b) Will the electron be moving clockwise or counter-clockwise
when viewed from above?

(c) If a positron (same mass as an electron but with a charge
of +qe ) is moving in the horizontal plane at speed of
550 km s−1, what will the radius of the resultant circular path
be?

(d) Will the positron be moving clockwise or counter-clockwise
when viewed from above?

(e) How fast would an α particle (4
2α

2+) need to be traveling to
have a path of the same radius as the electron in part (a)?

39.3 An electron travelling parallel to the ground and due north
enters a region of space in which there is uniform magnetic field
of 0.5 µT pointing straight up. The electron is travelling at a speed
of 1000 km s−1.

(a) What is the magnitude of the magnetic force on the electron
(in N)?

(b) In which direction is the magnetic force on the electron as it
enters the region in which there is a magnetic field?

(c) As the electron curves in the magnetic field the direction of
the magnetic force on the electron changes. How many sec-
onds (after entering the region in which there is a magnetic
field) before the magnetic force on the electron is pointing
due south?

39.4 An electron enters a region in which there is a uniform elec-
tric field of 2.25 µT in the z–direction. The electron moves through
the region in a ‘corkscrew’ pattern as shown in Figure 39.24. The
radius of the corkscrew path is 0.15 m while the ‘pitch’ is 0.05 m.
What is the velocity of the electron?

Figure 39.24 An electron moving in a region of uniform magnetic field.

39.5 Earths magnetic field at the surface near the poles is around
60×10−6 T. What is the Larmor frequency of protons at this loca-
tion?

39.6 A patient is placed in an MRI machine and as the MRI is taken
the magnetic field level with the patients eyes is 1.5 T. The mag-
netic field is largest at the persons head and the field gradient in
the machine is 0.05 T m−1. The patients heart is located 30 cm be-
low their eyes, the patients liver is located 60 cm below their eyes,
and the patients bladder is located 70 cm below their eyes.
Assuming the magnetic field gradient remains constant across the
whole body, what is the Larmor frequency at the patients eyes,
their liver, and their bladder (in MHz)?

39.7 The MRI apparatus in Problem 39.6 can distinguish between
signals whose frequencies differ by just 0.005 MHz. What is the
resolution of this machine along the persons body?

39.8 The Larmor frequency of protons at the top of a patient’s head
is 54.30 MHz. The Larmor frequency of protons at the top of the
spine 18.0 cm below is 55.15 MHz.

(a) What is the magnetic field strength in the MRI apparatus at
the top of the head (in T)?

(b) What is the magnetic field gradient in the MRI apparatus (in
T m−1)?

(c) The base of the patient’s spine is 1.05 m below the top of their
head. What will the Larmor frequency at the base of patients
spine be assuming that the magnetic field gradient remains
constant across the whole body (in MHz)?
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APHYSICAL CONSTANTS

A.1 High Precision Mass Values

A.2 Useful Constants

A.1 High Precision Mass Values

melectron = 9.10938215(45)×10−31 kg
mproton = 1.67262171(29)×10−27 kg = 938.272029(80) MeV/c2 = 1.00727646688(13) u
mneutron = 1.67492729(28)×10−27 kg
u = 1.660538782(83)×10−27kg = 931.494028(23) MeV/c2

A.2 Useful Constants

MEarth = 5.974×1024 kg
REarth = 6.378×106 m
g = 9.807 m s−2

G = 6.673×10−11 m3 kg−1 s−2

ke = 8.988×109 N m2 C−2

mproton1.673×10−27 kg
mneutron = 1.675×10−27 kg
melectron = 9.109×10−31 kg
e = 1.602×10−19 C
c = 2.998×108 m s−2

NA = 6.022 ×1023 mol−1

σ= 5.670×10−8 W m−2 K−4

R = 8.314 J K−1 mol−1

k = 1.381×10−23 J K−1

a0 = 5.292×10−11 m
h = 6.626×10−34 J s
ε0 = 8.854×10−12 F m−1
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BBASIC MATHS AND SCIENCE

SKILLS
B.1 Measurement and Units

B.2 Basic Algebra

B.3 Exponentials and Logarithms

B.4 Geometry

B.5 Trigonometric Functions

B.6 Vectors

Physicists, when they are in a facetious mood, will occasionally joke that ‘all other sci-
ences are merely applied physics’. While this is arguably quite true it would also be in-
ordinately difficult to get a comprehendible, explanatory and predictive model of, lets
say, the human brain and thought processes using only ‘fundamental’ physical prop-
erties and laws. Thank goodness then for neuroscience which does indeed have ever-
improving models of not just bulk physical features of the brain but how they interact
to give us our minds as we know them. As we saw in Part IV : Electricity and DC Cir-
cuits, some basic electrostatics can illustrate how components of a neuron work and as
such electrostatics is a valuable tool for neuroscientists.

Mathematicians, when they are in a facetious mood will occasionally joke that ‘phys-
ics is merely applied mathematics’. And to be fair, there is some truth to this. Mathe-
matical skills are an essential part of developing, understanding and utilising physical
models. It is possible, and indeed advisable to understand most of the physical con-
cepts presented in this book separate from the mathematical implementation and ma-
nipulation associated with them. Mathematical skills do, however, allow us to make
use of these concepts and apply them to specific problems in the real world.

The purpose of this section of the textbook is to provide a short mathematical re-
view and to indicate the mathematical concepts and skills which are necessary to a
complete understanding of the material in this book. It is not intended as an exhaus-
tive and complete mathematics primer. Any students who find themselves struggling
with the mathematical components of problem solving are advised to seek out an ap-
propriate textbook or other resource with which they can improve their mathematics
skills.

B.1 Measurement and Units

Physics is not mathematics, although a considerable amount of mathematics can be
required when solving physics problems. Physics, like all sciences, is based on the veri-
fication of theories by experiments. This means that physicists must, at some point, en-
gage in measurement, as theories of physics are about measurable phenomena. Physics
is about quantities and not about numbers. A distance of 5 m is different from a time
of 5 s, even though the number 5 is used in both cases. This is why physicists insist on
the use of units.

Units

A unit is a carefully defined amount of some quantity. For example, the second is
defined as the amount of time it takes for the cesium-133 atom to oscillate a total of
9 192 631 770 times between two carefully defined electronic states. The kilogram is
defined as the mass of a particular platinum–iridium cylinder held in a vault in Paris.
The metre is defined as the distance which light travels through a vacuum in a time
interval of 1/299 792 458th of a second.

Almost all measurable quantities in physics may be expressed in terms of a small
number of fundamental types of quantity. These fundamental quantities are: length,
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Quantity Unit Symbol
Velocity metres per second m s−1

Acceleration metres per second m s−2

per second
Force newtons N kg m s−2

Momentum newton seconds N s kg m s−1

Energy joules J N m kg m2 s−2

Power watts W J s−1 kg m2 s−3

Pressure pascals Pa N m−2 kg m−1 s−2

Charge coulombs C A s
Electric potential volts V J C−1 kg m2 A−1 s−3

Electrical resistance ohms Ω V A−1 kg m2 A−2 s−3

Table B.2 Commonly used SI units.

Number Prefix Symbol
0.000000001 10−9 nano n
0.000001 10−6 micro µ

0.001 10−3 milli m
1000 103 kilo k

1 000 000 106 mega M
1 000 000 000 109 giga G

Table B.3 Commonly used SI system prefixes. A distance of 0.0000512 m would be written as 51.2 µm while a
period of 295 000 000 seconds could be written as 295 Ms or 0.295 Gs.

time, mass, electrical current, temperature, amount of substance and luminosity. Most
properties of the physical world not included in this list may be constructed as a com-
bination of these fundamental properties. This fact allows us to define systems of units.

Quantity Unit Symbol
Amount mole mol
Time second s
Length metre m
Mass kilogram kg
Temperature kelvin K
Current ampere A
Luminosity calendula cd

Table B.1 The seven base SI units. All other SI
units can be expresses as some combination of
these units

A system of units is a convention which defines the standard amounts or units of
a set of fundamental quantities. These are called base units. The system of units used
almost exclusively in science is the SI system ( SI is an abbreviation of the French name
of the system, the Système International d’Unité). The SI system of units is a metric
system, i.e., a system based on the number 10. In this system the unit of length is the
metre (m), the unit of time is the second (s) and the unit of mass is the kilogram (kg).
The other base units in the SI system can be found in Table B.1.

There are many other units in use for quantities other than those described by the
base SI units (such as force and energy). Table B.2 has a short list of units for such
quantities which feature in this text book. Some of these quantities have their own
named unit such as the unit of force, the newton. Such units are often named after
famous scientist. All of these other units can, however, be expressed as a combination
of the six base SI units.

This system of units also specifies a set of prefixes which are prepended to the unit
to indicate quantity in powers of 10. These prefixes make it easier to refer to very large
or very small numbers. A sub-set of these prefixes are given in Table B.3; there are many
more, but these are the ones which will be useful in this text.

Unit Conversion

In this textbook we use the SI system of units as much as possible. However, this is
not the only system of units currently in use. Furthermore, it is common to see non-SI
units used in everyday life. For example, time is often measured in hours or minutes
rather than seconds, and the speed of cars is commonly given in kilometres per hour
rather than metres per second. This raises the question, how do you convert a quantity
from one system of unit into another?

We will begin this discussion by working through a pair of examples.
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Problem: How many kilometres per hour is 100 miles per hour?

Example B.1 Unit conversion I

Solution: There are 1.609 kilometres in 1 mile, so 100 miles per hour is just

1.609 kilometres

1.000 mile
×100 miles per hour = 160.9 kilometres per hour

Problem: How many miles per hour is 100 kilometres per hour?

Example B.2 Unit conversion II

Solution: There are 1/1.609 miles in 1 kilometre, so 100 kilometres per hour is just

1.000 mile

1.609 kilometres
×100 kilometers per hour = 62.15 miles per hour

In these examples we are using a conversion factor to convert from one unit system
to another without saying that this is what we are doing.

A conversion factor is a ratio of the same amount of some quantity in two different
units, with the amount of the relevant physical quantity on the numerator and denom-
inator always the same. For example, acceptable conversion factors include, 60 seconds

1 minute ,
1000 metres
1 kilometre and

1 day
24 hours .

Each of these conversion factors includes the same amount of some quantity in the
numerator and denominator (60 s is the same amount of time as 1 min), and each is
expressed using a different number depending on the units used.

If the numerator and denominator do not represent the same amount of some
quantity, or represent different quantities altogether, then it is not a valid conversion
factor. Some examples would be 50 second

1 minute and 11 kilometres
1 hour . In the first case 1 minute is

not the same amount of time as 50 seconds, and in the second case 11 km represents a
distance, while 1 h represents a time.

To convert a quantity from one unit to another, multiply by a conversion factor
which has the original unit in the denominator and the desired unit in the numerator.

The conversion factor from minutes to seconds is 60 seconds
1 minute . With this conversion

factor we can find the number of seconds in 30 minutes

60 seconds

1 minute
×30 minutes = 1800 seconds

Problem: Use conversion factors to calculate the number of seconds in a century. (Ignore the effects of leap years.)

Example B.3 Unit conversion I

Solution: We will convert the units of time from years to seconds, and to do this we will use conversion factors for: years
to days, days to hours, hours to minutes and minutes to seconds.

60 seconds

1 minute
× 60 minutes

1 hour
× 24 hours

1 day
× 365 days

1 year
×100 years = 315 360 000 seconds
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Problem: Convert 100 km h−1 into m s−1.

Example B.4 Unit Conversion II

Solution: In this example we will need to use a conversion factor for h−1, we will need to convert h−1 into min−1, and
then min−1 into s−1. We also need to convert km into m

1 minute

60 seconds
× 1 hour

60 minutes
× 1000 metres

1 kilometre
×100 km h−1 = 27.8 m s−1

Accuracy, Uncertainty and Significant Figures

The numerical values of physical quantities cannot be given with infinite precision.
Depending on the nature of the calculation, the numerical value of a physical quantity
will be given to some number of significant figures. The number of significant figures is,
with some conditions, the number of digits given. Thus the acceleration due to gravity
may be given as 9.8 m s−2 or 9.81 m s−2; in the first case there are two digits so there
are two significant figures (2 s.f.), in the second case there are three significant figures.
Numbers with more significant figures are more precise than numbers with fewer sig-
nificant figures.

Caution is required when one of the digits is zero. For example, if we were to use
g = 10 m s−2 it would appear that, since this number has two digits, it therefore repre-
sents the acceleration due to gravity to two significant figures. This would imply that
g = 10 m s−2 is just as precise as g = 9.8 m s−2. This is clearly not the case. In the expres-
sion g = 10 m s−2 the zero serves as a place-holder and conveys no more information
that this. Thus even though there are two digits, only one of them is significant. In
other words g =9.8 m s−2 is accurate to two significant figures and g =10 m s−2 is only
accurate to one significant figure. Similarly 0.38 m is accurate to two significant figures
not three, and 0.0038 m is also only accurate to two significant figures.

If a physical quantity is given to two significant figures there there is an implicit un-
certainty in the final digit. Thus 9.8 m s−2 may be read as 9.8±0.05 m s−2. This implicit
uncertainty has implications for the use of inexact numerical values in calculations.
For example, the solution to a calculation involving quantities given to two significant
figures should not be given to four or five significant figures. How many significant fig-
ures should be quoted in solutions to calculations? What if the numbers used in the
calculation have different numbers of significant figures? These are complex questions
and sophisticated approaches to these problems are used in research contexts. How-
ever, for our purposes, three simple rules of thumb will suffice:

1. Use all available digits in the calculation. Round the solution and not the inter-
mediate steps.

2. When multiplying or dividing two numbers the solution should be rounded to
the same number of significant figures as the number in the calculation with the
least significant figures. For example

1.193

0.23
= 5.18695622 = 5.2 (2 s.f.)

3. When adding or subtracting numbers the solution should be rounded to the
same number of decimal places as the number in the calculation with the least
number of decimal places. For example

10.1+12.367+0.459 = 21.926 = 21.9 (3 s.f.)

Here the answer should be reported as 21.9, since 10.1 has the least number of
decimal places.

Note, again, that these rules of thumb are appropriate in this, and other, similar
textbooks. Much more sophisticated techniques are available to deal with uncertainty
in other contexts, such as research.
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Number Rounded
299 792 458 m s−1 299 792 458 m s−1 (9 s.f.)

299 792 460 m s−1 (8 s.f.)
299 792 500 m s−1 (7 s.f.)
299 792 000 m s−1 (6 s.f.)
299 790 000 m s−1 (5 s.f.)
299 800 000 m s−1 (4 s.f.)
300 000 000 m s−1 (3 s.f.)
300 000 000 m s−1 (2 s.f.)
300 000 000 m s−1 (1 s.f.)

0.023045 m 0.023045 m (5 s.f.)
0.02305 m (4 s.f.)
0.0230 m (3 s.f.)
0.023 m (2 s.f.)
0.02 m (1 s.f.)

Table B.4 Two numbers (the speed of light and an arbitrary length) rounded to varying significant figures. Notice
that the speed of light is the same number when rounded to 1, 2 and 3 significant figures. Also, when rounding the
speed of light to 6 s.f., the result is not the same as rounding the speed 299 792 500 m s−1 to 6 s.f. (this would be
299 793 000 m s−1).

B.2 Basic Algebra

An equation can be interpreted in two different ways. An equation tells us what the
relationships between different quantities are and how to use these relationships to
calculate numerical quantities.

To illustrate this point, consider the following application of Newton’s second law,

a = F

m

a = 0.059 N

1.24 kg
= 0.048 m · s−2

The first equation, read as a sentence, states that, ‘The rate of change of an object’s
velocity is proportional to the force applied to it and inversely proportional to the mass
of the object’. This definition contains the essential meaning of Newton’s second law
and from it I can make predictions such as, ‘If I double the net force applied to an
object, I will double the acceleration of that object’.

The second usage above gives an example of the way an equation can be instruc-
tions. If I wished to know what acceleration a 1.24 kg object would experience if a
0.059 N net force were applied to it, this equation tells me what I should do. I should di-
vide 0.059 N by 1.24 kg. I will then find that the acceleration of this object will be 0.048
m s−2.

In this example we have rearranged the equation which expresses Newton’s second
law. We will now briefly review the steps involved in these manipulations.

Working With Equations

An equation has two halves separated by an equals sign, ‘=’. The essential characteris-
tic of an equation is that the right-hand half is the same as the left-hand half, both in
magnitude and in units. We may manipulate an equation; move bits around, remove
bits and add bits, so long as this one essential fact does not change. There are a small
number of basic rules for manipulating equations which guarantee that the right- and
left-hand sides are always equal. These rules are:

1. Add the same number or variable to each side.

2. Subtract the same number or variable from each side.
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3. Multiply or divide each side by the same number or variable.

As an example of the application of these rules, consider the equation

y = 2x +1

We will use the rules for manipulating equations to make x the subject of the equa-
tion

2x +1 = y

2x +1−1 = y −1 subtract 1 from both sides so that

2x = y −1

2x

2
= y −1

2
divide both sides by 2 so that

x = y −1

2

In the example given at the beginning of this chapter, the equation representing
Newton’s second law was manipulated as follows

F = ma

F

m
= ma

m
= a divide both sides by m

so
F

m
= a

Note that, since the sides of the equation are equal in both magnitude and units,
the units of acceleration are m s−2 or N kg−1 – these units are thus equivalent.

Problem Areas

Quadratic Equations

The quadratic equation is obtained by finding the square of a sum

(a +b)2 = (a +b)× (a +b)

= a (a +b)+b (a +b)

= a2 +ab +b2 +ab

= a2 +2ab +b2

Adding Fractions

Adding fractions can achieved by manipulating each fraction such that the denomi-
nators are the same. This is achieved by multiplying each fraction by a ration which
equals 1

1

a
+ 1

b
=

(
1

a
× b

b

)
+

(
1

b
× a

a

)

= b

ab
+ a

ab

= a +b

ab
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Division by a Fraction

Dividing by a fractional number is the same as multiplying by the inverse of that frac-
tion

N
a
b

= N × b

a

If both numbers are fractions this rule still holds
a
b
c
d

= a

b
× d

c

B.3 Exponentials and Logarithms

Exponentials and logarithms occur frequently in all areas of science. They often cause
some difficulties and we will here briefly review their definition and basic properties.

Definition of the Exponential

To begin our description of the exponential we will begin by considering multiplica-
tion. Multiplication may be thought of as a shorthand notation for repeated multipli-
cation, after all

n ×a = a +a +a +a +a +a + . . .︸ ︷︷ ︸
n times

(B.1)

In a similar fashion, the exponential is little more than a self consistent notation for
repeated multiplication

an = a ×a ×a ×a ×a ×a × . . .︸ ︷︷ ︸
n times

(B.2)

The great value of this notation is that it makes multiplication of exponentiated
quantities much more straightforward. For example, the sum of an and am is

an ×am
= a ×a ×a × . . .︸ ︷︷ ︸

n times
×a ×a ×a . . .︸ ︷︷ ︸

m times
= a ×a ×a . . .︸ ︷︷ ︸

n +m times

= an+m

Thus multiplication has been converted into the addition of exponentials. Note
that this is only possible when the exponentials concerned have the same base, ‘a’ in
this case.

A few special cases must be given definitions so that the exponential notation is
complete and consistent. To begin with, negative exponentials are defined so that di-
vision corresponds to the subtraction of exponents, i.e.

an

am
= an−m (B.3)

and thus

a−1 = 1

a

a−2 = 1

a2

a−3 = 1

a3

etc.
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With this definition we are able to define a0 since,

an−n = a0

= an

an

= 1

a0 = 1

Thus a0 = 1, for all values of the case of exponentiation, a.
We can also see that the notation can easily be expanded to include fractional ex-

ponents if we first consider nested exponentials

(
an)m = an ×an ×an × . . .︸ ︷︷ ︸

m times
= a ×a ×a × . . .︸ ︷︷ ︸

n ×m times

= an×m

It is then clear that (
a

1
n

)n
= a

n
n = a

An alternate way of writing fractional exponents is to use the � symbol

a
1
n = n

�
a

A variation to this general rule is the convention that in the specific case of a
1
2

a
1
2 = 2

�
a =�

a

Scientific Notation

Often in physics we are required to perform calculations with very large or very small
quantities. Scientific notation makes use of exponentials to simplify these calculations.
Central to this technique are the properties of exponentials outlined in the previous
section. The list in the margin shows the first few powers of 10.

Scientific notation for powers of 10

1 000 000 = 106

100 000 = 105

10 000 = 104

1 000 = 103

100 = 102

10 = 101

1 = 100

0.1 = 10−1

0.01 = 10−2

0.001 = 10−3

0.0001 = 10−4

0.00001 = 10−5

0.000001 = 10−6

Note that for positive powers of 10, the number of zeros is the same as the power,
i.e., one million is 106 or a 1 followed by 6 zeros. For negative powers of 10 there are one
less zeros after the decimal point than the power, so 10−6 is a decimal point followed
by 5 zeros and then a 1.

Non-integer values are dealt with by rewriting the number as a value between 1 and
10 and multiplying by the appropriate power of 10. The number 52 345 100 becomes
5.23451×107 while 0.0000897 becomes 8.97×10−5.

Logarithms

Logarithms are essentially the opposite of exponentials. The definition of the logarithm
is as follows

If y = ax , then loga y = x (B.4)

Historically the logarithm was useful because instead of multiplying large numbers
you may instead add smaller logarithms. To see how this works, suppose that we must
find the product of two large numbers A and B. Instead of performing the laborious
process of multiplying these two numbers by hand we make use of the fact that A = 10a

for some exponent a, and B = 10b for some exponent b. If we knew what a and b were
then the multiplication of A and B would involve adding a and b and then finding 10a+b .
The logarithm is exactly the function required here since log10 A = a. It was to simplify
the multiplication of large numbers that tables of logarithms were constructed.

442 www.wiley.com/go/biological_physics



B.4 GEOMETRY

Most commonly large numbers are expressed as powers of 10. For this reason loga-
rithm tables were generally table of logarithms to base 10. Euler’s number e = 2.718. . .
is very important in mathematics and in all areas of science. This number is a common
base for exponentiation and is thus also a common base of logarithms. The logarithm
to base e is known as the natural logarithm and is represented as ‘ln x’ as opposed to
‘log x’, which is generally taken to mean the logarithm to base 10.

There are a number of useful identities involving logarithms, we will simply list the
most useful here and leave their derivation to the interested reader.

log(ab) = log a + logb (B.5)

log
( a

b

)
= log a − logb (B.6)

log
(
an)= n log a (B.7)

log
(

n
�

a
)= log a

n
(B.8)

B.4 Geometry

Figure B.1 A selection of basic shapes and their
dimensions.

Geometry is the study of shapes in space. This section of the mathematics review will
do no more than provide a list of formulae which may be useful in the body of the text.
The following formulae are for the shapes shown in Figure B.1.

Triangles:

area = 1

2
×b×h

Circles:

circumference = 2πr

area =πr 2

Spheres:

surface area = 4πr 2

volume = 4

3
πr 3

Cylinders:

surface area = 2π
(
r 2 + l r

)
volume =πr 2l

B.5 Trigonometric Functions

Figure B.2 A simple right-angled triangle. The
longest side of the triangle (the hypotenuse) is
labehled H. The side of the triangle opposite the
corner labelled with the angle θ is O, and the side
adjacent to this angle is labelled A. The angle
between the sides O and A must always be 90°
in a right-angled triangle.

Trigonometry is the study of a group of functions, the sine, cosine and tangent func-
tions. These functions are the result of a particular property of right-angled triangles. If
a right-angled triangle is constructed as shown in Figure B.2, then there are three ratios
which depend only the angle between two of the sides (the angle θ in Figure B.2). The
length of the sides may increase or decrease, but if the angle θ does not change, and the
triangle remains a right-angled triangle, then these ratios will not change. The ratios
define the sine, cosine and tangent functions with are shown in Figures B.3 and B.4.
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Basic Definitions

If a right-angled triangle is given as in Figure B.2, with the lengths of the sides as indi-
cated, and the indicated internal angle is labelled θ, then the ratio of O to H is called
the sine function of θ

sinθ = O

H
(B.9)

Similarly, the ratio of A to H is called the cosine function of θ

cosθ = A

H
(B.10)

Finally, the ratio of O to A is called the tangent function of θ (this is the ratio of the
sine and cosine functions of θ),

tanθ = O

A
= sinθ

cosθ
(B.11)

Figure B.3 The sine, cosine and tangent func-
tions for angles between 0 and 90°. Each func-
tion is the ratio between two sides of a right-
angled triangle. Small representations of such
triangles are shown on each plot. These func-
tions for a larger range of angles can be found in
Figure B.4.

Some Important Identities

These identities may be demonstrated in a number of ways, however the proof is not
necessary here. These identities are provided as a useful reference only.

sin(−θ) =−sin(θ) (B.12)

cos(−θ) = cos(θ) (B.13)

tan(−θ) =− tan(θ) (B.14)

sin(θ) = cos
(π

2
−θ

)
(B.15)

cos(θ) = sin
(π

2
−θ

)
(B.16)

0° 30° 45° 60° 90°

sinθ 0 1
2

1�
2

�
3

2 1

cosθ 1
�

3
2

1�
2

1
2 0

tanθ 0 1�
3

1
�

3 ?
Table B.5 Cosine, sine, and tangent values for
common angles.

Figure B.4 The sine, cosine and tangent functions for angles between 0 and 360°. These functions repeat for angles
greater than 360°.

Common Angles

Table B.5 gives the sine, cosine and tangent of frequently occurring angles. The ‘?’ in
the bottom right-hand corner indicates that the value of the tangent is undefined at an
angle of π

2 radians. A proof of these values is relatively straightforward ,but, again, this
proof not necessary here. These values are provided as a useful quick reference.
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Graphs of Trigonometric Functions

The graphs of the sine, cosine and tangent functions are given in Figures B.3 and B.4.
Figure B.4 shows the values of each function over an range of angles from 0 to 360°.
Each function repeats itself at angles higher than this. Most of the angles that we will
be interested in are between 0 and 90°, Figure B.3 shows each function in this restricted
range of angles.

B.6 Vectors

Some physical quantities must be described as having both a magnitude (size) and a
direction. If you were walking uptown one day and you were asked how to get to the
nearest bank by a person on the street, you could tell them that it was 100 m from your
current position. The person would of course not be satisfied with these instructions
as there would be many places that were 100 m from your position. A more sensible
response would be to say that the nearest bank was 100 m due east of your current
position. This set of instructions has information about the direction in which the bank
may be found, as well as how far away it is.

Figure B.5 A simple representation of a vector.
The length of the arrow indicates the magnitude
of the vector while the direction in which the ar-
row points indicates the direction of the vector.

Clearly, direction is just as important as distance when describing changes or dif-
ferences in position. Similarly physical quantities like velocity, acceleration and mo-
mentum are all characterised by a direction as well as a magnitude. Such quantities
are described mathematically using vectors. A vector is a mathematical object that has
a direction as well as a magnitude. In contrast, a quantity like temperature may be
fully characterised by a single number. These are called scalar quantities, as scalar is
essentially another name for a number.

There are a number of ways of representing vectors. One of the most common ways
of representing a vector is to draw them as arrows like that shown in Figure B.5. The
length of the arrow represents the magnitude of the vector and the direction of the
arrow represents the direction of the vector. This representation provides us with a
useful visualisation of vectors, we will use this representation to describe the addition
and subtraction of vectors and the multiplication of vectors by a scalar.

Addition and Subtraction of Vectors

Two vectors may be added to each other to produce a third vector, or one may be sub-
tracted from the other to produce a third. To understand the addition of vectors con-
sider the following example, a car drives 1 km due east and then 2 km due north. The
total distance and the nett direction in which the car travelled is given by considering
the triangle in Figure B.6. The distance travelled is the length of the hypotenuse of this
triangle and the direction is the direction of that side of the triangle. To find the length
of the vector sum we can in this case use Pythagoras’ theorem

Figure B.6 A car travells 1 km due east and
then 2 km due north. Adding a two vectros rep-
resenting each part of the journey will enable us
to find how far away and in what direction the car
ends up.

R =
√

(x2 + y2) =
√

(12 +22) =
√

(5) ≈ 2.2 km

The direction may be found using one of the trigonometric relations discussed
above. The definition of either the sine or cosine functions would work, in this case
we will use the cosine

cosθ = adjacent

hypotenuse
= 1

2.2
= 0.46

We then take the inverse cosine, cos−1(0.46), to find that the sum vector is directed
at an angle of 63° north of east.

From this we can see that the way to add two vectors, A +B , is to place the base of
B at the tip of A and then draw a straight line from the base of A to the tip of B . The
vector sum is then formed by placing an arrow head on the end of this new line, which
is at the tip of B as in Figure B.7. The length of the vector sum may be found using
Pythagoras’ theorem, if the vectors A and B are perpendicular to each other, if this is
the case then simple trigonometry may be used to find The direction of the sum vector
relative to A or B .
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Subtraction of the vector B from the vector A may be acheived once we have de-
fined the negative of a vector. The negative of a vector B is identical to B except that
it points in the opposite direction (see Figure B.7). Now the subtraction of B from A is
simply the addition of A and −B , as illustrated in Figure B.7.

Multiplication of a Vector by a Scalar

Having considered the addition and subtraction of vectors it is natural to now consider
the multiplication of vectors. The multiplication of a vector with another vector is a
defined operation. (In actual fact there are two possible ways that two vectors may
be multiplied. However, this operation is not needed for the physics discussed in this
textbook and so will not be reviewed here.)

Figure B.7 Two vectors A and B are added to-
gether (top). Vector B is subtracted from vector
A (bottom).

The multiplication of a vector by a scalar is necessary, however. Newton’s second
law is an example of this operation. The force (a vector) is equal to the mass (a scalar)
multiplied by the acceleration (a vector). Fortunately this operation is relatively simple
to describe and use. The multiplication of a vector by a scalar simply changes the length
of the vector. Using Newton’s second law as an example, the vector F (force) is in the
same direction as the vector a (acceleration), but it is m (mass) times longer.

The division of a vector by a scalar is simply the multiplication of that vector by the
inverse of the scalar, i.e.

a

m
= a ×m−1
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absolute pressure, 119, 121
absorbed dose, 394, 399
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action potential, 279
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air resistance, 23
Airy pattern, 343
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ampere, 267
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annihilation, 380, 381
anterior chamber, 321
anti-Helmholtz coils, 410
antimatter, 381
antineutrino, 372
antinodes, 338
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aperture, 346
apoptosis, 393
aqueous humour, 321
Archimedes’ principle, 125, 129
astigmatism, 329
atmospheric pressure, 117, 121
atom, 232, 351, 359
atomic dimensions, 352
atomic mass number, 362
atomic mass unit, 363, 369
atomic number, 361
atomic physics, 351
atomic radius, 352
auditory canal, 91
auditory nerve, 92
aurora, 411
Avogadro’s number, 181
azimuthal quantum number, 357

Böhr model of the atom, 353
background radiation, 399
bar magnet, 410
barn, 386
barometer, 117, 118, 122
baryon, 361
basilar membrane, 92
battery, 270
beats, 76, 80
becquerel, 375, 381
Bernoulli’s equation, 141, 142
Bernoulli’s law, 145
Bernoulli’s principle, 141
binding energy, 365, 366, 369
blood pressure, 121
Boltzmann’s constant, 172, 181
boson, 357
bound state, 352
Boyle’s Law, 171
Boyle’s law, 180
Bq (becquerel), 375, 381
bremsstrahlung, 377, 378, 381
bremsstrahlung radiation, 381
brittle, 106
bubbles, 132
bulk modulus, 105, 108
bulk strain, 105
bulk stress, 105, 108
buoyancy, 125
buoyant force, 129

C (coulomb), 227

cancer, 397, 403
capacitance, 258, 264
capacitor, 257

dielectric, 262
parallel, 260
parallel-plate, 258
series, 260
stored energy, 259

capillarity, 131, 134, 137
capillary action, 131, 134, 137
CAT scan, 403, 406
cell damage, 393

genetic, 393
somatic, 393

cell membrane, 278
Celsius, 169
Celsius scale, 162
centre of curvature, 306, 307
centre of gravity, 35, 39
centre of mass, 35, 39
centripetal acceleration, 29, 30
centripetal force, 29, 30, 354
characteristic radiation, 377
characteristic X-rays, 377, 381
charge, 227, 231
charge carrier, 280
charge conservation, 228
charge on an electron, 228
charge quantisation, 228
charging by conduction, 229
charging by friction, 229
charging by induction, 230
Charles’ law, 180
chemical shift, 424
choroid, 323
chromatic aberration, 299
Ci (curie), 375
cilia, 92
ciliary muscle, 322
circuit, 270, 280

RC, 283
circuit element, 280
cochlea, 91
coefficient of conduction heat

transfer, 208
coefficient of heat transfer, 215
coefficient of kinetic friction, 22
coefficient of linear thermal ex-

pansion, 169
coefficient of static friction, 22
coefficient of surface thermal ex-

pansion, 166
coefficient of volume thermal ex-

pansion, 166, 169
cohesion, 131, 137
collision, 56
compression, 108
compressions, 84

compressive strain, 103
compressive stress, 103, 108
Compton effect, 388, 391, 402
computed tomography, 403, 406
concave lens, 313, 318
condensation, 184, 192
conduction, 207, 214

charging by, 229
conductivity

thermal, 215
conductor, 229, 232
cones, 323, 331
conservation

energy, 52
momentum, 56

conservative force, 51
consonance, 86
constructive interference, 76
contact angle, 134
continuity equation, 140, 145
contrast agents, 425
convection, 209, 214, 215
converging lens, 313, 318
converging mirror, 307
convex lens, 313, 318
cornea, 321
cosmic rays, 380
coulomb, 227
Coulomb’s law, 235, 241
critical angle, θc, 297
critical temperature, 185
Crookes tube, 379
cross-section, 386
CT scan, 403, 406
current, 267

alternating, 269
direct, 269

current loop, 410
current-carrying wire, 409

D (dioptres), 317
Dalton’s law, 173, 181
dB (decibel), 87, 96
DC, 280
DC circuits, 225
de Broglie wavelength, 355, 359
decay

α, 371, 381
β, 372, 381
γ, 373, 381
constant, 374, 382
nuclear, 371

decay constant, 374, 382
decay series, 376
decibel, 96
decibels, 87
deformation, 108

elastic, 108
plastic, 108
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density, 112, 113, 121
deposition, 184, 192
destructive interference, 76
deterministic effects, 397, 399
dew-point temperature, 197, 204
diagnostic procedures

dose information, 404
diamagnetism, 412
diastolic pressure, 121
dielectric, 262
dielectric constant, 262, 264
diffraction, 337, 346

single-slit, 346
diffuse reflection, 295, 301
diffusion, 153, 156
diode, 271
dioptres, 317
dipole field, 240
direct current, 269, 280
dispersion, 298, 299, 301
displacement, 3, 12
dissipative force, 46, 51
dissonance, 86
distance, 3, 12
diverging lens, 313, 318
diverging mirror, 307
Doppler effect, 94, 96
dose, 394, 399

absorbed, 394, 399
common diagnostic proce-

dures, 404
equivalent, 394, 399

dose equivalent, 394
drag, 23, 24
drift velocity, 268, 280
dry-bulb temperature, 197, 204
dynamic equilibrium, 33, 39

eV (electron volt), 363
ear, 91
eardrum, 91
earth

electrical, 280
Earth’s magnetic field, 408, 409
ECG, 251
effective dose, 395
efficiency, 50, 52, 219
elapsed time, 12
elastic collision, 57, 58, 60
elastic deformation, 108
elastic region, 106
elasticity, 106
elastomers, 106
electric charge, 225, 227, 231
electric circuit, 270
electric current, 267
electric field, 239, 241

point charge, 239
uniform, 240

electric field lines, 240, 247
electric force, 227
electric shock, 277

physiological effects, 277
electrical potential, 244, 245, 252
electrical potential difference, 244,

252
electrical potential energy, 243,

252
electrical power, 280
electrical resistance, 271, 280
electricity, 225

work, 245
electrocardiogram, 251
electromagnetic force, 20
electromagnetic radiation, 210,

301
X-ray, 377

electromagnetic waves, 293, 301
electromagnetic spectrum, 295,

301
electromotive force, 270, 280
electron, 231, 351, 352, 359

charge, 352
mass, 352

electron configuration, 361
electron neutrino, 381
electron volt, 359, 362, 363
electrostatic force, 227
electrostatic potential energy, 363
electrostatics, 227
element, 351, 362
elementary charge, 228, 231
elementary particle, 352
emf, 270, 280
emission, 353

spontaneous, 353
emissivity, 210, 215
energy, 41, 51

binding, 365, 366
electrical potential, 243
gravitational potential, 45
kinetic, 41, 42
maximum X-ray, 378
mechanical, 46, 51
photon, 353, 359
potential, 41, 44, 51
stored in a capacitor, 259

energy conservation, 52
energy level, 352, 359

hydrogen atom, 354
hydrogen-like atoms, 354

energy quantisation, 352, 359
energy shell, 357
energy units, 362
energy-mass equivalence, 362
energy kinetic, 51
equation of continuity, 140

equilibrium, 33, 39
dynamic, 33
stable, 34
static, 33
thermal, 169
unstable, 34

equilibrium position, 63
equipotential, 253
equipotential lines, 247, 253
equivalent dose, 399
eustachian tube, 91
evaporation, 192
excited state, 352
exponential, 382

F (farad), 258, 264
Fahrenheit, 169
Fahrenheit scale, 162
Faraday’s law, 411, 427
fermion, 357
ferromagnetism, 409
Fick’s law, 154
FID, 419, 428
field

electric, 241
field lines, 240
first law of thermodynamics, 217,

223
fission, 368, 369
fluid viscosity, 148
focal length, 306, 318
focal point, 306, 318
force, 16, 20, 24

air resistance, 23
centripetal, 29
common meanings, 15
conservative, 46, 51
derived forces, 21
dissipative, 46, 51
drag, 23
electromagnetic, 20
friction, 21, 22
fundamental forces, 20
gravitational, 20
moving charge in a magnetic

field, 410
non-conservative, 51
normal, 21, 22
nuclear, 364
restoring, 63
strong nuclear, 20, 364
weak nuclear, 20, 365

Fourier analysis, 91
fovea, 323
free induction decay, 419, 428
free radicals, 393
freezing, 184, 192
frequency, 66, 71, 86, 294, 301

Larmor, 415
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photon, 353
frequency encoding, 424, 427
friction

charging by, 229
friction force, 22, 24
fundamental frequency, 88
fundamental mode of vibration, 88
fundamental particle, 352
fundmental mode of vibration, 96
fusion, 369

gadolinium (contrast agent), 425
gamma camera, 404
gas, 121, 184
gauge pressure, 118, 119, 121
gauss, 409
Geiger–Müller tube, 390, 391
genetic cell damage, 393
geometric optics, 318
glottis, 91
gravitational force, 20
gravitational potential energy, 45
gray, 399
ground

electrical, 280
ground state, 352
Gy (gray), 394, 399
gyromagnetic ratio of the proton,

415

hadron, 361
hair cells, 92
half-life, 374, 375, 381
half-open pipe, 89
hammer, 91
harmonic, 88, 96
heart

electrical activity, 251
heat, 169, 192
heat transfer

conduction, 214
convection, 215
radiation, 215

heat transfer coefficient, 215
Heisenberg uncertainty principle,

358
Helmholtz coils, 410
Hooke’s law, 63, 64, 71, 102
humidity

absolute, 196
relative, 196, 204

humidity ratio, 196
Huygens’ principle, 336, 346
hydraulics, 114
hydrogen atom, 353
hypermetropia, 327
hyperthermia, 218
hypothermia, 218

ideal gas constant, 173, 181
ideal gas law, 172, 181
image, 306, 318

real, 308
virtual, 307, 308

image distance, 306
imaging

CT, 403
CT scan, 406
gamma camera, 404
PET, 403, 406
SPECT, 404, 406
ultrasound sonography, 404
X-ray, 402

impedance in the ear, 93
impulse, 56, 60
incident ray, 295
incus, 91
induced current, 411
induction

charging by, 230
inelastic collision, 57, 60
infrasonic, 83
insulator, 229, 232
intensity

sound, 86, 87
interfacial tension, 134
interference, 76, 335, 346

constructive, 76, 80
destructive, 76, 80

intrinsic angular momentum, 357,
408, 414

ion, 227, 232
ionising radiation, 381, 385

biological effects, 393
cell damage, 393
damage to DNA, 393
detection, 390
medical effects, 398
risk, 398

iris, 322
isobar, 362
isomer, 362
isotherms, 187
isotone, 362
isotope, 361, 362

K (kelvin), 169
KE (kinetic energy), 51
kelvin, 169
kinetic energy, 42, 51
Kirchhoff’s law of currents, 280
Kirchhoff’s law of voltages, 280
Kirchhoff’s laws, 272

laminar flow, 149
Larmor frequency, 415
latent heat coefficient, 192
latent heat of phase change, 187

law of reflection, 295
laws

Boyle’s, 171, 180
Charles’, 180
Coulomb’s, 235, 241
Dalton’s, 173, 181
Faraday’s, 411, 427
Fick’s, 154
first law of thermodynamics,

223
Hooke’s, 63, 64, 71, 102
ideal gas, 172
ideal gas law, 181
Kirchhoff’s, 272, 280
Lenz’s, 411, 427
Newton’s first, 16, 24
Newton’s second, 16, 24
Newton’s third, 17, 24
Ohm’s, 270, 280
Poiseuille’s, 148, 150
reflection, 295
Snell’s, 296
Stefan–Boltzmann, 215
Stefan–Boltzmann , 210
Wien displacement, 215
zeroth law of thermodynamics,

161, 169
lens, 318, 321, 322

concave, 313, 318
converging, 313, 318
convex, 313, 318
diverging, 313, 318
eye, 321

lenses, 312
Lenz’s law, 411, 427
lepton, 352
light, 301
linear momentum, 55
linear no-threshold model, 398,

399
liquid, 121, 183
liquid drop model of the nucleus,

367
longitudinal magnetisation, 427
longitudinal relaxation time, 417
longitudinal waves, 76, 84
longitudinally magnetised, 415
loudness, 86, 87, 96
lung function, 136

macula, 323
magic numbers, 368
magnet

permanent, 408
magnetic domain, 409
magnetic field, 408

anti-Helmholtz coils, 410
bar magnet, 410
current loop, 410
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current-carrying wire, 409
Earth’s, 408, 409
Helmholtz coils, 410

magnetic field inhomogeneity, 417
magnetic field lines, 408
magnetic field strength, 409
magnetic flux, 411
magnetic flux density, 409
magnetic force, 408, 410
magnetic moment, 408

proton, 415
magnetic pole, 408
magnetic quantum number, 357
magnetic resonance imaging, 407,

419, 427
magnetic resonance spectroscopy,

424
magnetisation, 427

longitudinal, 415, 427
transverse, 416, 427

magnetisation vector, 415
magnetism, 407, 408, 427
magnification, 318
malleus, 91
manometer, 116, 122
mass, 16, 24
mass defect, 365
mass units, 362
maximum coefficient of friction,

22
maximum X-ray energy, 378
Maxwell-Boltzmann distribution,

181
MeV, 364
mean life, 375
mechanical efficiency, 50, 52
mechanical energy, 46, 51
medical imaging, 401
melting, 184, 192
meniscus

negative, 134
positive, 134

metabolic energy, 223
metabolism, 217, 218, 223
metastable state, 362
mirror, 318

plane, 306
spherical, 307

modulus
shear, 104

moisture content, 196, 204
mol (mole), 172, 181
molar mass, 181
mole, 172, 181
moment, 39
momentum, 55, 60

photon, 391
monochromatic, 301

Moseley’s Law, 377
MRI, 407, 419, 427
MRI instrumentation, 426
multi-electron atoms, 357
mutation, 393
myopia, 325

N (newton), 24
negative, 227
negative meniscus, 134
net force, 24
neutral, 227
neutron, 351, 361

charge, 352
mass, 352

Newton’s first law, 16, 24
Newton’s second law, 16, 24
Newton’s third law, 17, 24
Newton’s third-law pair, 24
NMR, 413
nodes, 338
non-conservative force, 51
normal, 295
normal force, 22, 24
nuclear, 361
nuclear angular momentum, 415
nuclear decay, 365, 371
nuclear forces, 364
nuclear magnetic resonance, 413
nuclear physics, 361
nuclear radius, 352
nuclear stability, 365
nuclei, 361
nucleon, 361, 362, 369
nucleus, 351, 359, 361

binding energy, 365, 366
excited, 362
liquid drop model, 367
shell model, 368
stability, 365

nuclide, 362
nutation, 414

object distance, 306
octave, 86
ohm, 271
Ohm’s law, 270, 280
optical axis, 306, 318
optical power, 318
orbital, 352, 359
orbital angular momentum, 357,

415
organ of Corti, 92
oscillatory motion, 63
osmosis, 154, 156
osmotic pressure, 154, 155
ossicles, 91
oval window, 91
overtone, 88, 96

pair annihilation, 380, 381
pair production, 388, 391
parallel capacitors, 260
parallel resistors, 274, 281
parallel-plate capacitor, 258
paramagnetism, 412
partial pressure, 173, 181
Pascal’s principle, 113
Pauli exclusion principle, 357
PE (potential energy), 51
period, 28, 66, 71
permanent magnet, 408
permittivity, 264

relative, 258, 264
permittivity of free space, 264
PET, 406
PET scanning, 403
phase, 75, 80, 192
phase diagram, 185

P–T , 192
P–V , 192

phase encoding, 424, 428
phon, 87, 96
photoelectric effect, 387, 391, 402
photographic film, 391
photomultiplier, 391
photon, 293, 301, 353, 359
photon energy, 353, 359
photon frequency, 353
photons

interaction with matter, 386
piloerection, 221
pinna, 91
pipe, 89
pitch, 86, 96
Planck’s constant, 353, 355, 359
plane mirror, 306
plastic deformation, 106, 108
poise, 148
Poiseuille’s law, 148, 150
Poisson’s ratio, 107
polarisation, 230, 232
positive charge, 227
positive meniscus, 134
positron, 352, 373, 403
positron emission tomography,

403, 406
potential difference, 244, 252
potential energy, 45, 51

electrical, 243, 252
stored in a spring, 64

power, 47, 52
electrical, 276, 280
optical, 318

precession, 414
presbyopia, 328
pressure, 111, 121

absolute, 119
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atmospheric, 117
blood, 121
bubbles, 132
diastolic, 121
gases, 112
gauge, 118, 119
liquids, 112
measurement, 116
partial, 173, 181
solids, 112
systolic, 121

pressure in a bubble, 132
primary colours, 333
principal quantum number, 357,

377
principal rays, 306
principle of moments, 34
principle of superposition, 236
proton, 351, 361

charge, 352
magnetic moment, 415
mass, 352

proton density weighting, 422
psychrometric chart, 204
psychrometry, 204
pupil, 322

quality factor, 394
quantisation of angular momen-

tum, 353, 355
quantisation of energy, 359
quantisation of spin, 414
quantum mechanics, 414
quantum number, 357, 377

azimuthal, 357
magnetic, 357
principal, 357
spin, 357

quark, 361

rad, 394, 399
radians, 27
radiation, 210, 215, 349

background, 399
characteristic, 377
dose, 394

radiation and health, 349
radiation sickness, 398
radiative surface heat transfer co-

efficient, 210
radius

atom, 352
Böhr atom orbits, 354
nucleus, 352

radius of curvature, 306, 307
rainbows, 300
rarefactions, 84
Rayleigh criterion, 346
RBE, 394, 399

RC circuit, 283, 288
readout gradient, 424
real image, 308, 318
reflected ray, 295
reflection, 77, 85, 295, 301

diffuse, 301
difuse, 295
specular, 295, 301
total internal, 301

refraction, 296, 301
refractive index, 296
relative biological effectiveness,

394, 399
relative humidity, 196, 204
relative osmotic pressure, 155
relative permittivity, 258, 264
rem, 395, 399
resistance, 271, 280

parallel, 281
series, 280

resistivity, 271, 280
resistor, 271
resistors

parallel, 274
series, 274

resolution, 346
resonance, 88

ear canal, 92
resting membrane potential, 279
restoring force, 63
retina, 321, 323
Reynolds number, 149, 150
RH (relative humidity), 196, 204
right-hand slap rule, 410
rods, 323, 331

saturated vapour pressure, 196,
204

scattering, 385
scattering cross-section, 385, 386
scintillation, 391
sclera, 321
series, 260, 274, 280
shear, 108
shear modulus, 104, 108
shear strain, 104
shear stress, 104, 108
shell model of the nucleus, 368
SHM, 64, 71
sievert, 395, 399
simple harmonic motion, 64, 71
single photon emission computed

tomography, 404, 406
single-slit diffraction, 346
size

atom, 352
nucleus, 352

slice selection, 423
Snell’s law, 296

solid, 121, 183
somatic cell damage, 393
sonic, 83
sonography, 404
sound, 83, 96

amplitude, 86
complex waveforms, 90
decibel, 87
decibels, 87
Doppler effect, 94
ear, 91
frequency, 86
fundamental frequency, 88
fundamental mode, 88
generation, 88
harmonic, 88
intensity, 86, 87
intensity level, 87
loudness, 86, 87
overtone, 88
phon, 87
pitch, 86
pressure level, 87
reflection coefficient, 85
resonance, 88, 92
speed, 84, 85
standing waves in a pipe, 89
standing waves in a string, 88

sound intensity level, 87, 96
sound level, 87
sound pressure level, 87, 96
sound waves, 83
sound waves in gases, 83, 89
sound waves in liquids, 84
sound waves in solids, 84
special theory of relativity, 294
specific heat capacity, 192
SPECT, 404, 406
spectra, 353
spectroscopic notation, 358
spectrum

absorption, 353
emission, 353

specular reflection, 295, 301
speed, 3, 4, 12

sound, 84
speed of light, 294, 301
speed of sound, 84, 85

wire, 89
spherical mirror, 307
sphygmomanometer, 121
spin, 357, 408, 414, 415
spin down, 415
spin echo pulse sequence, 420, 428
spin quantum number, 357
spin up, 415
spin–lattice relaxation time, 417
spin–spin relaxation time, 417
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spontaneous emission, 353
spring constant, 71
stable equilibrium, 34, 39
standing waves

half-open pipe, 89
pipe, 89
string, 88

stapes, 91
state, 192
static equilibrium, 33, 39
statics, 33
Stefan–Boltzmann constant, 210,

215
Stefan–Boltzmann law, 210, 215
stereoscopic vision, 330
Stern–Gerlach experiment, 415
sticky inelastic collision, 57, 60
stirrup, 91
stochastic effects, 397, 399
strain, 101, 108

bulk, 105
compressive, 103
shear, 104
tensile, 101, 102
volume, 105

stress, 101, 108
bulk, 105, 108
compressive, 103, 108
shear, 104, 108
tensile, 101, 108

stress–strain plot, 106
strong nuclear force, 20, 364, 369
sublimation, 184, 192
superparamagnetic iron oxides,

425
superpose, 76
superposition, 76, 80, 346

wave, 335
surface tension, 131, 137
surfactant, 133, 136, 137
Sv (sievert), 395, 399
systolic pressure, 121

T (tesla), 409
T1 time, 417, 418, 422, 427
T1 weighting, 421, 423, 428
T2 time, 417, 418, 423, 427
T2 weighting, 421, 423, 428
T2* time, 418, 427
TE, 420
TE time, 427
temperature, 161, 169

Celsius, 169
critical, 185
dew-point, 197
dry-bulb, 197
Fahrenheit, 169
kelvin, 169
wet-bulb, 197

tensile strain, 101, 102
tensile stress, 101, 108
tension, 21, 24
tesla, 409
thermal conductivity, 207, 215
thermal equilibrium, 169
thermal expansion

linear coefficient, 165, 169
surface coefficient, 166
volume coefficient, 166, 169

thermionic tube, 380
thermodynamics

first law, 223
zeroth law, 161, 169

thermometer, 163
thermoregulation, 220
third-law force pair, 17
time constant, RC circuit, 288
time to echo, 420
time to repetition, 421
tomography, 406
torque, 34, 39
Torricelli’s theorem, 144, 145
total internal reflection, 296, 301
totally inelastic collision, 57, 60
TR, 421
TR time, 427
transverse magnetisation, 427
transverse waves, 75
triboelectric effect, 229
triboelectric series, 229
turbulence, 149
tympanic membrane, 91

ultrasonic, 83
ultrasound, 404
ultraviolet, 399
uniform electric field, 240
units

atomic mass unit, 363, 369
electron volt, 362, 363
energy, 362
gray, 399
Gy (gray), 394
mass, 362
MeV, 364
rad, 394, 399
rem, 399
sievert, 399

universal gas constant, 173, 181
unstable equilibrium, 34, 39
UV, 399

V (volt), 245, 252
vaporisation, 184
vapour, 193
vapour pressure, 193

saturated, 196
vasoconstriction, 220

vasodilation, 220
vector field, 239
velocity, 3, 4, 12

average, 6
instantaneous, 6

virtual image, 307, 308, 318
viscosity, 148, 150
viscous fluid, 150
visible light, 295
vitreous humour, 322
vocal cords, 91
vocal organs, 91
vocal tract, 91
volt, 245
voltage, 252
volume flow rate, 139
volume strain, 105

wave
beats, 76
longitudinal, 76, 80
superposition, 76
transverse, 75, 80

wave front, 336
wave function, 358
wave speed, 80, 84
wave-particle duality, 355
wavelength, 73, 80, 301
wavenumber, 75
waves

complex, 90
electromagnetic, 293
longitudinal, 84
sound, 83
sound waves in gases, 83, 89
sound waves in liquids, 84
sound waves in solids, 84
speed, 84
standing waves in a pipe, 89
standing waves in a string, 88

weak nuclear force, 20, 365, 369
weight, 17
wet-bulb temperature, 197, 204
Wien displacement law, 211, 215
Wien’s displacement constant, 215
wires, 272
work, 41, 51, 223, 245

X-ray, 377, 381
imaging, 402
production, 377
radiograph, 402

X-ray radiograph, 406
X-ray tubes, 379

Young’s double slit, 346
Young’s modulus, 102, 103, 108

zeroth law of thermodynamics,
161, 169
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